
Universidade Federal de Pernambuco
Centro de Informática

MSc. in Computer Science

ArcAngel: a Tactic Language For Refinement and its Tool Support
by

Marcel Vińıcius Medeiros Oliveira

MSc. Thesis

Recife, 4th December, 2002

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

Marcel Vińıcius Medeiros Oliveira

ArcAngel: a Tactic Language For Refinement and its Tool Support

This work was presented to the Msc programme in

Computer Science, Centro de Informática, Universidade

Federal de Pernambuco as a requirement for the award

of the degree.

Supervisor: Profa. Ana Lúcia Caneca Cavalcanti

i

Acknowledgements

Thanks God, for helping me and for making me able to realize this work. Thanks
to my parents for growing me up and for investing in my studies. To Lauana for
the support and the incentive in the most difficult times.

To my supervisor, Ana Cavalcanti, for guiding me in this research, for the valu-
able insights, for the detailed revisions and for supporting my work since graduation,
trying always to transfer your knowledge to me.

To IPAD - Instituto de Planejamento e Apoio ao Desenvolvimento Tecnológico
e Cient́ıfico for the financial, technical and personal support.

To Adeline de Souza Silva for helping me with the implementation of Gabriel’s
parser. To Adnan Sherif for giving me hints about LATEX and its tools for Windows.

To Lindsay Groves for very detailed comments and insights. To Andrew Martin,
and Ray Nickson for valuable discussions about refinement, mechanization, and tac-
tics. Jim Woodcock collaborated in the presentation of the semantics of ArcAngel.
The name of the language itself is due to him.

To all my friends and to my family for being part of my life and for have being
always for me and with me.

Thanks.

iii

Abstract

Morgan’s refinement calculus is a successful technique to develop and implement
software in a precise, complete, and consistent way. From a formal specification we
produce a program which correctly implements the specification by repeatedly ap-
plying transformation rules, which are called refinement laws. Using the refinement
calculus, however, can be a hard task, as program developments may prove to be
long and repetitive.

Frequently used strategies of development are reflected in sequences of law appli-
cations that are over and over applied in different developments or even in different
points of a single development. A lot is to be gained from identifying these tactics
of development, documenting them, and using them in program developments as a
single transformation rule.

In this work we present ArcAngel, a language for the definition of refinement
tactics based on Angel, and formalize its semantics. Angel is a general-purpose
tactic language that assumes only that rules transform proof goals. The semantics
of ArcAngel is similar to Angel’s semantics, but is elaborated to take into account
the particularities of the refinement calculus.

Most of Angel’s algebraic laws are not proved. In this work we present their
proofs based on the ArcAngel semantics. A normal form is also presented in this
work; it is similar to that presented for Angel tactics. Our contribution in this
respect is to give more details on the proofs of the lemmas and theorems involved
in the strategy of reduction to this normal form.

The constructs of ArcAngel are similar to those of Angel, but are adapted to
deal with refinement laws and programs. Moreover, ArcAngel provides structural
combinators that are suitable to apply refinement laws to components of programs.
Using ArcAngel, we define refinement tactics that embody common development
and programming strategies.

Finally, we present Gabriel, a tool support for ArcAngel. Gabriel works as a plug-in
to Refine, a tool that semi-automatizes transformations from formal specifications
to correct programs with successive refinement laws applications. Gabriel allows its
users to create tactics and use them in a program development.

v

Resumo

O cálculo de refinamentos é uma técnica moderna para o desenvolvimento e imple-
mentação de programas de uma maneira precisa, completa e consistente. A partir
de uma especificação formal, nós produzimos um programa que implementa corre-
tamente a especificação através de repetidas aplicações de regras de transformação,
também chamadas de leis de refinamento. Entretanto, o uso do cálculo de refina-
mentos pode ser uma tarefa dif́ıcil, pois o desenvolvimento de programas pode vir
a ser longo e repetitivo.

Estratégias de desenvolvimento são refletidas em sequências de aplicações de leis
que são aplicadas repetidamente em desenvolvimentos distintos, ou até mesmo, em
pontos diferentes de um mesmo desenvolvimento. A identificação destas táticas de
desenvolvimento, documentação, e uso das mesmas em desenvolvimentos de progra-
mas como uma simples regra de transformação trazem um grande ganho de tempo
e esforço.

Neste trabalho nós apresentamos ArcAngel, uma linguagem para definição de
táticas de refinamento baseada em Angel, e formalizamos a sua semântica. Angel é
uma linguagem de táticas de propósito geral que assume apenas que regras trans-
formam objetivos de prova. A semântica de ArcAngel é similar a de Angel, mas
é elaborada de maneira a levar em consideração as particularidades do cálculo de
refinamentos.

A maioria das leis algébricas de Angel não são provadas. Neste trabalho, nós ap-
resentamos suas provas baseadas na semântica de ArcAngel. Também apresentamos
neste trabalho uma forma normal; ela é similar àquela apresentada para táticas em
Angel. Neste respeito, nossa contribuição é dar mais detalhes nas provas de lemas
e teoremas envolvidos na estratégia de redução para esta forma normal.

Os construtores de ArcAngel são similares aos de Angel, mas são adaptados para
tratar com leis de refinamento e programas. Além disso, ArcAngel provê combi-
nadores estruturais que são apropriados para aplicar leis de refinamento a compo-
nentes de programas. Usando ArcAngel, nós definimos táticas de refinamento que
refletem estratégias comuns de desenvolvimento de programas.

Finalmente, nós apresentamos Gabriel, um suporte ferramental para ArcAn-
gel. Gabriel trabalha como um componente de Refine, uma ferramenta que semi-
automatiza transformações de espeficações formais para programas corretos através
de sucessivas aplicações de leis de refinamento. Gabriel permite aos seus usuários
criar táticas e usá-las em desenvolvimento de programas.

vii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Refinement Calculus . 3
1.3 Overview . 11

2 ArcAngel 13
2.1 ArcAngel’s Syntax . 14

2.1.1 Basic Tactics . 14
2.1.2 Tacticals . 14
2.1.3 Structural Combinators . 17

2.2 Examples . 19
2.2.1 Following Assignment . 20
2.2.2 Leading Assignment . 21
2.2.3 TakeConjAsInv . 22
2.2.4 ReplConsByVar . 25
2.2.5 StrengInv . 28
2.2.6 TailInvariant . 38
2.2.7 ProcNoArgs . 43
2.2.8 ProcCalls . 45
2.2.9 ProcArgs . 45
2.2.10 RecProcArgs . 47

2.3 ArcAngel’s Semantics . 51
2.3.1 Tactics . 52
2.3.2 Structural Combinators . 54
2.3.3 Tactic Declarations and Programs 62
2.3.4 Tacticals . 63

3 Algebraic Laws 64
3.1 Simple Laws . 65

3.1.1 Basic properties of composition 65
3.1.2 Laws involving Cut . 65

ix

3.1.3 Laws involving succs and fails 66
3.1.4 Laws involving Structural Combinators 69
3.1.5 Laws of con . 69

3.2 ArcAngel’s Normal Form . 70
3.2.1 Cut-free Normal Form . 70
3.2.2 Pre-Normal Form . 73
3.2.3 General Normal Form . 77

4 Gabriel: a tool for ArcAngel 86
4.1 Gabriel Concepts . 87
4.2 Gabriel’s User Interface . 87
4.3 Constructs of Gabriel . 89
4.4 Using Gabriel . 90

5 Conclusions 94
5.1 Contributions and Conclusions . 95
5.2 Related Work . 95
5.3 Future Work . 100

A ArcAngel’s Novel Constructs 102

B Infinite Lists 103

C Refinement Laws 107

D Proofs of the Laws 111
D.1 Basic properties of composition . 111
D.2 Laws involving Cut . 115
D.3 Laws involving succs and fails . 121
D.4 Laws involving Structural Combinators 156
D.5 Laws on con . 161
D.6 Lemmas . 162

D.6.1 Lemma 3 . 162
D.6.2 Lemma 7 . 167
D.6.3 Lemma 8 . 168
D.6.4 Lemma 9 . 169
D.6.5 Lemma 10 . 169
D.6.6 Lemma 11 . 171
D.6.7 Lemma 12 . 172
D.6.8 Lemma 13 . 173
D.6.9 Lemma 14 . 174
D.6.10 Lemma 15a . 182

x

D.6.11 Lemma 15b . 182
D.6.12 Lemma 16 . 182
D.6.13 Lemma 17 . 183
D.6.14 Lemma 18 . 184
D.6.15 Lemma 19 . 185
D.6.16 Lemma 20 . 186
D.6.17 Lemma 21 . 186
D.6.18 Lemma 22 . 186
D.6.19 Lemma 23 . 187
D.6.20 Lemma 24 . 188
D.6.21 Lemma 25 . 188
D.6.22 Lemma 26 . 188
D.6.23 Lemma 27 . 189
D.6.24 Lemma 28 . 191

E Gabriel’s Architecture 192
E.1 Class Diagrams . 193

E.1.1 Integration Gabriel – Refine 193
E.1.2 Tactic’s Hierarchy . 194

E.2 Sequence Diagrams . 195
E.2.1 Tactic Generation . 195
E.2.2 Tactic Application . 196

F Constructs of Gabriel 197
F.1 ASCII ArcAngel . 198
F.2 Laws Names and Templates . 199
F.3 Argument Types . 201

xi

List of Figures

1.1 Abstract Syntax of the Language of Morgan’s Refinement Calculus 4

2.1 Abstract Syntax of ArcAngel . 15

4.1 Gabriel’s User Interface . 88
4.2 Refine’s Tactics List . 89
4.3 takeConjAsInv written in ASCII ArcAngel 90
4.4 Refine’s New Development Window 91
4.5 Gabriel’s Arguments Window . 92
4.6 Refine’s Development Window . 92
4.7 Refine’s Collected Code Window . 93

A.1 ArcAngel’s Novel Constructs . 102

E.1 Integration Gabriel – Refine . 193
E.2 Tactic’s Hierarchy . 194
E.3 Tactic Generation . 195
E.4 Tactic Application . 196

xii

List of Tables

4.1 Argument’s Values . 93

F.1 ArcAngel’s constructs in Gabriel . 198
F.2 Gabriel’s Laws Names . 199
F.3 Continuation of Gabriel’s Laws Names 200
F.4 Argument’s Types in Gabriel . 201

xiii

Chapter 1

Introduction

In this chapter we motivate the creation of a tactic language for the refinement
calculus of Morgan. The motivation for implementing a tool that provides support
for the use of this language is also presented. Furthermore, we give a brief intro-
duction to the refinement calculus, and, finally, provide an overview of the whole
dissertation.

1

1.1 Motivation

Software development should include theories and formalisms in order to become
software engineering. Most of software developments, however, do not use the
already existing theories. This leads to difficulties in developing a relatively low
cost trustworthy software, where the time of development is controllable. In [22],
Milner affirms that software development theories are as important as computing
theories. The experience with the informal techniques is the main reason for using
formal methods in the development processes.

The refinement calculus of Morgan [23] is a modern technique for formal pro-
gram development. By repeatedly applying correctness-preserving transformation
rules to an initial specification, we produce a program that implements it. However,
applying the refinement calculus may be a hard task, since developments are often
long and repetitive. Some development strategies may be captured as sequences of
rule applications, and used in different developments, or even several times within
a single development. Identifying these strategies [17], documenting them as refine-
ment tactics, and using them as single transformation rules brings a profit in time
and effort. Also, a notation for describing derivations can be used for modifying
and analyzing formal derivations.

In this work we present a refinement-tactic language called ArcAngel, derived
from the more general tactic language, Angel [21, 20]. The flexibility of Angel and
its theoretical basis were the reasons for choosing Angel as our basis language. Angel
is a general-purpose tactic language that is not tailored to any particular proof tool;
it assumes only that rules transform proof goals. A refinement-tactic language must
take into account the fact that, when applying refinement laws to a program, we get
not only a program, but proof obligations as well. So, the result of applying a tactic
is a program and a list of all the proof obligations generated by the individual law
applications. We give an informal description of ArcAngel and use it to formalize
commonly used refinement strategies. We also provide its formal semantics. Based
on these definitions, we have proven over seventy laws of reasoning, which support
a strategy of reduction to a normal form of ArcAngel. ArcAngel’s constructs are
similar to Angel’s, but are adapted to deal with the application of refinement laws
to programs. In particular, ArcAngel’s structural combinators are used to apply
tactics to program components.

Other tactic languages can be found in the literature [11, 33, 34, 31, 32, 12, 13, 4,
35, 36, 6, 14]. However, as far as we know, none of them present a formal semantics
and a normal form, as ArcAngel does. Furthermore, some of these languages do
not present some operators (i.e. recursion and alternation) as ArcAngel does. This
limits the power of expression of these languages.

The use of ArcAngel, without a tool support, would still be a hard task. Im-
plementing such a tool would bring further profit in time and effort. We present

2

Gabriel, a tool support for ArcAngel. Gabriel works as a plug-in to Refine [8] and
allows its users to create tactics and use them in a program development.

Some tools for refinement support use existing languages for tactic definition [11,
12, 13, 4, 35, 36, 6, 14]. For this reason, the user must learn complex languages in
order to formalize tactics using these tools. Furthermore, some of them have a goal-
oriented approach [14]. These tools use existing theorem provers. The refinement
consists of proving that the final program implements the initial formal specification.
This, however, is not a good approach for program refinement since we do not know
the final program from the beginning of the refinement. Finally, some tools do not
provide the reuse of previous derivations [31, 32] and do not support procedure
constructs [4, 35, 36] as Refine does.

1.2 Refinement Calculus

In this dissertation we assume a previous knowledge of refinement calculus. How-
ever, a short description is given in order to establish the notation used in this
work.

The refinement calculus is based on a unified language of specification, design
and implementation. Its syntax is presented in Figure 1.1. Developing programs
consists of repeatedly applying refinement laws to a specification until an adequate
program is obtained. All these laws are listed in Appendix C.

A specification has the form w : [pre, post] where w , the frame, lists the variables
whose values may change, pre is the precondition, and post is the postcondition.
The language used to define the precondition and the postcondition is the predi-
cate calculus. The execution of a specification statement in a state that satisfies
the precondition changes the variables listed in the frame so that the final state
satisfies the postcondition. If the initial state does not satisfy the precondition, the
result cannot be predicted. A precondition true can be omitted. For example, the
specification statement x : [x > 0, x 2 = 1] specifies a program which, given x such
that x > 0, sets x so that x 2 = 1.

In the postcondition, 0-subscripted variables can be used to represent the initial
value of the corresponding variable. As an example of its use we have x : [x = x0 + 1].
After the execution of this program, the variable x has its value in the initial state
incremented by one.

As a development example, we use the following specification statement:

q , r : [a ≥ 0 ∧ b > 0, q = a div b ∧ r = a mod b]

It specifies a program which, given a and b, such that a ≥ 0 and b > 0, sets q
to the quotient of a divided by b, and sets r to the remaining of this quotient. The

3

program ::= name∗ : [predicate, predicate] [specification statement]

| name∗ := expression∗ [multiple− assignment]

| program; program [sequence]

| if [] i • predicate → program fi [conditional]

| do [] i • predicate → program od [loop]

| [[var varDec • program]] [variable block]

| [[con varDec • program]] [constant block]

| [[proc name =̂ procBody • program]] [procedure block]

| [[proc name =̂ procBody variant name is expression • program]]
[variant block]

procBody ::= program

| (parDec • program)

parDec ::= val varDec

| res varDec

| val-res varDec

| parDec; parDec

varDec ::= name+ : Type

| varDec; varDec

Figure 1.1: Abstract Syntax of the Language of Morgan’s Refinement Calculus

4

symbol � represents the refinement relation such that

a
� lname(args)
b

represents that, using the law lname with arguments args , b refines a.
We begin the development by strengthening the postcondition in order to insert

the mathematical definition of quotient and of quotient’s remaining.

q , r : [a ≥ 0 ∧ b > 0, q = a div b ∧ r = a mod b]
� strPost((a = q ∗ b + r ∧ 0 ≤ r) ∧ ¬ r ≥ b)

q , r : [a ≥ 0 ∧ b > 0, (a = q ∗ b + r ∧ 0 ≤ r) ∧ ¬ r ≥ b] �

This law generates the following proof obligation

(a = q ∗ b + r ∧ 0 ≤ r) ∧ ¬ r ≥ b ⇒ (q = a div b ∧ r = a mod b).

Then, we strengthen again the postcondition in order to introduce the bound
limits of the invariant b > 0.

� strPost(b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r ∧ ¬ r ≥ b)
q , r : [a ≥ 0 ∧ b > 0, b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r ∧ ¬ r ≥ b] �

This law generates the following proof obligation

(b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r ∧ ¬ r ≥ b) ⇒
(a = q ∗ b + r ∧ 0 ≤ r) ∧ ¬ r ≥ b.

We now split the specification into two. We intend to use the first one to initialize
the variables used in the iteration generated from the second one.

� seqComp(b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r)
q , r : [a ≥ 0 ∧ b > 0, b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r]; �

q , r :


(

b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r
)
,(

b > 0 ∧ a = q ∗ b + r
0 ≤ r ∧ ¬ r ≥ b

)  (i)

� assign(q , r := 0, a)
q , r := 0, a

This law generates the following proof obligation

a ≥ 0 ∧ b > 0 ⇒ b > 0 ∧ a = 0 ∗ b + a ∧ 0 ≤ a.

Then, we introduce the iteration.

5

(i) � iter(〈r ≥ b〉, r)
do r ≥ b →

q , r :


(

b > 0 ∧ a = q ∗ b + r
0 ≤ r ∧ r ≥ b

)
,(

b > 0 ∧ a = q ∗ b + r
0 ≤ r ∧ 0 ≤ r < r0

)
 �

od

Finally, we introduce the assignment in the body of the iteration. The quotient
is incremented by one, and the quotient’s remaining is decremented by b.

� assignIV (q , r := q + 1, r − b)
q , r := q + 1, r − b

This law generates the following proof obligation

(q = q0) ∧ (r = r0) ∧ b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r ∧ r ≥ b ⇒
b > 0 ∧ a = (q + 1) ∗ b + (r − b) ∧ 0 ≤ (r − b) ∧ 0 ≤ (r − b) < r0).

So, by applying a sequence of refinement laws to the initial specification we get
the following executable program.

q , r := 0, a;
do r ≥ b →

q , r := q + 1, r − b
od

Besides the specification statement, the language of the refinement calculus in-
cludes all the constructors of Dijkstra’s language [10]. There are also block con-
structs to declare local variables, logical constants, and procedures. Variable blocks
have the form [[var x : T • p]], where x is a variable name of type T whose scope
is restricted to p. Similarly, logical constants c are declared in blocks of the form
[[con c • p]].

Procedure blocks are very simple: they begin with the keyword proc, the name
of the procedure and a program fragment, called the body of the procedure. This
body can have argument declarations, if the procedure has arguments. Then, after a
•, the main program is declared. The general form is [[proc name =̂ body • prog]].

As an example, we have the program which, given three numbers p, q , and r ,
exchanges their values such that p ≤ q ≤ r . The specification of this program is

6

presented below.

p, q , r : [p ≤ q ≤ r ∧
p, q , r� =
p0, q0, r0�]
The expression
p, q , r� =
p0, q0, r0� assures that the bag containing the values

of p, q , and r cannot be changed.
We start the derivation by breaking the program in three assignments. The last

assignment sorts p and q . The expression p � q returns q if p > q and p if p ≤ q .
The expression p
 q returns p if p > q and q if p ≤ q .

� fassign(p, q := (p � q), (p
 q))
p, q , r : [(p � q) ≤ (p
 q) ≤ r ∧
(p � q), (p
 q), r� =
p0, q0, r0�]; �
p, q := (p � q), (p
 q)

The second assignment sorts q and r . Finally, the first assignment also sorts p
and q .

� fassign(q , r := (q � r), (q
 r))

p, q , r :

[
(p � (q � r)) ≤ (p
 (q � r)) ≤ (q
 r)

(p � (q � r)), (p
 (q � r)), (q
 r)� =
p0, q0, r0�

]
; �

q , r := (q � r), (q
 r)
� assignIV (p, q := (p � q), (p
 q))

p, q := (p � q), (p
 q)

This law generates the following proof obligation.

p = p0 ∧ q = q0 ∧ r = r0 ⇒
((p � q) � ((p
 q) � r)) ≤ ((p � q)
 ((p
 q) � r)) ≤ ((p
 q)
 r)

((p � q) � ((p
 q) � r)), ((p � q)
 ((p
 q) � r)), ((p
 q)
 r)� =

p0, q0, r0�
Finally, we introduce the procedure sort and, then, we use this procedure in the

body of the program.

� procNoArgsIntro(sort , (p, q := p � q , p
 q))
[[proc sort =̂ p, q := p � q , p
 q •

p, q := (p � q), (p
 q);
q , r := (q � r), (q
 r);
p, q := (p � q), (p
 q)]]

� procNoArgsCall()
[[proc sort =̂ p, q := p � q , p
 q •

sort ; q , r := (q � r), (q
 r); sort]]

So, our derivation results in the following program. This program defines the

7

procedure sort and use it to sort p, q , and r .

[[proc sort =̂ p, q := p � q , p
 q •
sort ; q , r := (q � r), (q
 r); sort]]

The arguments can be passed by value, using the keyword val, by result, using
the keyword res, or by value-result, using the keyword val-res. An example of
a parameterized procedure is [[proc inc =̂ (val-res n : N • n := n + 1) • inc(n)]].
The body of the procedure in this case is a parameterized command [2].

For example, we have the square root program. Its specification is

x : [0 ≤ x , x 2 = x0]

We start the development by introducing the procedure sqrts , which returns the
square root of a given real number.

� procArgsIntro(sqrts , b : [0 ≤ a, b2 = a], (val a : R; res b : R))
[[proc sqrts =̂ (val a : R; res b : R • b : [0 ≤ a, b2 = a]) •

x : [0 ≤ x , x 2 = x0] �
]]

The next step is to introduce a substitution by value and contract the frame to
remove the variable a.

� callByValueIV (x , a)
(val a : R • x , a : [0 ≤ a, x 2 = a0])(x) �

� contractFrame(a)
(val a : R • x : [0 ≤ a, x 2 = a])(x) �

Then, we introduce a substitution by result and use the law multiArgs to put
our two kinds of substitution together.

� callByResult(x , b)
(res b : R • b : [0 ≤ a, b2 = a])(x) �

� multiArgs()
(val a : R, res b : R • b : [0 ≤ a, b2 = a])(x , x) �

Finally, we introduce the procedure call.

� procArgsCall()
sqrts(x , x)

Our resulting program introduces the procedure sqrts and uses it to calculate

8

the square root of a given number x .

[[proc sqrts =̂ (val a : R, res b : R • b : [0 ≤ a, b2 = a]) •
sqrts(x , x)

]]

Variant blocks are used to develop recursive procedures. Besides declaring the
procedure and the main program, a variant block declares a variant e named v
used to develop a recursive implementation for the procedure. The general form is
[[proc name =̂ body variant v is e • prog]].

We present the factorial program as an example of a recursive procedure devel-
opment. We have the following specification as the initial specification.

f : [f = n! ∗ 1] �

The variant introduction is the first step of the development. We define the
value of the variable m as the variant V .

� variantIntro(fact ,V ,m, (f : [f = m! ∗ k]),val m, k : N)
[[proc fact =̂ (val m, k : N • f : [V = m, f = m! ∗ k])

variant V is m •
f : [f = n! ∗ 1] �

]]

Then we introduce a substitution by value of the variables m and k .

� callByValue(m, k : N, 〈n, 1〉)
[[proc fact =̂ (val m, k : N • f : [V = m, f = m! ∗ k])

variant V is m •
(val m, k : N • f : [f = m! ∗ k])(n, 1)

]] �

The next step is to introduce the procedure call in the variant block.

� procVariantBlockCall()
[[proc fact =̂ (val m, k : N • f : [V = m, f = m! ∗ k]) �

variant V is m •
fact(n, 1)

]]

Now, we start to develop the body of the procedure fact . First, we introduce an

9

alternation in order to check if we must stop the recursion (m = 0) or not (m > 0).

� law alt(〈m = 0,m > 0〉)
if m = 0 → f : [V = m ∧ m = 0, f = m! ∗ k] �

[] m > 0 → f : [V = m ∧ m > 0, f = m! ∗ k] (i)
fi

This law application generates the following proof obligation

V = m ⇒ m = 0 ∨ m > 0

The base case is when we have m equals to 0. In such case, k must receive the
value of the variable f .

� assign(f := k)
f := k

The following proof obligation is generated in this case

V = m ∧ m = 0 ⇒ k = 0! ∗ k

If m > 0 we should make a recursive call. We first strengthen the postcondition
in order to make a recursive call of procedure fact .

(i)� strPost(f = (m − 1)! ∗m ∗ k)
f : [V = m ∧ m > 0, f = (m − 1)! ∗m ∗ k] �

We have the following proof obligation

f = (m − 1)! ∗m ∗ k ⇒ f = m! ∗ k

Then, we introduce a substitution by value and weaken the pre condition.

� callByValue(〈m, k〉, 〈m − 1,m ∗ k〉)
(val m, k : N • f : [V = m + 1 ∧ m + 1 > 0, f = m! ∗ k])

(m − 1,m ∗ k) �
� weakPre(0 ≤ m < V)

f : [0 ≤ m < V , f = m! ∗ k]) �

This law generates the following proof obligation

V = m + 1 ∧ m + 1 > 0 ⇒ 0 ≤ m < V

At this point of the program development, we have the following collected pro-

10

gram.

[[proc fact =̂ (val m, k : N •
if m = 0 → f := k
[] m > 0 → f : [0 ≤ m < V , f = m! ∗ k]
fi)

variant V is m •
fact(n, 1)]]

Finally, we refine this program by introducing a recursive call to the procedure
fact as seen below.

� recursiveCall()
[[proc fact =̂ (val m, k : N •

if m = 0 → f := k
[] m > 0 → fact(m − 1,m ∗ k)
fi)

variant V is m •
fact(n, 1)]]

This law application generates the following proof obligation

f : [V = n, f = m! ∗ k]
�

if m = 0 → f := k
[] m > 0 → f : [0 ≤ m < V , f = m! ∗ k]

fi

This finishes the development of the factorial program.
The development of some examples seen here make use of development strategies

which can be found in the literature. For instance, the first example introduces an
initialized iteration using a conjunction as its invariant. The sequence of law appli-
cations to introduce such an iteration can be formalized as a tactic, reducing time
and effort in program developments. Next chapter presents ArcAngel, a language
for tactic formalization.

1.3 Overview

Chapter 2 introduces ArcAngel. First, we present ArcAngel’s Syntax and give an
informal description of the language. Then, we present some commonly used re-
finement strategies (tactics) written in ArcAngel. Finally, we present ArcAngel’s
formal semantics.

11

Based on this semantics, Chapter 3 presents laws of reasoning. These laws are
used to support a strategy of reduction to a normal form for ArcAngel. All the laws
used in this work are proved in Appendix D.

In Chapter 4 we discuss the implementation of Gabriel, a tool that supports the
use of ArcAngel. We present the concepts of the tool. Then we discuss briefly its
user interface, presenting the constructs of ArcAngel available in Gabriel, and an
example of a tactic creation and usage.

Finally, in Chapter 5 we summarize the results obtained and make some final
considerations. Related and future works are also discussed in this chapter.

12

Chapter 2

ArcAngel

In this chapter we present the language ArcAngel, a refinement-tactic language based
on Angel. Most of basic tactics in ArcAngel are inherited from Angel. However,
almost all ArcAngel’s structural combinators are not defined in Angel. ArcAngel’s
extension for Angel can be found in Appendix A. All the program development
strategies in the literature are formalized as tactics written in ArcAngel and their
use are also presented. Finally, we present ArcAngel’s formal semantics which is
totally different from Angel’s formal semantics.

13

2.1 ArcAngel’s Syntax

The syntax of ArcAngel is displayed in Figure 2.1. The syntactic category args is the
set of (possibly empty) comma-separated lists of arguments enclosed in parentheses.
An argument is a predicate; an expression; a variable or constant declaration; a list
of predicates, expressions, variables, or arguments declarations; or a program. The
category pars is the set of possibly empty comma-separated lists of (parameter)
names enclosed in parentheses. The definitions of these syntactic categories are
standard and are omitted. Finally, the notation tactic+ is used to represent a non-
empty list of tactics; in examples, we number the elements of this list. A pair of
square brackets represents optional clauses.

There are three distinct kinds of tactics: basic tactics are the simplest tactics;
tacticals are combination of tactics; and structural combinators are tactics used to
handle parts of a program. Some of the basic tactics and most of the tacticals are
original to ArcAngel; most of the structural combinators in ArcAngel do not exist in
Angel. ArcAngel’s extension for Angel can be found in Appendix A.

2.1.1 Basic Tactics

The most basic tactic is a simple law application: law n(a). The application of this
tactic to a program has two possible outcomes. If the law n with arguments a is
applicable to the program, then the application actually occurs and the program is
changed, possibly generating proof obligations. If the law is not applicable to the
program, then the application of the tactic fails.

The construct tacticn(a) applies a previously defined tactic as though it were
a single law. The trivial tactic skip always succeeds, and the tactic fail always
fails; neither generates any proof obligations. The tactic abort neither succeeds
nor fails, but runs indefinitely.

2.1.2 Tacticals

In ArcAngel, tactics may be sequentially composed: t1; t2. This tactic first applies
t1 to the program, and then applies t2 to the outcome of the application of t1. If
either t1 or t2 fails, then so does the whole tactic. When it succeeds, the proof
obligations generated by the application of this tactic are those resulting from the
application of t1 and t2.

For example, consider the program x : [x ≥ 1]. We could implement this by
first strengthening the postcondition to x = 1, and then replacing it with a simple
assignment. The necessary tactic is law strPost(x = 1); law assign(x := 1). After
the application of the first tactic, the resulting program is x : [x = 1] and the proof
obligation is x = 1 ⇒ x ≥ 1. After the application of the assignment introduction

14

tactic ::= law name args [law application]

| tactic name args [tactic application]

| skip | fail | abort

| tactic; tactic [sequence]

| tactic | tactic [alternation]

| ! tactic [cut]

| µ name • tactic [recursion]

| succs tactic | fails tactic [assertions]

| tactic ; tactic [structural combinators]

| if tactic+ fi | do tactic+ od

| var tactic]] | con tactic]]

| pmain tactic]]

| pmainvariant tactic]]

| pbody tactic]]

| pbodyvariant tactic]]

| pbodymain tactic tactic]]

| pmainvariantbody tactic tactic]]

| val tactic

| res tactic

| val-res tactic

| parcommand tactic

| con v • tactic [constants]

| applies to program do tactic [patterns]

tacDec ::= Tactic name pars tactic
[proof obligations predicate+]
[programgenerated program] end

tacProg ::= tacDec∗tactic

Figure 2.1: Abstract Syntax of ArcAngel

15

law, we get the program x := 1 with the two proof obligations x = 1 ⇒ x ≥ 1 and
true ⇒ 1 = 1. The discharge of proof obligations is not tackled by ArcAngel. In our
examples, and in Gabriel, the generated proof obligations are listed, but not proved.
Support for their discharge is left as future work.

In examples, for clarity, sometimes we use assignments as arguments as a syntac-
tic sugar. For instance, above, we write law assign(x := 1), but the arguments are
actually x and 1. We use the same sort of notation for arguments and parameters
of tactics.

Tactics may also be combined in alternation: t1 | t2. First t1 is applied to
the program. If the application of t1 leads to success, then the composite tactic
succeeds; otherwise t2 is applied to the program. If the application of t2 leads to
success then the composite tactic succeeds; otherwise the composite tactic fails. If
one of the tactics aborts, the whole tactic aborts. When a tactic contains many
choices, the first choice that leads to success is selected. It is the angelic nature of
this nondeterminism, in which alternative tactics that lead to success are chosen
over those that lead to failure, that earned Angel and ArcAngel (A Refinement
Calculus for Angel) their names.

For example, suppose that we have a useful tactic t that relies on the frame
containing only the variable x , and that we want to generalize it to t ′, which
applies to specification statements with frame x , y . We could define t ′ to be
law contractFrame(y); t . Unfortunately, the resulting tactic no longer applies
where we found t to be useful, since contracting the frame will surely fail in such
cases. Instead, we can use the compound tactic (law contractFrame(y) | skip); t .
Now, if contracting the frame works, we do it; if it does not, then we ignore it;
either way, we apply t next. The tactic (skip | law contractFrame(y)); t has the
same effect. In this case, the tactic t is applied without any prior change to the
specification statement. If this application does not succeed, the law contractFrame
is applied before a new attempt to apply t .

The angelic nondeterminism can be implemented through backtracking: in the
case of failure, law applications are undone to go back to the last point where
further alternatives are available and can be explored. This, however, may re-
sult in inefficient searches. Some control over this is given to the programmer
through the cut operator. The cut tactic ! t behaves like t , except that it returns
the first successful application of t . If a subsequent tactic application fails, then
the whole tactic fails. Consider our previous example once more, supposing that
law contractFrame(y) succeeds, but that t subsequently does not. There is no
point is applying the trivial tactic skip and then trying t again. Instead, we should
cut [7] the search: !(law contractFrame(y) | skip); t .

Suppose that we have a tactic u that performs some simple task, like identi-
fying an equation in a specification postcondition and then applying the rule of
following-assignment. Such a simple tactic may be made more useful by applying

16

it repeatedly, until it can be applied no more. ArcAngel has a fixed-point operator
that allows us to define recursive tactics. Using this operator, we can define a tactic
that applies u exhaustively: the tactic µX • (u; X | skip) applies u as many
times as possible, terminating with success when the application of u fails. Recur-
sive application of a tactic may lead to nontermination, in which case the result is
the same as the trivial tactic abort.

The tactic con v • t introduces v as a set of free variables ranging over appro-
priate syntactic classes in t , angelically chosen so that as many choices as possible
succeed. The tactic applies to p do t is used to define a pattern for the programs
to which the tactic t can be applied. It introduces a meta-program p that charac-
terizes the programs to which this tactic is applicable; the meta-variables used in
p can then be used in t . For example, the meta-program w : [pre, post1 ∨ post2]
characterizes those specifications whose postcondition is a disjunction; here, pre,
post1, and post2 are the meta-variables. Consider as an example a commonly used
refinement tactic: strengthening a postcondition by dropping a disjunct. This tactic
is formalized as applies to w : [pre, post1 ∨ post2] do law strPost(post1).

Two tactics are used to make tactic assertions that check the outcome of ap-
plying a tactic. The tactic succs t fails whenever t fails, and behaves like skip
whenever t succeeds. On the other hand, fails t behaves like skip if t fails, and
fails if t succeeds. If the application of t runs indefinitely, then these tacticals behave
like abort. A simple example is a test to see whether a program is a specification
statement. We know that it is always possible (but seldom desirable) to strengthen
a specification statement’s postcondition to false; however, the tactic applies only to
specification statements. So, our test may be coded as succs(law strPost(false)).

2.1.3 Structural Combinators

Very often, we want to apply individual tactics to subprograms. The tactic t1 ; t2
applies to programs of the form p1; p2. It returns the sequential composition of the
programs obtained by applying t1 to p1 and t2 to p2; the proof obligations generated
are those arising from both tactic applications. Combinators like ; are called
structural combinators. These combinators correspond to the syntactic structures
in the programming language. Essentially, there is one combinator for each syntactic
construct.

For alternation, there is the structural combinator if t1 [] . . . [] tn fi , which ap-
plies to an alternation if g1 → p1 [] . . . [] gn → pn fi. It returns the result of
applying each tactic ti to the corresponding program pi . For example, if we have

17

the program

if a < b → x : [x < 0][]a = b → x : [x = 0][]a > b → x : [x > 0] fi

and tactic

if law assign(x := −1) [] law assign(x := 0) [] law assign(x := 1) fi

we obtain three proof obligations true ⇒ −1 < 0 and true ⇒ 0 = 0, and
true ⇒ 1 > 0, and if a < b → x := −1 [] a = b → x := 0 [] a > b → x := 1 fi
as the resulting program. For iterations do g1 → p1 [] . . . [] gn → pn od, we have a
similar structural combinator do t1 [] . . . [] tn od .

The structural combinator var t]] applies to a variable block, and con t]] to
a logical constant block; each applies its tactic t to the body of the block. For
example, if we apply to [[var x : N • x : [x ≥ 0]]] the structural combinator
var law assign(x := 10)]] , we get [[var x : N • x := 10]] and the proof obligation
true ⇒ 10 ≥ 0.

In the case of procedure blocks and variant blocks, the structural combinators
pmain t]] and pmainvariant t]] are used, respectively; they apply t to the main

program of the blocks. For example, applying pmain law assign(x := 10)]] to
the procedure block

[[proc nonNeg =̂ x : [x > 0] • x : [x ≥ 0]]]

we get [[proc nonNeg =̂ x : [x > 0] • x := 10]] and the proof obligation
true ⇒ 10 ≥ 0.

To apply a tactic to a procedure body, we use the structural combinators
pbody t]] and pbodyvariant t]] , which apply to procedure and variant blocks,
respectively. For example, if we apply the tactic

pbody law assign(x := 10)]]

to the program

[[proc nonNeg =̂ x : [x ≥ 0] • nonNeg]]

we get

[[proc nonNeg =̂ x := 10 • nonNeg]]

and the proof obligation true ⇒ 10 ≥ 0.
It is also possible to apply tactics to a procedure body and to the main program

of a procedure block, or a variant block, at the same time. For this. we use
the structural combinators pbodymain tb tm]] and pmainvariantbody tb tm]] ,
which apply to procedure blocks and variant blocks, respectively. They apply tb to
the body of the procedure, and tm to the main program.

For argument declaration, the combinators val t , res t , and val-res t are used,
depending on whether the arguments are passed by value, result, or value-result.

18

For example, when the following tactic

pbody val-res law assign(x := 10)]]

is applied to the procedure block

[[proc nonNegArg =̂ (val-res x : N • x : [x ≥ 0]) • x : [x ≥ 0]]]

it returns the proof obligation true ⇒ 10 ≥ 0 and the program

[[proc nonNegArg =̂ (val-res x : N • x := 10 • x : [x ≥ 0]]]

Sometimes, however, we are not concerned with the type of argument declaration.
In these cases, we use the structural combinator parcommand t . For example, if
we apply the tactic

pmain parcommand law assign(x := 10)]]

to the program

[[proc nonNegArg =̂ body • (val-res x : N; val y : N • x : [x ≥ 0])]]

it returns the proof obligation true ⇒ 10 ≥ 0 and the program

[[proc nonNegArg =̂ body • (val-res x : N; val y : N • x := 10)]]

We may declare a named tactic with arguments using Tactic n(a) t end. For
documentation purposes, we may include the clause proof obligations and the
clause programgenerated; the former lists the proof obligations generated by the
application of t , and the latter shows the program generated. These two clauses
are optional as this information can be inferred from the tactic itself. The effect of
Tactic n(a) t end is that of t , which is named n and uses the arguments a; the
presence of the optional clauses does not affect the behavior.

A tactic program consists of a sequence of tactic declarations followed by a tactic
that usually makes use of the declared tactics.

2.2 Examples

In this section we give a few examples of ArcAngel programs. The first two,
followingAssign and leadingAssign, implement two derived rules from Morgan’s
calculus. The other tactics formalize all the refinement strategies we found in the
literature. Some of these examples were first presented in [28]. More examples can
also be found in [25].

19

2.2.1 Following Assignment

In [23, p.32], the derived rule following assignment is presented as a useful com-
bination of the assignment and sequential composition laws; in other words, it is
rather like a tactic for using the more basic laws of the calculus. Of course, there
is a big difference between a tactic and a derived rule. The former is a program
that applies rules; proof obligations arise from the law applications. A derived rule
is a law itself, that is proved in terms of applications of other laws. On the other
hand, tactics are much more flexible than derived rules, since they can make choices
about the form of the resulting program; derived rules cannot.

Following assignment splits a specification statement into two pieces, the second
of which is implemented by the assignment x := E . If we apply to w , x : [pre, post]
the tactic law seqComp(post [x \ E]), we get the program

w , x : [pre, post [x \ E]]; w , x : [post [x \ E], post]

All the refinement laws are defined in Appendix C.
If we now apply assign(x := E) to the second statement, we get our assignment

x := E and the proof obligation post [x \ E] ⇒ post [x \ E]. This is a simple tau-
tology, but remains part of the documentation of the tactic, as the proof obligation
is raised every time the tactic is applied.

Tactic followingAssign (x ,E)
applies to w , x : [pre, post] do

law seqComp(post [x \ E]); (skip ; law assign(x := E))

proof obligations

post [x \ E] ⇒ post [x \ E]

programgenerated

w , x : [pre, post [x \ E]];
x := E

end

There is a further restriction on the use of this tactic: it uses a simple form of the law
of sequential composition that forbids initial variables in post conditions. If applied
to a specification statement that does not satisfy this restrictions, followingAssign
fails.

20

2.2.2 Leading Assignment

In [23, p.71], the presentation of the derived rule for leading assignment is a little
more complicated than that of the following assignment :

Law13.1 § leading assignment For any expression E ,

w , x : [pre[x \ E], post [x0 \ E0]]

� x := E ;
w , x : [pre, post]

The expression E0 is that obtained from E by replacing all free occurrences of x
and w with x0 and w0, respectively. The complication arises from the need to find
predicates pre and post , such that, when appropriate substitutions are made, they
match the current goal.

Tactic leadingAssign (x ,X ,E)
applies to w , x : [pre[x \ E], post [x0 \ E0]] do

law seqCompCon(pre ∧ x = E0,X , x);
con law assignIV (x := E) ;

law strPostIV (post); law weakPre(pre)]] ;

law removeCon(X)

proof obligations

(x = x0) ∧ pre [x \ E] ⇒ (pre ∧ x = E [x \ x0])[x \ E],
(pre ∧ x = E [x \ X])[x ,w \ x0,w0] ∧ post ⇒ post [x0 \ E0][x0 \ X],
(pre ∧ x = E [x \ X]) ⇒ pre

programgenerated

x := E ; w , x : [pre, post]
end

If applied to a specification statement w , x ; [pre[x \ E], post [x0 \ E0]], this tactic
first splits it using the law seqCompCon. As seqComp, this law introduces se-
quences, but it applies to specification statements that make use of initial variables;
it declares a logical constant to record the initial value of x . This gives:

[[conX •
x : [pre [x \ E], pre ∧ x = E [x \ x0]];
w , x : [pre ∧ x = E [x \ X], post [x0 \ E0][x0 \ X]]

]]

The first specification statement is refined to x := E , using the assignIV law: a

21

law for introducing assignments that considers the presence of initial variables. The
precondition and postcondition of the second specification statement are changed
to pre and post , respectively, and finally the logical constant is removed. The
law strPostIV is the strengthening postcondition law that takes initial variables
into account. The proof obligations are generated by the applications of the laws
assignIV , strPostIV , and weakPre, respectively; they always hold.

2.2.3 TakeConjAsInv

This refinement strategy that we formalize in this section aims at the develop-
ment of an initialized iteration. It consists of taking a conjunct of the postcon-
dition of the program specification as the main part of the invariant. The tac-
tic takeConjAsInv defined below follows this strategy to transform a specification
w : [pre, invconj ∧ notGuard] into an initialized iteration.

Tactic takeConjAsInv (invBound , (ivar := ival), variant)
applies to w : [pre, invConj ∧ ¬ guard] do

law strPost(invBound ∧ invConj ∧ ¬ guard);
law seqComp(invBound ∧ invConj);
(law assign(ivar := ival) ; law iter(〈guard〉, variant))

proof obligations

invBound ∧ invConj ∧ ¬ guard ⇒ invConj ∧ ¬ guard ,
pre ⇒ (invBound ∧ invConj)[ivar \ ival]

programgenerated

ivar := ival ;
do guard →

w : [invBound ∧ invConj ∧ guard ,
invBound ∧ invConj ∧ 0 ≤ variant < variant0]

od
end

This tactic has three arguments: a predicate invBound , an assignment ivar := ival ,
where ivar is a list of variables and ival is an equal-length list of values, and
an integer expression variant . This tactic applies to a specification statement
w : [pre, invConj ∧ ¬ guard] to introduce an initialized iteration whose invari-
ant is invConj ∧ invBound and whose variant is variant . The initialization is
ivar := ival . Typically, the predicate invBound states the range limits of indexing
variables of the iteration. The conjunction invConj ∧ invBound is used as invariant
of the iteration.

22

The tactic takeConjAsInv first strengthens the postcondition (law strPost) using
the argument invBound , then it introduces a sequential composition (law seqComp).
Afterwards, the law assign is applied to the first program of the composition to
derive the initialization, and the law iter is applied to the second program in order
to introduce the iteration. The first proof obligation is generated by the application
of the law strPost , and the second by the application of the law assign.

Example. We now present the use of a tactic in the first example presented in
Section 1.2. This example develops a program which, given a and b, such that a ≥ 0
and b > 0, sets q to the quotient of a divided by b, and sets r to the remaining of
this quotient.

As already presented before, we begin the development by strengthening the
postcondition in order to insert the mathematical definition of quotient and of a
quotient’s remaining.

q , r : [a ≥ 0 ∧ b > 0, q = a div b ∧ r = a mod b]
� strPost((a = q ∗ b + r ∧ 0 ≤ r) ∧ ¬ r ≥ b)

q , r : [a ≥ 0 ∧ b > 0, (a = q ∗ b + r ∧ 0 ≤ r) ∧ ¬ r ≥ b] �

This law generates the following proof obligation.

(a = q ∗ b + r ∧ 0 ≤ r) ∧ ¬ r ≥ b ⇒ (q = a div b ∧ r = a mod b).

Now, we apply the tactic takeConjAsInv using the bound limits of the invariant
b > 0, the initialization of the variables q , r := 0, a and the variant r of the iteration.

� takeConjAsInv(b > 0, (q , r := 0, a), r)

This application represents a simple application and should give a program
as result. However, for better understanding, we present the details of tactics
applications. We follow with the application of the tactic takeConjAsInv .

� strPost(b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r ∧ ¬ r ≥ b)
q , r : [a ≥ 0 ∧ b > 0, b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r ∧ ¬ r ≥ b] �

This law generates the following proof obligation.

(b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r ∧ ¬ r ≥ b) ⇒
(a = q ∗ b + r ∧ 0 ≤ r) ∧ ¬ r ≥ b.

Most of the proof obligations generated in the examples are very simple like this
one; they follow directly from the properties of the predicate calculus and of the
data type involved, mainly numbers. Then, the tactic splits the specification into

23

two parts. The first one is refined to the initialization of the iteration.

� seqComp(b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r)
q , r : [a ≥ 0 ∧ b > 0, b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r]; �

q , r :


(

b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r
)
,(

b > 0 ∧ a = q ∗ b + r
0 ≤ r ∧ ¬ r ≥ b

)  (i)

� assign(q , r := 0, a)
q , r := 0, a

This law generates the following proof obligation.

a ≥ 0 ∧ b > 0 ⇒ b > 0 ∧ a = 0 ∗ b + a ∧ 0 ≤ a.

Finally, the tactic introduces the iteration.

(i) � iter(〈r ≥ b〉, r)
do r ≥ b →

q , r :


(

b > 0 ∧ a = q ∗ b + r
0 ≤ r ∧ r ≥ b

)
,(

b > 0 ∧ a = q ∗ b + r
0 ≤ r ∧ 0 ≤ r < r0

)
 �

od

This finishes the tactic application. The output of its application is

q , r := 0, a;
do r ≥ b →

q , r :


(

b > 0 ∧ a = q ∗ b + r
0 ≤ r ∧ r ≥ b

)
,(

b > 0 ∧ a = q ∗ b + r
0 ≤ r ∧ 0 ≤ r < r0

)
 �

od

To finish the development we introduce the assignments in the body of the
iteration. At each step of the iteration we must increment q by one and decrement

24

r by b.

� assignIV (q , r := q + 1, r − b)
q , r := q + 1, r − b

This law generates the following proof obligation.

(q = q0) ∧ (r = r0) ∧ b > 0 ∧ a = q ∗ b + r ∧ 0 ≤ r ∧ r ≥ b ⇒
b > 0 ∧ a = (q + 1) ∗ b + (r − b) ∧ 0 ≤ (r − b) ∧ 0 ≤ (r − b) < r0).

So, by applying the following tactic to the original specification

law strPost((a = q ∗ b + r ∧ 0 ≤ r) ∧ ¬ r ≥ b);
tactic takeConjAsInv(b > 0, (q , r := 0, a), r);
(law skipInt ;
(do law assignIV (q , r := q + 1, r − b) od))

we get the following program

q , r := 0, a;
do r ≥ b →

q , r := q + 1, r − b
od

which correct implements the initial specification.

2.2.4 ReplConsByVar

Another common way of choosing an iteration invariant is replacing a constant in
the specification postcondition by a variable. This strategy is captured by the tactic
replConsByVar .

The tactic replConsByVar has five arguments: the declaration newV : T of the
fresh loop-index variable; the constant cons to be replaced; an invariant invBound
on the loop indexes; the loop initialization ivar := ival ; and an integer-valued

25

variant .

Tactic replConsByVar (newV : T , cons , invBound , (ivar := ival), variant)
applies to w : [pre, post] do

law varInt(newV : T);
var law strPost(post [cons \ newV] ∧ ¬ (newV �= cons));

tactic takeConjAsInv(invBound , (ivar := ival), variant);]]

proof obligations

post [cons \ newV] ∧ ¬ (newV �= cons) ⇒ post ,
(invBound ∧ post [cons \ newV] ∧ ¬ (newV �= cons)) ⇒

post [cons \ newV] ∧ ¬ (newV �= cons),
pre ⇒ (invBound ∧ post [cons \ newV] ∧ invBound)[ivar \ ival]

programgenerated

[[var newV : T •
ivar := ival ;
do newV �= cons →

newV ,w :


(

invBound ∧ post [cons \ newV]
newV �= cons

)
,(

invBound ∧ post [cons \ newV]
0 ≤ variant < variant0

)


od]]

end

This tactic first introduces the new variable, then it strengthens the postcondi-
tion to replace the constant by the new variable. Afterwards it calls the tactic
takeConjAsInv to introduce the iteration. The first proof obligation is generated
by the law strPost , and the others are generated by the tactic takeConjAsInv . The
first and the second proof obligations always hold.

Example. The following example presents a program to calculate, given two non-
negative numbers a and b, the exponentiation ab . Its formal specification is

r : [a ≥ 0 ∧ b ≥ 0, r = ab]

The first step of the refinement is to apply the tactic replConsByVar with the
loop index x : Z, the constant to be replaced b, the invariant of the loop indexes
0 ≤ x ≤ b, the variables initialization (x , r := 0, 1), and the variant b − x of the

26

iteration as arguments. First, the tactic introduces the new variable x which is used
in the iteration. Then, the tactic strengthens the postcondition in order to make a
relation between the new variable x and the constant b to be replaced.

� replConsByVar(x : Z, b, 0 ≤ x ≤ b, (x , r := 0, 1), b − x)
� varInt(x : Z)

[[var x : Z •
r , x : [a ≥ 0 ∧ b ≥ 0, r = ab] �

]]
� strPost(r = ax ∧ ¬ x �= b)

r , x : [a ≥ 0 ∧ b ≥ 0, r = ax ∧ ¬ x �= b] �

This law generates the following proof obligation.

(r = ax ∧ ¬ x �= b) ⇒ (r = ab)

Then, the tactic calls the tactic takeConjAsInv , which first strengthens the
postcondition in order to introduce the bound limits of the invariant.

� takeConjAsInv(0 ≤ x ≤ b, (x , r := 0, 1), b − x)
� strPost(0 ≤ x ≤ b ∧ r = ax ∧ ¬ x �= b)

r , x : [a ≥ 0 ∧ b ≥ 0, 0 ≤ x ≤ b ∧ r = ax ∧ ¬ x �= b] �

This law generates the following proof obligation.

(0 ≤ x ≤ b ∧ r = ax ∧ ¬ x �= b) ⇒ (r = ax ∧ ¬ x �= b)

Then, the tactic takeConjAsInv introduces a sequential composition. The first
part is refined to the initialization of the iteration.

� seqComp(0 ≤ x ≤ b ∧ r = ax)
r , x : [a ≥ 0 ∧ b ≥ 0, 0 ≤ x ≤ b ∧ r = ax] �
r , x : [0 ≤ x ≤ b ∧ r = ax , 0 ≤ x ≤ b ∧ r = ax ∧ ¬ x �= b] (i)

� assign(x , r := 0, 1)
x , r := 0, 1;

This law generates the following proof obligation.

(a ≥ 0 ∧ b ≥ 0) ⇒ (0 ≤ 0 ≤ b ∧ 1 = a0)

Finally, the second part of the sequential composition is refined by the tactic

27

takeConjAsInv to an iteration.

(i) � iter(〈x �= b〉, x − b)
do x �= b →

r , x :


(

0 ≤ x ≤ b
r = ax ∧ x �= b

)
,(

0 ≤ x ≤ b
r = ax ∧ 0 ≤ b − x ≤ b − x0

)
 �

od

To finish this development we should introduce the assignment in the body of
the iteration as seen below.

� assigIV (r , x := r ∗ a, x + 1)
r , x := r ∗ a, x + 1;

This law generates the following proof obligation.

(r = r0 ∧ x = x0 ∧ 0 ≤ x ≤ b ∧ r = ax ∧ x �= b) ⇒
(0 ≤ x + 1 ≤ b ∧ r ∗ a = ax+1 ∧ 0 ≤ b − (x + 1) ≤ b − x0)

So, by applying the following tactic to the original specification.

tactic replConsByVar(x : Z, b, 0 ≤ x ≤ b, (x , r := 0, 1), b − x);
var skip ; do law assignIV (r , x := r ∗ a, x + 1) od]]

We get the following program.

[[var x : Z •
x , r := 0, 1;
do x �= b → r , x := r ∗ a, x + 1 od]]

This program uses a variable x , which is initialized with 0, in the iteration to
count the number of times r , which is initialized with 1, is multiplied by a. In the
end of the loop we have that r = ab .

2.2.5 StrengInv

Sometimes we cannot simply replace a constant by a variable in the postcondition
of the specification to determine the invariant. First, we have to strengthen the
postcondition.

The tactic strengInv has seven arguments: a variable declaration newV1 : T1, a
predicate streng and the rest of the arguments are the same as those taken by the

28

tactic replConsByVar . This tactic applies to a specification statement w : [pre, post]
to introduce an initialized iteration with (post ∧ streng)[cons \ newV2] ∧ invBound
as invariant and variant as variant. The initialization is ivar := ival . In this tactic
the predicate invBound states the range limits (typically 0 and cons) of the new
variable newV2 which is used as an indexing variable of the iteration. The new
variable newV1 is used as an auxiliary variable, and the predicate streng is used
to make a link between the new variable introduced and the data used in the
specification.

Tactic strengInv
(newV1 : T1, streng , newV2 : T2, cons , invBound , (ivar := ival), variant)
applies to w : [pre, post] do

law varInt(newV1 : T1);
var law strPost(post ∧ streng);

tactic replConsByVar
(newV2 : T2, cons , invBound , (ivar := ival), variant)]]

proof obligations

(post ∧ streng) ⇒ post ,
(post ∧ streng)[cons \ newV2] ∧ ¬ (newV2 �= cons) ⇒ (post ∧ streng),
(invBound ∧ (post ∧ streng)[cons \ newV2] ∧ not(newV2 �= cons)) ⇒

(post ∧ streng)[cons \ newV2] ∧ ¬ (newV2 �= cons),
pre ⇒ (invBound ∧ (post ∧ streng)[cons \ newV2] ∧

invBound)[ivar \ ival]

programgenerated

[[var newV1 : T1 • var newV2 : T2 •
ivar := ival ;
do newV2 �= cons →

newV1,
newV2,

w
:



 invBound
(post ∧ streng)[cons \ newV2]
newV2 �= cons

 ,

 invBound
(post ∧ streng)[cons \ newV2]
0 ≤ variant < variant0




od]]]]

end

The first step of this tactic is to introduce a new variable which is used to strengthen

29

the postcondition. Then, this tactic strengthens the postcondition and calls the
tactic replConsByVar .

Example. The following example derives a program which computes, given an
array f [0..n], the number of pairs (i , j) for which

0 ≤ i < j < n ∧ f [i] ≤ 0 ∧ f [j] ≥ 0

The formal specification of this program is given below.

r : [n ≥ 0, r = #{i , j : N | 0 ≤ i < j < n ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}]

The principle of the program is to use a variable m to access each element of
the array f . So, the range of m is 0 ≤ m < n. We use the variable s to count the
number of non-positive elements in f , and the variable r to count the number of
non-negative elements which are found after a non-positive element. The variables
m, s , and r are initialized with 0. We use the tactic strengInv as seen below.

� strengInv
(s : Z, s = #{i : N | 0 ≤ i < n ∧ f [i] ≤ 0},
m : Z, n, 0 ≤ m < n, (m, r , s := 0, 0, 0), n −m)
� varInt(s : Z)

[[var s : Z •
r , s :

[
n ≥ 0 ,(
r = #{i , j : N | 0 ≤ i < j < n ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}

)]
�

]]
� strPost(r = #{i , j : N | 0 ≤ i < j < n ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}

∧ s = #{i : N | 0 ≤ i < n ∧ f [i] ≤ 0})

r , s :

 n ≥ 0 ,(
r = #{i , j : N | 0 ≤ i < j < n ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < n ∧ f [i] ≤ 0}

)  �

This law generates the following proof obligation.

(r = #{i , j : N | 0 ≤ i < j < n ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < n ∧ f [i] ≤ 0}) ⇒

r = #{i , j : N | 0 ≤ i < j < n ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}

Then, the tactic strengInv calls the tactic replConsByVar in order to introduce

30

the initialized iteration. The index of this iteration is the new variable m.

� replConsByVar(m : Z, n, 0 ≤ m < n, (m, r , s〉, 〈0, 0, 0〉), n −m)
� varInt(m : Z)

[[var m : Z •

r , s ,m :

 n ≥ 0 ,(
r = #{i , j : N | 0 ≤ i < j < n ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < n ∧ f [i] ≤ 0}]

)  �

]]
� strPost(r = #{i , j : N | 0 ≤ i < j < n ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧

s = #{i : N | 0 ≤ i < n ∧ f [i] ≤ 0})[n \ m] ∧ ¬ m �= n)

r , s ,m :


n ≥ 0 , r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}

s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
¬ m �= n


 �

This law generates the following proof obligation.

(r = #{i , j : N | 0 ≤ i < j < n ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < n ∧ f [i] ≤ 0})[n \ m] ∧ ¬ m �= n) ⇒

(r = #{i , j : N | 0 ≤ i < j < n ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < n ∧ f [i] ≤ 0}))

The tactic replConsByVar introduces the iteration using the tactic takeConjAsInv ,
as follows.

� takeConjAsInv(0 ≤ m ≤ n, (m, r , s := 0, 0, 0), n −m)
� strPost(0 ≤ m ≤ n ∧

r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ ¬ m �= n)

r , s ,m :


n ≥ 0 ,

0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
¬ m �= n



 �

This law generates the following proof obligation.

(0 ≤ m ≤ n ∧ r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ ¬ m �= n) ⇒

(r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ ¬ m �= n)

First, the tactic takeConjAsInv introduces a sequential composition and the

31

initialization of the iteration.

� seqComp(0 ≤ m ≤ n ∧
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0})

r , s ,m :


n ≥ 0 , 0 ≤ m ≤ n

r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}


 ; �

r , s ,m :



 0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}

 ,


0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
¬ m �= n




(i)

� assign(m, r , s := 0, 0, 0)
m, s , r := 0, 0, 0

This law generates the following proof obligation.

n ≥ 0 ⇒
(0 ≤ 0 ≤ n ∧ 0 = #{i , j : N | 0 ≤ i < j < 0 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
∧ 0 = #{i : N | 0 ≤ i < 0 ∧ f [i] ≤ 0})

Finally, the tactic takeConjAsInv introduces the iteration.

(i) � iter(〈m �= n〉, n −m)
do m �= n →

r , s ,m :




0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
m �= n

 ,


0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
0 ≤ n −m < n −m0




�

od

We should now refine the body of the iteration in order to get the resulting
program. First, we introduce the increment of the iteration index m to the end of

32

each iteration, and then, we split the specification into two parts.

� fassign(m := m + 1)

r , s ,m :




0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
m �= n

 ,


0 ≤ m + 1 ≤ n
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m + 1 ∧ f [i] ≤ 0}
0 ≤ n − (m + 1) < n −m0




; �

m := m + 1
� seqComp(0 ≤ m ≤ n ∧

r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ m �= n)

r , s ,m :




0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
m �= n

 ,


0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
m �= n




; �

r , s ,m :




0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
m �= n

 ,


0 ≤ m + 1 ≤ n
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m + 1 ∧ f [i] ≤ 0}
0 ≤ n − (m + 1) < n −m0




(ii)

The first program of the composition is refined to an alternation which counts
the number of pairs that satisfies the conditions seen in the description of this

33

example.

� alt(〈f [m] < 0, f [m] ≥ 0〉)
if f [m] < 0 →

r , s ,m :




f [m] < 0
0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
m �= n

 ,


0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
m �= n




�

[] f [m] ≥ 0 →

r , s ,m :




f [m] ≥ 0
0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
m �= n

 ,


0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
m �= n




(iii)

fi

This law generates the following proof obligation.

(0 ≤ m ≤ n ∧
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ m �= n) ⇒

(f [m] < 0 ∨ f [m] ≥ 0)

If f [m] < 0 we must skip.

� skipIntro()
skip

This law generates the following proof obligation.

(f [m] < 0 ∧ 0 ≤ m ≤ n ∧
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ m �= n) ⇒

(0 ≤ m ≤ n ∧ r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ m �= n)

If f [m] ≥ 0 we must increment the number of pairs r by s , the number of

34

non-positive number already found.

(iii) � assign(r := r + s)
r := r + s ;

This law generates the following proof obligation.

(f [m] ≥ 0 ∧ 0 ≤ m ≤ n ∧
r = #{i , j : N | 0 ≤ i < j < m ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ m �= n) ⇒

(0 ≤ m ≤ n ∧
r + s = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ m �= n)

The second program of the sequential composition is refined to an alternation
that counts the number of non-positive elements.

(ii) � alt(〈f [m] > 0, f [m] ≤ 0〉)
if f [m] > 0 →

r , s ,m :




f [m] > 0
0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
m �= n

 ,


0 ≤ m + 1 ≤ n
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m + 1 ∧ f [i] ≤ 0}
0 ≤ n − (m + 1) < n −m0




�

[] f [m] ≤ 0 →

r , s ,m :




f [m] ≥ 0
0 ≤ m ≤ n
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0}
m �= n

 ,


0 ≤ m + 1 ≤ n
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0}
s = #{i : N | 0 ≤ i < m + 1 ∧ f [i] ≤ 0}
0 ≤ n − (m + 1) < n −m0




(iv)

fi

This application of law alt generates the proof obligation which can be seen

35

below.

(0 ≤ m ≤ n ∧
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ m �= n) ⇒

(f [m] < 0 ∨ f [m] ≥ 0)

If f [m] > 0 we must skip.

� skipIntroIV ()
skip

This law generates the following proof obligation.

(m = m0 ∧ f [m] > 0 ∧ 0 ≤ m ≤ n ∧
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ m �= n) ⇒

0 ≤ m + 1 ≤ n ∧
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m + 1 ∧ f [i] ≤ 0} ∧ 0 ≤ n − (m + 1) < n −m0)

If f [m] ≤ 0 we must increment the number of non-positive numbers s by one.

(iv) � assignIV (s := s + 1)
s := s + 1

This law generates the following proof obligation.

(m = m0 ∧ f [m] ≤ 0 ∧ 0 ≤ m ≤ n ∧
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ m �= n) ⇒

(0 ≤ m + 1 ≤ n ∧
r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s + 1 = #{i : N | 0 ≤ i < m + 1 ∧ f [i] ≤ 0} ∧

0 ≤ n − (m + 1) < n −m0)

So, in this example, we can see that by applying the following tactic to the

36

original specification.

tactic strengInv(s : Z, s = #{i : N | 0 ≤ i < n ∧ f [i] ≤ 0},
m : Z, n, 0 ≤ m < n, (m, r , s := 0, 0, 0), n −m);

var

var
skip ;
do
law fassign(m := m + 1);
(

(law seqComp
(r = #{i , j : N | 0 ≤ i < j < m + 1 ∧ f [i] ≤ 0 ∧ f [j] ≥ 0} ∧
s = #{i : N | 0 ≤ i < m ∧ f [i] ≤ 0} ∧ 0 ≤ m ≤ n ∧ m �= n);

(law alt(〈f [m] < 0, f [m] ≥ 0〉);
if law skipIntro() [] law assign(r := r + s) fi)

;
(law alt(〈f [m] > 0, f [m] ≤ 0〉);

if law skipIntroIV () [] law assignIV (s := s + 1) fi))
;
skip

)
od

]]

]]

we get the following program.

[[var s : Z • [[var m : Z •
m, r , s := 0, 0, 0;
do m �= n →

if f [m] < 0 → skip;
[] f [m] ≥ 0 → r := r + s

fi;
if f [m] > 0 → skip;

[] f [m] ≤ 0 → s := s + 1
fi;
m := m + 1

od]]]]

This program introduces two variables s and m. The first one is used to count
the number of non-positive numbers and the second one is used as an index in the

37

iteration. The variables m, r , and s are initialized with 0. Finally, the program
checks each element of the array and increments r by s , if the element is non-
negative, and s by one if the element is non-positive.

2.2.6 TailInvariant

This strategy is used when we want to develop an algorithm involving an iteration
whose invariant is based on a function defined using tail recursion.

This tactic applies to a specification statement w : [pre, post] to introduce an
initialized iteration whose invariant is invConj ∧ invBound and variant is variant ,
and a final assignment ivar2 := ival2, which typically is an assignment of an element
of a sequence identified by an index found in the iteration body, to a variable. The
initialization of the iteration is ivar1 := ival1.

Tactic tailInvariant(newV1 : T1, newV2 : T2, invConj , guard , invBound ,
(ivar1 := ival1), variant , (ivar2 := ival2))
applies to w : [pre, post] do

law varInt(newV1 : T1; newV2 : T2);
var law seqComp(invConj ∧ ¬ guard);

tactic takeConjAsInv(invBound , (ivar1 := ival1), variant)
; law assign(ivar2 := ival2))]]

proof obligations

invBound ∧ invConj ∧ ¬ guard ⇒ invConj ∧ ¬ guard ,
pre ⇒ (invBound ∧ invConj)[ivar1 \ ival1],
invConj ∧ ¬ guard ⇒ post [ivar2 \ ival2]

programgenerated

[[var newV1 : T1; newV2 : T2 •
ivar1 := ival1;
do guard →

newV1, newV2,w : [invBound ∧ invConj ∧ guard ,
invBound ∧ invConj ∧ 0 ≤ variant < variant0]

od;
ivar2 := ival2]]

end

This tactic has eight arguments: the first two arguments are variable declara-
tions, which are used as indexing variables in the iteration. The next argument
is a predicate invConj . It is used to make a conjunction with the next argument,
guard , which is also a predicate and represents the guard of the iteration. The next

38

argument, invBound , states the range limits of the invariant of the iteration. The
assignment ivar1 := ival1 is the initialization of the iteration. An integer expression
variant is the next argument and represents the variant of the iteration. Finally,
the final assignment ivar2 := ival2 is used after the end of the loop.

The tactic tailInvariant first introduces two variables (arguments newV1 : T1

and newV2 : T2). Afterwards, it splits the body of the variable block into a sequen-
tial composition of two other specifications. The first defines the initialized iteration
and the second the final assignment. In sequence, the tactic takeConjAsInv is ap-
plied to the first program using invBound , (ivar1 := ival1) and variant as arguments.
The tactic also applies the law assign to the second program using the argument
(ivar2 := ival2). The first and the second proof obligations are generated by the
tactic takeConjAsInv . The third proof obligation is generated by the law assign.

Example. In this example, we develop a program which identifies the maximum
element of an array. The function below has such behavior and is used in the
development.

F .x .y A =


A.x if x = y
F .(x + 1).y if A.x ≤ A.y
F .x .(y − 1) if A.x > A.y

It is a recursive function which, given two integers x and y , and an array A,
returns the maximum element of the set {i : N | x ≤ i ≤ y • A.i}.

The specification of our program is

r : [n ≥ 0, r = max{i : N | 0 ≤ i ≤ n • A.i}] �

We start our development by strengthening the post condition in order to use
the function definition presented above.

� strPost(r = F .0.n)
r = [n ≥ 0, r = F .0.n] �

This law generates the following proof obligation

r = F .0.n ⇒ r = max{i : N | 0 ≤ i ≤ n • A.i}

Then, we use the tactic tailInvariant , which starts by introducing the variables

39

x and y used to calculate the function.

� tailInvariant(x : N, y : N,F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n, x �= y , true,
(x , y := 0, n), y − x)

� varInt(x : N; y : N)
[[var x : N; y : N •

y , x , r : [n ≥ 0, r = F .0.n] �
]]

The next step is to split the specification into two programs.

� seqComp(F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ ¬ x �= y)
y , x , r : [n ≥ 0,F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ ¬ x �= y] �
y , x , r : [F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ ¬ x �= y , r = F .0.n] (i)

The first part of the program is refined to the initialized iteration using the
tactic takeConjAsInv .

� takeConjAsInv(true, (x , y := 0, n), y − x)
� strPost(true ∧ F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ ¬ x �= y)

y , x , r :

[
n ≥ 0 ,
true ∧ F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ ¬ x �= y

]
�

This law generates the following proof obligation

(true ∧ F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ ¬ x �= y) ⇒
(F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ ¬ x �= y)

The tactic takeConjAsInv splits the specification into two parts. The first part
is refined to the initialization of the variables used in the iteration to which the
second part is refined.

� seqComp(true ∧ F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n)
y , x , r : [n ≥ 0, true ∧ F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n] �

y , x , r :

[
true ∧ F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ,
true ∧ F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ ¬ x �= y

]
(ii)

� assign(x , y := 0, n)
x , y := 0, n;

This law generates the following proof obligation

n ≥ 0 ⇒ (true ∧ F .0.n = F .0.n ∧ 0 ≤ 0 ≤ n ≤ n)

Then, in order to introduce the iteration, we use the tactic takeConjAsInv as

40

seen below.

(ii) � iter(< x �= i >, y − x)
do x �= y →

y , x , r :



(
true ∧ F .x .y = F .0.n
0 ≤ x ≤ y ≤ n ∧ x �= y

)
, true ∧ F .x .y = F .0.n

0 ≤ x ≤ y ≤ n
0 ≤ y − x < y0 − x0



 (iii)

od

Finally, the tactic tailInvariant refines the second part of the program to the
assignment r := A.x .

(i) � assign(r := A.x)
r := A.x

This law generates the following proof obligation

(F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ ¬ x �= y) ⇒ A.x = F .0.n

At this point, we finish the application of tactic tailInvariant . Now, we refine
the body of the iteration to an alternation as seen below.

(iii) � alt(〈A.x ≤ A.y ,A.x > A.y〉)
if A.x ≤ A.y →

y , x , r :




A.x ≤ A.y
true ∧ F .x .y = F .0.n
0 ≤ x ≤ y ≤ n
x �= y

 ,

 true ∧ F .x .y = F .0.n
0 ≤ x ≤ y ≤ n
0 ≤ y − x < y0 − x0




�

[] A.x > A.y →

y , x , r :




A.x > A.y
true ∧ F .x .y = F .0.n
0 ≤ x ≤ y ≤ n
x �= y

 ,

 true ∧ F .x .y = F .0.n
0 ≤ x ≤ y ≤ n
0 ≤ y − x < y0 − x0




(iv)

fi

41

This law generates the following proof obligation

(true ∧ F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ x �= y) ⇒
(A.x ≤ A.y ∨ A.x > A.y)

If A.x ≤ A.y we should increment the auxiliary variable x by one. Otherwise,
we should decrement the auxiliary variable y by one. We refine the first guarded
command.

� assignIV (x := x + 1)
x := x + 1

This law generates the following proof obligation

(A.x ≤ A.y ∧ true ∧ F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ x �= y) ⇒
(true ∧ F .(x + 1).y = F .0.n ∧

0 ≤ x + 1 ≤ y ≤ n ∧ 0 ≤ y − (x + 1) ≤ y0 − x0)

Now, we refine the second guarded command.

(iv) � assignIV (y := y − 1)
y := y − 1

This law generates the following proof obligation.

(A.x > A.y ∧ true ∧ F .x .y = F .0.n ∧ 0 ≤ x ≤ y ≤ n ∧ x �= y) ⇒
(true ∧ F .x .(y − 1) = F .0.n ∧ 0 ≤ x ≤ y − 1 ≤ n ∧

0 ≤ (y − 1) − x ≤ y0 − x0)

We get the following program.

[[var x : N; y : N •
x , y := 0, n;
do x �= y →

if A.x ≤ A.y → x := x + 1
[] A.x > A.y → y := y − 1

fi
od
r := A.x ;

]]

The strategies already presented do not have included procedure concepts. The
next sections introduce tactics which work with procedures.

42

2.2.7 ProcNoArgs

Most of the laws in the refinement calculus are very basic. It is very common to
use a set of them together. It is the case of the tactic procNoArgs which introduces
a procedure block that declares a procedure with no parameters. It has two argu-
ments: the name of the procedure which is introduced and its body. This tactic
applies to a program p, introduces the procedure, and makes one or more calls to
it, depending on the program p.

Tactic procNoArgs (procName, procBody)
applies to p do

law procNoArgsIntro(procName, procBody);
law procNoArgsCall()

programgenerated

[[proc procName =̂ procBody • p[procBody \ procName]]]
end

The program p[procBody \ procName] is that obtained by replacing all occuren-
cies of procBody in p with procName.

Example. As an example of the use of the tactic procNoArgs we present again
the development of the second example of Section 1.2. This example, derives a
program which, given three numbers p, q , and r , exchanges their values such that
p ≤ q ≤ r . The specification of this program is

p, q , r : [p ≤ q ≤ r ∧
p, q , r� =
p0, q0, r0�]

We have started the derivation by splitting the program in three assignments.
The last assignment sorts p and q .

� fassign(p, q := (p � q), (p
 q))
p, q , r : [(p � q) ≤ (p
 q) ≤ r ∧
(p � q), (p
 q), r� =
p0, q0, r0�]; �
p, q := (p � q), (p
 q)

The second assignment sorts q and r , and finally, the first assignment also sorts

43

p and q .

� fassign(q , r := (q � r), (q
 r))

p, q , r :

[
(p � (q � r)) ≤ (p
 (q � r)) ≤ (q
 r)

(p � (q � r)), (p
 (q � r)), (q
 r)� =
p0, q0, r0�

]
; �

q , r := (q � r), (q
 r)
� assignIV (p, q := (p � q), (p
 q))

p, q := (p � q), (p
 q) �

This law generates the following proof obligation.

p = p0 ∧ q = q0 ∧ r = r0 ⇒
((p � q) � ((p
 q) � r)) ≤ ((p � q)
 ((p
 q) � r)) ≤ ((p
 q)
 r)

((p � q) � ((p
 q) � r)), ((p � q)
 ((p
 q) � r)), ((p
 q)
 r)� =

p0, q0, r0�
Now, we use the tactic procNoArgs to introduce the procedure and use it in the

body of the program.

� procNoArgs(sort , (p, q := p � q , p
 q))
� procNoArgsIntro(sort , (p, q := p � q , p
 q))

[[proc sort =̂ p, q := p � q , p
 q •
p, q := (p � q), (p
 q);
q , r := (q � r), (q
 r);
p, q := (p � q), (p
 q)]]

� procNoArgsCall()
[[proc sort =̂ p, q := p � q , p
 q •

sort ; q , r := (q � r), (q
 r); sort]]

So, by applying the following tactic to the initial specification.

law fassign(p, q := (p � q), (p
 q));
(law fassign(q , r := (q � r), (q
 r)) ; skip);
(law assignIV (p, q := (p � q), (p
 q)) ; skip ; skip);
tactic procNoArgsIntro(sort , (p, q := p � q , p
 q));
tactic procNoArgsCall()

we get the following program.

[[proc sort =̂ p, q := p � q , p
 q •
sort ; q , r := (q � r), (q
 r); sort]]

This program first calls the procedure sort to sort p and q . Then, it sorts q and
r . Finally, it calls again the procedure sort to sort p and q again.

44

2.2.8 ProcCalls

Before describing a tactic which introduces procedures with arguments, it is useful
to define a tactic that introduces parameterized commands. The tactic procCalls
takes as arguments two lists. The first is a list of parameter declarations and the
second is a list of arguments. The declarations have the form pasMech v : T where
pasMech defines how the arguments are passed, by value(val), by result(res) or by
value-result(val-res), v is the name of the argument, and T its type.

This tactic tries to derive an application of a procedure call with the given
parameters to the given arguments. With this purpose, it tries to apply each of the
laws that introduces parameterized commands. If one of them succeeds, the tactic
goes on with the tail of the list, else, the tactic behaves like skip and finishes.

Tactic procCalls (pars , args)
applies to w : [pre, post] do

law callByValue(head ′ args , head ′ pars);

val (tactic procCalls(tail pars , tail args)) |
law callByValueIV (head ′ args , head ′ pars);

val (law contractFrame(head ′ pars);

tactic procCalls(tail pars , tail args)) |
law callByResult(head ′ args , head ′ pars);

res (tactic procCalls(tail pars , tail args)) |
law callByValueResult(head ′ args , head ′ pars);

val-res (tactic procCalls(tail pars , tail args)) |
skip

end

The function head ′ applies to a list, and gives another list that contains just the
head of the given list, or is empty if the given list is empty. The function tail
returns the given list removing its first element. These functions head ′ and tail are
not defined in ArcAngel’s semantics and are not supported by Gabriel. However,
implementing these functions in Gabriel is an interesting task that is left as future
work.

This tactic is recursive and can generate applications of parameterized com-
mands whose bodies can include further applications. An example of the use of this
tactic is presented in the next section.

2.2.9 ProcArgs

Now we can define the tactic procArgs which introduces a parameterized procedure
in the scope of the program and makes calls to this procedure. Here the argu-

45

ment pars is a parameter declaration. We make use of the function seqToList to
convert args , a semicolon-separated sequence of argument declarations, to a list of
declarations.

Tactic procArgs (procName, body , pars , args)
applies to p do

law progArgsIntro(procName, body , pars);
pmain

tactic procCalls(seqToList pars , args);
exhaust(law multiArgs())

]] ;
law procArgsCall()

end

This tactic first introduces a procedure with arguments using the law procArgsIntro.
Then the tactic uses procCalls to introduce applications of parameterized commands
with parameters pars to arguments args . Finally, the tactic uses the law multiArgs
to nested applications of parameterized commands. The definition of exhaust can
be found in Section 2.3.4.

The function seqToList is also not defined in ArcAngel’s semantics. However,
implementing this function in Gabriel is another interesting task that is left as future
work.

Example. We use the square root program, presented in Section 1.2, as an ex-
ample. Its specification is

x : [0 ≤ x , x 2 = x0]

Our development is simplified by the use of tactic procArgs, which starts with
the introduction of the sqrts procedure.

x : [0 ≤ x , x 2 = x0]
� procArgs(sqrts , b : [0 ≤ a, b2 = a], (val a : R; res b : R), 〈x , x 〉)

� procArgsIntro(sqrts , b : [0 ≤ a, b2 = a], (val a : R; res b : R))
[[proc sqrts =̂ (val a : R; res b : R • b : [0 ≤ a, b2 = a]) •

x : [0 ≤ x , x 2 = x0] �
]]

Then, using the tactic procCalls , this tactic attempts to introduce the substitu-

46

tions of the variable x .

� procCalls(〈val a : R, res b : R〉, 〈x , x 〉)
� callByValueIV (x , a)

(val a : R • x , a : [0 ≤ a, x 2 = a0])(x) �
� contractFrame(a)

(val a : R • x : [0 ≤ a, x 2 = a])(x) �
� procCalls(〈res b : R〉, 〈x 〉)

� callByResult(x , b)
(res b : R • b : [0 ≤ a, b2 = a])(x) �

� procCalls(〈〉, 〈〉)
(res b : R • b : [0 ≤ a, b2 = a])(x)

Then it uses the tactical exhaust to put our two kinds of substitution together.

� exhaust(law multiArgs())
� multiArgs()

(val a : R, res b : R • b : [0 ≤ a, b2 = a])(x , x) �

Finally, the tactic introduces the procedure call.

� procArgsCall()
sqrts(x , x)

So, by applying the following tactic to the initial specification.

tactic procArgs(sqrts , (val a : R; res b : R), b : [0 ≤ a, b2 = a], 〈x , x 〉)

we get the following program.

[[proc sqrts =̂ (val a : R, res b : R • b : [0 ≤ a, b2 = a]) •
sqrts(x , x)

]]

This program uses the procedure sqrts to calculate the square root of a given
number.

2.2.10 RecProcArgs

This tactic is useful when we want to develop a recursive procedure and have to

47

introduce a variant block with a parameterized procedure. Its definition is

Tactic recProcArgs
(procName, body , variantName, variantExp, args , varsProcF)
applies to p do

law variantIntro(procName, body , variantName, variantExp, args);
pmainvariant

tactic procCalls(seqToList args , varsProcF);
exhaust(law multiArgs())

]] ;
law procArgsVariantBlockCall();

end

This tactic first introduces a variant block using the law variantIntro. Then,
as in the previous tactic, it uses the law procCalls . Finally, it uses the tactic
exhaust(law multiArgs()) to introduce an application of a parameterized command.
Afterwards, the tactic uses the law procArgsVariantBlockCall to introduce a proce-
dure call in the main program of the variant block.

Example.

We present the factorial program seen in Section 1.2 as an example. We have
presented the following specification as the initial specification.

f : [f = n! ∗ 1] �

We start by using the tactic recProcArgs. The variant introduction is the first
step of this tactic.

� recProcArgs
(fact ,V ,m, (f : [f = m! ∗ k]),val m, k : N, 〈n, 1〉)
� variantIntro(fact ,V ,m, (f : [f = m! ∗ k]),val m, k : N)

[[proc fact =̂ (val m, k : N • f : [V = m, f = m! ∗ k])
variant V is m •
f : [f = n! ∗ 1] �

]]

Then, using the tactic procCalls , this tactic attempts to introduce a substitution

48

by value of the variables m and k .

� procCalls(〈m, k〉, 〈n, 1〉)
� callByValue(m, k : N, 〈n, 1〉)

[[proc fact =̂ (val m, k : N • f : [V = m, f = m! ∗ k])
variant V is m •
(val m, k : N • f : [f = m! ∗ k])(n, 1)

]] �

The next step is to introduce the procedure call in the variant block.

� procArgsVariantBlockCall()
[[proc fact =̂ (val m, k : N • {V = m} f : [f = m! ∗ k]) �

variant V is m •
fact(n, 1)

]]

This finishes the tactic application. Now, we start to develop the body of the
procedure fact . First, we introduce an alternation in order to check if we must stop
the recursion (m = 0) or not (m > 0).

� alt(〈m = 0,m > 0〉)
if m = 0 → f : [V = m ∧ m = 0, f = m! ∗ k] �

[] m > 0 → f : [V = m ∧ m > 0, f = m! ∗ k] (i)
fi

This law application generates the following proof obligation.

V = m ⇒ m = 0 ∨ m > 0

The base case is when we have m equals to 0. In such case, k must receive the
value of the variable f .

� assign(f := k)
f := k

The following proof obligation is generated in this case.

V = m ∧ m = 0 ⇒ k = 0! ∗ k

If m > 0 we should make a recursive call. We first strengthen the postcondition

49

in order to make a recursive call of procedure fact .

(i) � strPost(f = (m − 1)! ∗m ∗ k)
f : [V = m ∧ m > 0, f = (m − 1)! ∗m ∗ k] �

We have the following proof obligation

f = (m − 1)! ∗m ∗ k ⇒ f = m! ∗ k

Then we introduce a substitution by value and weaken the precondition.

� callByValue(〈m, k〉, 〈m − 1,m ∗ k〉)
(val m, k : N • f : [V = m + 1 ∧ m + 1 > 0, f = m! ∗ k])

(m − 1,m ∗ k) �
� weakPre(0 ≤ m < V)

f : [0 ≤ m < V , f = m! ∗ k])

This law generates the following proof obligation

V = m + 1 ∧ m + 1 > 0 ⇒ 0 ≤ m < V

Now we have the following program.

[[proc fact =̂ (val m, k : N •
if m = 0 → f := k
[] m > 0 → f : [0 ≤ m < V , f = m! ∗ k]
fi)

variant V is m •
fact(n, 1)]]

Finally, we refine this program by introducing a recursive call to the procedure
fact as follows.

� recursiveCall()
[[proc fact =̂ (val m, k : N •

if m = 0 → f := k
[] m > 0 → fact(m − 1,m ∗ k)
fi)

variant V is m •
fact(n, 1)]]

The last application generates the following proof obligation.

f : [V = n, f = m! ∗ k]
�

if m = 0 → f := k
[] m > 0 → f : [0 ≤ m < V , f = m! ∗ k]

fi

The program obtained calculates the factorial of a given number.

50

2.3 ArcAngel’s Semantics

In this section we present ArcAngel’s semantics which is based in Angel semantics.
It, however, takes into account the particularities of the refinement calculus, in
which a transformation rule consists of refinement laws. The application of a re-
finement law to a program and returns a new program, but also proof obligations.

Tactics are applied to a pair: the first element of this pair is a program to which
the tactic is applied; the second element is the set of proof obligations generated to
obtain this program. This pair is called RCell (refinement cell), and is defined as
follows:

RCell == program × P predicate

The result of a tactic application is a possibly infinite list of RCells that contains
all possible outcomes of its application: every program it can generate, together
with the corresponding proof obligations (existing obligations and those generated
by the tactic application). Different possibilities arise from the use of alternation,
and the list can be infinite, since the application of a tactic may run indefinitely. If
the application of some tactic fails, then the empty list is returned.

Tactic == RCell �→ pfiseq RCell

The type pfiseq RCell is that of possibly infinite lists of RCells. We use the model
for infinite lists proposed in [19]. This is summarized in Appendix B.

In order to give semantics to named laws and tactics, we need to maintain two
appropriate environments.

LEnv == name �→ seq argument �→ program �→ RCell

TEnv == name �→ seq argument �→ Tactic

A law environment records the set of known laws; it is a partial function whose
domain is the set of the names of these laws. For a law environment ΓL and a
given law name n, we have that ΓL n is also a partial function: it relates all valid
arguments of n to yet another function. For a valid argument a, we have that
ΓL n a relates all the programs to which n can be applied when given arguments a;
the result is a refinement cell.

For example, let ΓL be an environment that records the law strPost . For a
predicate post ′ and a program w : [pre, post] we have

ΓL strPost post ′ (w : [pre, post]) = (w : [pre, post ′], { post ′ ⇒ post })

This means that if we apply strPost with argument post ′ to w : [pre, post], we
change its postcondition to post ′, but we must prove that post ′ ⇒ post . We are

51

interested in environments that record at least the laws of Morgan’s refinement
calculus in [23] and in Appendix C.

Similarly, a tactic environment is a function that takes a tactic name and a list
of arguments, and returns a Tactic.

2.3.1 Tactics

We define the semantic function for tactics inductively; it has the type

[[]] : tactic → LEnv → TEnv → Tactic

The basic tactic law n(a) is that which applies a simple law to an RCell .

[[law n(a)]] ΓL ΓT (p, pobs) =

if n ∈ dom ΓL ∧ a ∈ dom(ΓL n) ∧ p ∈ dom(ΓL n a)
then

let (newp, npobs) = ΓL n a p in [(newp, pobs ∪ npobs)]
else []

We check if the law name n is in the law environment ΓL, and if the arguments a
and program p are appropriate. If these conditions hold, then the tactic succeeds,
and returns a list with a new RCell . The program is transformed by applying the
law to the program p; the new proof obligations are added to the proof obligations
pobs of the original RCell . Otherwise, the tactic fails with the empty list as result.
We use angle brackets to delimit finite lists; possibly infinite lists are delimited by
square brackets.

In this work, we use a simple approach for expression arguments. For us, they
are used as they were already evaluated. However, they should be evaluated before
being used. This is left as future work.

The semantics of tacticn(a) is similar to that of the law construct. Its defini-
tion is

[[tacticn(a)]] ΓL ΓT r =

if n ∈ dom ΓT ∧ a ∈ dom ΓT n
then ΓT n a r
else []

If the tactic is in the tactic environment, and if the arguments are valid, then
the tactic succeeds; it returns the result of applying the tactic to the arguments.
Otherwise, the tactic fails.

52

The tactic skip returns its argument unchanged; the tactic fail always fails.

[[skip]] ΓL ΓT r = [r]

[[fail]] ΓL ΓT r = []

The sequence operator applies its first tactic to its argument, producing a list of
cells; it then applies the second tactic to each member of this list; finally, this
list-of-lists is flattened to produce the result.

[[t1; t2]] ΓL ΓT =
∞�/ · ([[t2]] ΓL ΓT)∗ · ([[t1]] ΓL ΓT)

For a total function f : A → B , f ∗ : pfiseq A → pfiseq B is the map function
that operates on a list by applying f to each of its elements; the operator · is used
to compose functions; and

∞�/ is the distributed concatenation operation. Formal
definitions of these operators and others to follow can be found in Appendix B.

The semantics of the alternation operator is given by concatenation: the possible
outcomes of each individual tactic are joined to give the list of possible outcomes
of the alternation.

[[t1 | t2]] ΓL ΓT =
∞�/ · [([[t1]] ΓL ΓT), ([[t2]] ΓL ΓT)]◦

The function ◦ applies a list of functions to a single argument and returns a list
containing the results of the applications.

The cut operator applies its tactic to its argument, taking the first result (if it
exists) and discarding the rest; if there is no first result, then the cut tactic fails.

[[! t]] ΓL ΓT = head ′ · ([[t]] ΓL ΓT)

The recursion operator µ has a standard definition [9] as a least fixed point. For
a continuous function f from tactics to tactics, we have that

(µX • f (X)) =
⊔{ i : N • f i(abort) }

where f i represents i applications of f .
This definition makes sense if the set of tactics is a complete lattice. First,

we define a partial order for lists: the completely-undefined list, denoted ⊥, is the
least-defined element in the set. It is a partial list, as is any list that ends with ⊥.
One list is less than another, s1 �∞ s2, whenever they are equal, or the first is a
partial list that forms an initial subsequence of the second. In the model we adopt,
an infinite list is a limit of a directed set of partial lists.

For tactics, as they are partial functions, we may lift the ordering on lists of

53

RCells to an ordering on tactics. We can say that

t1 �T t2 ⇔ (∀ r : RCell • t1 r �∞ t2 r)

As the set of lists of RCells is a complete lattice, the set of tactics is also a complete
lattice, using the order above [9].

The bottom element is used in the semantics of abort, which runs indefinitely.

[[abort]] ΓL ΓT = ⊥

The tactics succs t and fails t are defined as follows

succs t r = (if t r = ⊥ then abort else (if t r = [] then fail else skip) r)

fails t r = (if t r = ⊥ then abort else (if t r = [] then skip else fail) r)

If the application of t aborts, so do succs t and fails t . If it fails, then succs t fails
and fails t skips. Finally, if it succeeds, succs t skips and fails t fails.

2.3.2 Structural Combinators

The structural combinators apply tactics to components of a program independently
(and so can be thought of as in parallel), and then reassemble the results in all
possible ways. There is one combinator for each construct in the programming
language.

As already explained, the structural combinator t1 ; t2 applies to a sequential
composition p1; p2. Independently, t1 is applied to p1 and t2 is applied to p2; the
resulting alternatives are assembled into pairs, so that the first is an alternative
outcome from t1 and the second is an alternative outcome from t2; finally, these
pairs are combined with the sequential composition tactical.

[[t1 ; t2]] ΓL ΓT (p1; p2, pobs) =
Ω;∗ (Π(〈 ([[t1]] ΓL ΓT) (p1, pobs), ([[t2]] ΓL ΓT) (p2, pobs) 〉))

The distributed cartesian product operator Π is defined in Appendix B. The se-
quential combination function Ω; sequentially composes the programs and unites
the proof obligations. The function Ω; is a partial function because it is defined
only for lists with two elements.

Ω; : RCell∗ �→ RCell

Ω; 〈(p1, pobs1), (p2, pobs2)〉 = (p1; p2, pobs1 ∪ pobs2)

The semantics of the structural combinators if fi and do od use a few functions

54

which are explained and defined as they are needed; we start by giving a simple
example. Consider the RCell

(if x ≥ 0 → x : [x ≥ 0, x > y] [] x < 0 → x : [x < 0, x < z] fi, {x ≥ 1})

and the tactic

if law weakPre(true) | law assign(x := x + 1) [] law assign(x := x − 1) fi

First of all, we extract the commands from each branch of the conditional; the
function extractP does this for us.

extractP :: GuardedCommand → pfseq program
extractP G → P = 〈P〉
extractP G → P [] GC = P : (extractP GC)

In our example we have

extractP(x ≥ 0 → x : [x ≥ 0, x > y] [] x < 0 → x : [x < 0, x < z])

= 〈 x : [x ≥ 0, x > y], x : [x < 0, x < z] 〉
The function Φr constructs an RCell with a given program p and an empty set of
proof obligations. We map Φr over our list of commands.

Φr :: program → RCell
Φr p = (p, ∅)

In our example we have

Φr ∗ (〈x : [x ≥ 0, x > y], x : [x < 0, x < z]〉) =

〈(x : [x ≥ 0, x > y], ∅), (x : [x < 0, x < z], ∅)〉
Now, we need to apply each tactic to its corresponding command. We use the
function apply that takes two lists: the first is a list of functions, and the second is
a list of elements to which the functions are applied; it returns the list of the results
of applying each function in the first list to the corresponding element in the second
list. In our example we have

apply 〈 law weakPre(true) | law assign(x := y + 1), law assign(x := z − 1) 〉
〈 (x : [x ≥ 0, x > y], ∅), (x : [x < 0, x < z], ∅) 〉

= 〈 law weakPre(true) | law assign(x := y + 1) (x : [x ≥ 0, x > y], ∅),
law assign(x := z − 1) (x : [x < 0, x < z], ∅) 〉

= 〈 [(x : [x > y], {x ≥ 0 ⇒ true}), (x := y + 1, {x ≥ 0 ⇒ y + 1 > y})],
[(x := z − 1, {x < 0 ⇒ z − 1 < z})] 〉

Now, we have to take the distributed cartesian product of this list to get all the

55

possible combinations of the cells of the first list with the cells of the second list.

Π〈 [(x : [x > y], {x ≥ 0 ⇒ true}), (x := y + 1, {x ≥ 0 ⇒ y + 1 > y})],
[(x := z − 1, {x < 0 ⇒ z − 1 < z})] 〉

= [〈 (x : [x > y], {x ≥ 0 ⇒ true}), (x := z − 1, {x < 0 ⇒ z − 1 < z}) 〉,
〈 (x := y + 1, {x ≥ 0 ⇒ y + 1 > y}), (x := z − 1, {x < 0 ⇒ z − 1 < z}) 〉]

The function extractG makes a list of guards of the guarded command.

extractG :: GuardedComands → pfseq Guard
extractG G → P = 〈G〉
extractG G → P [] GC = G : (extractG GC)

In the example we have

extractG(x ≥ 0 → x : [x ≥ 0, x = x0 + 1] [] x < 0 → x : [x < 0, x = x0 − 1]) =
〈x ≥ 0, x < 0〉

We combine the list of guards with each element of the list of RCells we get from the
distributed cartesian product above. The function insertG takes a list of guards gi ,
a list of RCells (pi , pobsi), and returns a pair, where the first element is a guarded
command and the second is a set of proof obligations. The guarded command
associates each guard gi to the program pi : it is g1 → p1 [] g2 → p2 [] The set of
proof obligations is the union of the pobsi .

insertG :: pfseq Guard → pfiseq RCell →
pfiseq(GuardedCommand , P predicate)

insertG 〈〉 (rs) = []
insertG gs [] = []
insertG (g : gs) ((p, pobs) : rs) = tg (g → (fst r), snd r) (insertG gs rs)

where

tg (g1 → p1, pr1) (g2 → p2, pr2) = (g1 → p1 [] g2 → p2, pr1 ∪ pr2)

We use the function mkGC to apply insertG 〈x ≥ 0, x < 0〉 to each element of

56

the cartesian product above.

mkGC :: pfseq Guard → pfiseq(pfiseq RCell) →
pfiseq(GuardedCommand , P predicate)

mkGC gs = (insertG gs)∗
In our example we have

mkGC 〈x ≥ 0, x < 0〉
[〈 (x : [x > y], {x ≥ 0 ⇒ true}),

(x := z − 1, {x < 0 ⇒ z − 1 < z}) 〉,
〈 (x := y + 1, {x ≥ 0 ⇒ y + 1 > y}),

(x := z − 1, {x < 0 ⇒ z − 1 < z}) 〉]

= [(x ≥ 0 → x : [x > y] [] x < 0 → x := z − 1,
{x ≥ 0 ⇒ true, x < 0 ⇒ z − 1 < z}),

(x ≥ 0 → x := y + 1 [] x < 0 → x := z − 1,
{x ≥ 0 ⇒ y + 1 > y , x < 0 ⇒ z − 1 < z})]

The last step, which rebuilds the RCells, uses the function Ωif . The arguments of
this function are the original set pobs of proof obligations and the list of RCells
(gci , pobsi) generated in the previous step. The result is the list of RCells
(if gci fi, pobs ∪ pobsi); each guarded command in the argument list is turned
into a conditional, and the set of original proof obligations is added to those gener-
ated by the tactic.

Ωif :: P predicate → pfiseq(GuardedCommands, P predicate) → pfiseq(RCell)
Ωif ops = (if ops)∗

where

if :: P predicate → (GuardedCommands, P predicate) → RCell
if ops (gc, nps) = (if gc fi, ops ∪ nps)

In our example we have

Ωif {x ≥ 1}
[(x ≥ 0 → x : [x > y] [] x < 0 → x := z − 1,

{x ≥ 0 ⇒ true, x < 0 ⇒ z − 1 < z}),
(x ≥ 0 → x := y + 1 [] x < 0 → x := z − 1,

{x ≥ 0 ⇒ y + 1 > y , x < 0 ⇒ z − 1 < z})]

= [(if x ≥ 0 → x : [x > y] [] x < 0 → x := z − 1 fi,
{x ≥ 0 ⇒ true, x < 0 ⇒ z − 1 < z , x ≥ 1}),

(if x ≥ 0 → x := y + 1 [] x < 0 → x := z − 1 fi,
{x ≥ 0 ⇒ y + 1 > y , x < 0 ⇒ z − 1 < z , x ≥ 1})]

With this example as motivation, we present the definition of the combinator for

57

the conditional.

([[if tacs fi]] ΓL ΓT)(if gc fi, pobs) =
Ωif pobs (mkGC (extractG gc)

(Π(apply (([[]] ΓL ΓT) ∗ tacs) (Φr ∗ (extractP gc)))))

Firstly, we extract the commands from the branches gc of the conditional (extractP).
Secondly, we construct a list of RCells with these commands as their programs,
and an empty set of proof obligations (Φr ∗). We apply each element of the list
tacs of tactics to the corresponding element in the list of RCells we constructed
(apply (([[]] ΓL ΓT) ∗ tacs)). The next step is to take the distributed cartesian
product of the resulting list (Π). Finally, we rebuild the conditionals with the
resulting commands (mkGC (extractG gc)) and add the original proof obligations
pobs to the new sets of proof obligations (Ωif pobs).

The similar definition of the structural combinator do od is

([[do tacs od]] ΓL ΓT)(do gc od, pobs) =
Ωdo pobs (mkGC (extractG gc)

(Π(apply (([[]] ΓL ΓT) ∗ tacs) (Φr ∗ (extractP gc)))))

The function which generates the list of RCells for the structural combinator
do od is Ωdo . Its definition is

Ωdo :: P predicate → pfiseq(GuardedCommands, P predicate) →
pfiseq(RCell)

Ωdo ops = (do ops)∗
where

do :: P predicate → (GuardedCommands, P predicate) → RCell
do ops (gc, nps) = (do gc od, ops ∪ nps)

The structural combinator var]] applies a tactic to the program in a variable
block and rebuilds the variable blocks. Its formal definition is

([[var t]]]]ΓL ΓT) ([[var d • p]] , pobs) = (var d) ∗ ([[t]] ΓL ΓT (p, pobs))

The function var rebuilds the variable block after the application of the tactic to
its body. It takes as arguments a variable declaration and an RCell . The result is a
new RCell containing a variable block built from the declaration and the program.
The proof obligations are not changed.

var : declaration → RCell → RCell

var d (p, pobs) = ([[var d • p]] , pobs)

The structural combinator con]] is defined similarly as are all others struc-

58

tural combinators that handle procedure and variant blocks and parameters. Its
definition is

([[con t]]]]ΓL ΓT) ([[con d • p]], proofs) =
(con d) ∗ ([[t]]ΓL ΓT (p, proofs))

where

con :: declaration → RCell → RCell
con d (p, proofs) = ([[con d • p]], proofs)

This function is similar to var , as are those below.
The structural combinator pmain]] is used to apply a tactic to the main

program of a procedure block. Its definition is as follows.

([[pmain t]]]] ΓL ΓT) ([[proc n =̂ p1 • p2]] , pobs) =
(procm n p1) ∗ ([[t]] ΓL ΓT (p2, pobs))

where

procm : name → program → RCell → RCell

procm n p1 (p2, pobs) = ([[proc n =̂ p1 • p2]] , pobs)

The structural combinator pmainvariant]] is used to apply a tactic to the
main program of a variant block. Its definition is shown below

([[pmainvariant t]]]]ΓL ΓT)
([[proc pname =̂ body variant v is e • p]], proofs) =

(variant pname body v e) ∗ ([[t]]ΓL ΓT (p, proofs))

where

variant :: name → program → variable → expression → RCell → RCell
variant pname body v e (p, proofs) =

([[proc pname =̂ body variant v is e • p]], proofs)

The structural combinator pbody]] is used to apply a tactic to the procedure
body of a procedure block. Its definition is as follows.

([[pbody t]]]]ΓL ΓT) ([[proc pname =̂ body • p]], proofs) =
(procb pname p) ∗ ([[t]]ΓL ΓT (body , proofs))

where

procb :: name → program → RCell → RCell
procb pname main (body , proofs) = ([[proc pname =̂ body • main]], proofs)

The structural combinator pbodyvariant]] is used to apply a tactic to the

59

procedure body of a variant block. Its definition is shown below.

([[pbodyvariant t]]]]ΓL ΓT)
([[proc pname =̂ body variant v is e • p]], proofs) =

(variantb pname v e p) ∗ ([[t]]ΓL ΓT (body , proofs))

where

variantb :: name → variable → expression → program → RCell → RCell
variantb pname v e main (body , proofs) =

([[proc pname =̂ body variant v is e • main]], proofs)

The structural combinator pbodymain tb tm]] and the structural combinator

pmainvariantbody tb tm]] apply to procedure blocks and variant blocks, respec-
tively. They apply tb to the body of the procedure, and tm to the main program.
Their definitions are

([[pbodymain tb tm]]]]ΓL ΓT) = pbody tb]] ; pmain tm]]

and

([[pmainvariantbody tb tm]]]]ΓL ΓT) =

pbodyvariant tb]] ; pmainvariant tm]]

When we are not concerned with the type of argument declaration we use the
structural combinator parcommand t . Its definition is

([[parcommand t]]]]ΓL ΓT) ((pars • p), proofs) =
(parcommand pars) ∗ ([[t]]ΓL ΓT (p, proofs))

where

parcommand :: declaration → RCell → RCell
parcommand pars (p, proofs) = ((pars • p), proofs)

For parameter passing, we have first the semantics of val . Its definition is

[[val t]] ΓL ΓT ((val v : T • p) (a), pobs) =
(val v T a) ∗ ([[t]] ΓL ΓT (p, pobs))

where

val : name → Type → args → RCell → RCell

val v T a (p, pobs) = ((val v : T • p)(a), pobs)

This structural combinator applies the tactic to the body of the parameterized

60

command and then rebuilds it, using the function val .
The structural combinator res is used when we have an argument passed by

result in the program of an RCell . Its definition is shown below.

([[res t]]ΓL ΓT) ((res v : T • p)(pars), proofs) =
(res v T pars) ∗ (([[t]]ΓL ΓT) (p, proofs))

where

res :: variable → type → pfseq variable → RCell
res v T pars (p, proofs) = ((res v : T • p)(pars), proofs)

The structural combinator val-res is used when we have an argument passed
by value-result in the program of an RCell . Its definition is as follows.

([[val-res t]]ΓL ΓT) ((val-res v : T • p)(pars), proofs) =
(valres v T pars) ∗ (([[t]]ΓL ΓT) (p, proofs))

valres :: variable → type → pfseq variable →→ RCell
valres v T pars (p, proofs) = ((val-res v : t • p)(pars), proofs)

The tactic con v • t introduces v as a set of variables whose values are taken
from an appropriate syntactic class denoted TERM below. These variables are used
in t as elements of its syntactic class. Their values are angelically chosen so that
the tactic succeeds. The semantics is

[[con v • t]] ΓL ΓT = [[|v∈TERM t(v)]] ΓL ΓT

where |v∈TERM t(v) is an alternation of all tactics that can be obtained from t , with
v ranging over all values in TERM . This is an infinite alternation, which can be
defined as follows.

| ∞
i=0

f (i) = µX • F (X0)

where F (Xi) = f (i) | F (Xi+1). This definition generates the following alternation.

f (0) | f (1) | . . . | f (n)

The tactic applies to p do t needs to consider all ways in which the given
program can match p. Its semantics uses the function equals , that yields a tactic

61

that succeeds only if it is presented with a RCell matching the given program.

equals : RCell → Tactic

equals r r = [r]
equals r h = [], if h �= r

The definition of the tactic applies to p do t is

[[applies to p do t]] ΓL ΓT (p1, pobs) =
[[con p • equals (p, pobs); t]] ΓL ΓT (p1, pobs)

For simplicity, we use p, which is a meta-program, as a variable itself (the alternative
is to consider the individual variables of p). In con p • equals (p, pobs); t , an
instantiation of p is angelically chosen to ensure the success of equals (p, pobs); t .
The tactic equals (p, pobs) succeeds only for those instantiations that match its
argument. Above, its argument is (p1, pobs), so equals (p, pobs) is a filter for the
instantiations of p: only those that match p1 are considered. If there is none, the
tactic fails. If a successful instantiation can be chosen, the instantiated values are
used in t , which is applied to (p1, pobs).

2.3.3 Tactic Declarations and Programs

The effect of a tactic declaration is to include a tactic name n in the domain of
the tactics environment. This element is mapped to a new function that, for each
possible argument v ∈ TERM , gives the semantics of the tactic when the arguments
of the tactic are replaced by v . The presence of the clauses proof obligations and
programgenerated does not change the semantics of a tacDec, which is

[[]] : tacDec → LEnv → TEnv → TEnv

[[Tactic n(a) t end]] ΓL ΓT =
ΓT ⊕ {n �→ { v ∈ TERM • v → [[t [a \ v]]] ΓL ΓT }}

where ⊕ is the overriding operator.
A tactic program is a sequence tds of tactic declarations followed by a main

tactic t . The semantics is that of t , when evaluated in the environment determined
by the tactic declarations and the given laws environment. The definition is as

62

follows.

[[]] : tacProg → LEnv → TEnv → TEnv

[[tds t]] ΓL ΓT = [[t]] ΓL (decl tds ΓL ∅)

This environment is defined by the function decl .

decl : seq tacDec → LEnv → TEnv → TEnv

decl 〈〉ΓL ΓT = ΓT

decl (td1 tds) ΓL ΓT = (decl tds ΓL ([[td1]] ΓL ΓT))

In the case that we have an empty tactic declaration, this function returns the
tactics environment given as argument. Otherwise, it uses the tactic environment
resulting from the first tactic declaration to evaluate the rest of the declarations.

2.3.4 Tacticals

Some tactic languages include a definition of a tactical which makes a robust ap-
plication of a tactic t . This is called try and is defined as

try t = !(t | skip)

Another tactical makes an exhaustive application of a tactic t . This tactic is
defined below.

exhaust t = (µ Y • (t ; Y | skip))

This tactic applies t as many times as possible, terminating (with success) when t
fails to apply. An example os its use can be found in Section 2.2.8.

Using the formal semantics presented is this section we are able to prove a set
of algebraic laws which can be used for checking tactics equivalence. Furthermore,
this set can be used for tactics transformations and optimizations. Next chapter,
presents this set of algebraic laws.

63

Chapter 3

Algebraic Laws

In this chapter we present laws of reasoning for ArcAngel. These laws can be used
for checking tactics equivalence. Furthermore, they can be used for tactic transfor-
mations and optimizations. In order to prove the completeness of the set of laws
presented in this chapter, we use then to support a strategy of reduction to a normal
form.

64

3.1 Simple Laws

In this section we present laws proposed in the literature for Angel. In Appendix D
we prove their soundness in the context of the ArcAngel’s semantics. The laws
marked with (*) do not hold in the presence of recursive tactics.

3.1.1 Basic properties of composition

The three following laws guarantee that the skip is a unit of a sequential composi-
tion, and that fail is a unit of alternation, and a zero of sequential composition.

Law 1(a). skip; t = t
Law 1(b). t = skip; t
Law 2(a). t | fail = t
Law 2(b). t = fail | t
Law 3(a)∗. t ; fail = fail
Law 3(b). fail = fail; t

Now, we have that sequential composition and alternation are associative, and
sequential composition distributes over alternation, on the right only.

Law 4. t1 | (t2 | t3) = (t1 | t2) | t3
Law 5. t1; (t2; t3) = (t1; t2); t3
Law 6. (t1 | t2); t3 = (t1; t3) | (t2; t3)

The distributive law on the left succeeds only for sequential tactics, which we char-
acterize as follows.

Definition 1.(Sequential Tactics) A tactic is sequential if it is skip, fail, law l
for some law l , or it has the form t1; t2 where t1 is in one of these forms and t2 is a
sequential tactic.

Law 7. t1; (t2 | t3) = (t1; t2) | (t1; t3) for any sequential tactic t1.

This law establishes that sequential composition distributes over alternation, on the
left, if the left tactic is a sequential tactic.

3.1.2 Laws involving Cut

Here, we present some laws involving the cut operator, and how this operator
interacts with other tactic combinators.

First, we have that atomic law applications and tactics are unchanged by appli-

65

cations of cut .

Law 8. !skip = skip
Law 9. !fail = fail
Law 10. !(law l (args)) =law l (args)

The use of the cut operator on the left side of a sequential composition allows it to
distribute over an alternation on the right.

Law 11. !t1; (t2 | t3) = (!t1; t2) | (!t1; t3)

The cut operator partially distributes over sequential composition and over alter-
nation.

Law 12. !t1; !t2 =!(!t1; !t2)
Law 13. !(t1; t2) =!(t1; !t2)
Law 14(a). !(t1 | t2) =!(!t1 | t2)
Law 14(b). !(t1 | t2) =!(t1 |!t2)

It also has two absorption rules:

Law 15. !(t1 | t1; t2) =!t1
Law 16. !(t1 | t2 | t1) =!(t1 | t2)

In the presence of a cut , the skip becomes a left-zero for alternation, and alternation
becomes idempotent.

Law 17. !(skip | t) = skip
Law 18. !(t | t) =!t

The cut itself is also idempotent.

Law 19. !!t =!t

3.1.3 Laws involving succs and fails

When we interact fails and succs with each other and with the other basic tactics,
a large set of laws can be proved.

For example, verifying if a tactic t succeeds and then applying it is the same as
only applying it. Also, verifying if a tactic t fails and then applying it is the same

66

as fail.

Law 20. succs t ; t = t
Law 21∗. fails t ; t = fail

In the presence of fails, cut becomes identity, as well as succs.

Law 22. fails t = fails !t =! fails t
Law 23. fails(succs t) = fails t

The operator fails is also associative.

Law 24∗. fails t1; fails t2 = fails t2; fails t1

Applying cut to an alternation or to a sequential composition can be represented
using fails and succs.

Law 25. !(t1 | t2) =!t1 | (fails t1; !t2)
Law 26. !(t1; t2) =!(t1; succs t2); !t2 t2)

Applying succs and fails to an alternation can also be expanded.

Law 27. succs(t1 | t2) =!(succs t1 | succs t2)

Law 28. fails(t1 | t2) = fails t1; fails t2

Verifying the success of part of a tactic application is unnecessary if we verify the
success of the whole tactic application. However, for failures we should verify each
part of the tactic application.

Law 29. succs s ; succs(s ; t) = succs(s ; t)
Law 30. fails s = fails s ; fails(s ; t)

We present below another property of the cut operator over sequential composition
and fails.

Law 31. !s ; fails t = fails(!s ; t); !s

Nested applications of fails can be removed as follows.

Law 32. fails(fails(s ; t)) = succs s | (fails s ; fails t)

Law 33. fails(s ; fails t) = fails s | succs(s ; t)

Applying fails to the first tactic of a sequential composition and then applying

67

succs to the whole sequential composition does not succeed.

Law 34∗. fails s ; succs(s ; t) = fail

Nested applications of fails and succs can be removed as follows.

Law 35. fails(t ; d) = fails(t ; succs d)
Law 36. !s ; succs t = succs (!s ; t); !s
Law 37. fails(fails t) = succs t

The fails and succs operators are associative.

Law 38∗. fails t1; succs t2 = succs t2; fails t1
Law 39∗. succs t1; succs t2 = succs t2; succs t1

It is unnecessary nested applications of succs. However, succs has no effect when
applied to fails.

Law 40. succs(succs t) = succs t
Law 41. succs(fails t) = fails t

The following two properties shows, respectively, that the application of succs to a
sequential composition t ; d is the same as an application of succs to a sequential
composition t ; succs d , and that, in the presence of succs the cut becomes identity.

Law 42. succs(t ; d) = succs(t ; succs d)
Law 43. succs t = succs !t =! succs t

We present below some properties of composition of succs and fails with skip and
fail.

Law 44. succs skip = skip
Law 45. succs fail = fail
Law 46. fails skip = fail
Law 47. fails fail = skip

Now, we present some properties of composition and alternation of fails and succs.

Law 48. fails t ; fails t = fails t
Law 49. succs t ; succs t = succs t
Law 50∗. succs t ; fails t = fails t ; succs t = fail

Law 51∗. fails t | succs t = succs t | fails t = skip

Finally, we present some more expanding properties of nested application of fails

68

and succs.

Law 52. succs(t | u) = succs t | (fails t ; succs u)
Law 53. succs(fails s ; t)) = fails s ; succs t
Law 54. succs(succs s ; t) = succs s ; succs t
Law 55. succs(s ; fails t) = succs s ; fails(s ; t)
Law 56. succs(s ; succs t) = succs s ; succs (s ; t)

Law 57. fails (succs s ; t) = fails s | (succs s ; fails t)

Law 58. fails(s ; succs t) = fails s | (succs s ; fails (s ; t))

The laws presented in this section are very useful in Section 3.2.

3.1.4 Laws involving Structural Combinators

Here, we have the laws involving the composition of the structural combinator ;
with sequence, alternation and cut.

Law 59. (t1 ; t2); (t3 ; t4) = (t1; t3) ; (t2; t4)
Law 60. t1 ; (t2 | t3) = (t1 ; t2) | (t1 ; t3)
Law 61. (t1 | t2) ; t3 = (t1 ; t3) | (t2 ; t3)
Law 62. !(t1 ; t2) = (!t1 ; !t2)

3.1.5 Laws of con

The side-conditions of these laws use the function φ, which extracts the set of free-
(meta)variables of the tactic to which it is applied. The first property shows that,
in a sequential composition t1; t2, if v is not a free-(meta)variable of t2, we may
only use the variables of v in t1, and vice-versa. However, the last is true only if
t1 =!t1.

Law 63. (con v • t1; t2) = (con v • t1); t2 provided v /∈ φt2
Law 64. (con v • t1; t2) = t1; (con v • t2) provided v /∈ φt1 and !t1 = t1

If v is a not a free-(meta)variable in t , the use of con is unnecessary.

Law 65. (con v • t) = t provided v /∈ φt

We can also change the use of a meta-variable v in t for a new meta-variable u if
the new meta-variable is not a free-variable in t .

Law 66. (con v • t) = (con u • t [v \ u]) provided u /∈ φt

In order to prove the completeness of the set of laws presented in this section, we
use then to support a strategy of reduction to a normal form in the next section.

69

3.2 ArcAngel’s Normal Form

In this section we prove that tactics written in a subset of ArcAngel that excludes
recursion, abort, con, and applies to . . . do have a unique normal form. This
guarantees the completeness of the set of laws presented in the previous section.

First, we present the cut-free normal form for the subset of ArcAngel that in-
cludes the operator law, sequential composition, alternation, skip, fail, and the
structural combinators. Then, we present the pre-normal form, which expands this
subset of ArcAngel and includes the cut(!) operator, succs, and fails. However, the
pre-normal form does not guarantee uniqueness. For this reason, we present the
general normal form, which guarantees this property. The idea is to define a normal
form for tactics, to show that every tactic can be transformed into a unique normal
form using the laws presented in Section 3.1, and proved in Appendix D, and finally
to show that if two tactics are equivalent then they have the same normal form.

ArcAngel’s normal form provides a complete test whether two tactics texts de-
notes the same tactic. Furthermore, the laws presented can be used for correctness-
preserving transformations, or as justification for automatic tactic optimization [15].
The transformation of tactics to a restricted syntax for special applications can also
be obtained [30].

In the following proofs we shall use the notation

|
i :I

ti

to represent the alternate composition ti1 | . . . | tin , for I = {i1, ..., in}, with the
alternation combinators associated to the right. The index sequence I is finite. In
the case it has one element only, then the alternation is vacuous and consists only
of one instance on the tactic ti , and in the case I is empty, the expression denotes
fail.

In the same way, we use the notation

; i :I ti

to denote the composition ti1 ; . . . ; tin . The empty sequential composition denotes
skip.

3.2.1 Cut-free Normal Form

We say that a tactic is in the cut-free normal form if it has the form

|
i :I

(; j :JiMj)

where the Mj are either law lj , where lj are names of laws in the domain of the
environment of laws, or structural combinators of ArcAngel containing tactics in
cut-free normal form.

70

Lemma 1. Any tactic expressed using basic laws, alternation, sequential compo-
sition, skip, fail, and any structural combinator of ArcAngel can be transformed
into a unique tactic in cut-free normal form using the laws presented in Section 3.1.
Proof . The proof is by structural induction over the possible forms of the tactics.

Base cases :
skip = (; ∅)
fail = | ∅
law l = |

i :I
(law l)

Inductive step : We assume that

t1 = (|
i :I

(; j :JiMj)) and

t2 = (|
k :K

(; l :Lk
Ml))

We must prove that

a) t1 | t2 can be put in cut-free normal form

Using the associative Laws 4 and 5 we can easily transform the tactic

(|
i :I

(; j :JiMj)) | (|
k :K

(; l :Lk
Ml))

to the cut-free normal form.

b) t1; t2 can be put in cut-free normal form

(|
j :J

(; i :Ij Mi)); (|
k :K

(; l :Lk
Ml))

In order to proceed, we use the generalization of the Laws 6 and 7 presented
below.

Law 6′. (|
i :I

ti); t3 = (|
i :I

ti ; t3)

Law 7′. t1; (|
i :I

ti) = (|
i :I

t1; ti)

And we proceed with the proof

(|
j :J

(; i :Ij Mi)); (|
k :K

(; l :Lk
Ml))

= |
j :J

((; i :Ij Mi); (|
k :K

(; l :Lk
Ml))) [Law 6′]

= |
j :J

(|
k :K

((; i :Ij Mi); ((; l :Lk
Ml))) [Law 7′]

This last can be put in the cut-free normal form using the associative Laws 4 and 5.

71

c) The proof for the structural combinators is direct from the definition of the
cut-free normal form. For example, var t1]] and t1 ; t2 are already in the cut-free
normal form since t1 and t2 are in cut-free normal form by assumption.

Now, we define when two tactics can be considered equivalent: when they have
the same behavior for all RCells .

Definition 2.(Tactic Equivalence) Two tactics t1 and t2 are equivalent (t1 ≡ t2)
if for all environment of laws ΓL, for all environment of tactics ΓT , and for all
RCell r , we have that [[t1]] ΓL ΓT r = [[t2]] ΓL ΓT r .

We prove that if two tactics in normal form are equivalent, then they are syn-
tactically equal.

Lemma 2. If two tactics in normal form are equivalent, then they are identical.
Proof . We prove that there is no point where the tactics differ. We now use the
following notation: let the laws which are used in the tactics be l1, l2, ..., and
assume that the RCells are indexed by sequences of law numbers and applications
of structural combinators to such sequences, so that:

law ln r〈〉 = [r〈n〉]
law ln rl = [rl

�〈n〉]

For alternations we have that:

(law ln | law lm) rl = [rl
�〈n〉, rl

�〈m〉]

We use the structural combinators to represent themselves. For example, we have
that:

(var law l1; law l2; law l3)]] | law l4) r〈〉 = [r
var 〈1,2,3〉]]

, r〈4〉]

Using this indexing, a tactic applied to r〈〉 will produce an account of the tactic’s
normal form (with the alternation of the sequential composition of the laws in the
respective RCells in the result list) and so the result is immediate.

Conversely, we have that equivalent tactics have a unique normal form.

72

Theorem 1. Two tactics are equivalent if, and only if, they have the same normal
form.
Proof . Let t1n and t2n be the normal form of t1 and t2, respectively. First we must
prove that t1 ≡ t2 ⇒ t1n is identical to t2n . Since t1 ≡ t2 and t1n and t2n are the
normal forms of t1 and t2 respectively, we can say that t1 ≡ t1n and t2 ≡ t2n . This is
valid because the laws used in the reduction to the normal form are already proved.
So, we can also say that t1n ≡ t2n , and then, using Lemma 2, that t1n is identical
to t2n .

Then we prove that t1n is identical to t2n ⇒ t1 ≡ t2. Since t1n and t2n are the
normal forms of t1 and t2 respectively, we can say that, t1n ≡ t1 and that t2n ≡ t2.
But, we know that, t1n is identical to t2n , and so, t1 ≡ t2.

A set of laws can be said to be complete when tactics which are observationally
equivalent (i.e. they behave identically on all goals) are provably so (using the laws
of this set).

Corollary 1. The laws in Section 3.1 are complete for the cut-free finite (non-
recursive) ArcAngel.
Proof . We have shown that, using the laws given above, we can transform a tactic
to its normal form (Lemma 1). Using Theorem 1, we can say that two tactics are
equivalent if, and only if, they have the same normal form.

3.2.2 Pre-Normal Form

The pre-normal form is for the subset of ArcAngel that includes the subset of the
cut-free normal form, the cut (!) operator, and the tactic assertions succs and fails.
First, we revisit the Definition 1 of sequential tactics, so that it also contains the
structural combinators.

Definition 3. Sequential Tactics A tactic is sequential if it is skip, fail, law l
for some law l , !t , fails t or succs t , for some sequential tactic t , a structural
combinator applied to a sequential tactic, or it has the form t1; t2, where t1 is in
one of these forms and t2 is a sequential tactic.

The next Lemma is very useful.

Lemma 3. If a tactic t is a sequential tactic then t =!t .
Proof . The proof of this Lemma is presented in Appendix D.6.1.

73

Now it is possible to prove a completeness result for the finite (non-recursive) Ar-
cAngel, including the cut operator. The proof is similar to the one used in the
cut-free normal form, but now we have a two-stages process. First, we define a
pre-normal form and then we define the general normal form.

The cut-free normal form shows the possible sequences of law applications re-
sulting from a tactic execution. When we include the cut operator in the language,
the possibilities depend on the success or failure of sequences of law applications.
For this reason we need to include guards which check the validity of the options.

Definition 4. (Pre-normal form) A tactic is in pre-normal form if it has the
form

|
j :J

gj ; (; i :Ij Mj)

where gj are guards of the form succs(; k Mk) or fails(; k Mk), or a possibly empty
sequential composition of such guards. The Mj are either law lj , where lj are
names of laws in the domain of the environment of laws, or structural combinators
of ArcAngel containing tactics in pre-normal form.

Now, we want to prove that all the tactics written in the subset of ArcAngel
considered can be put in pre-normal form.

Lemma 4. Any tactic written in the language above can be put into pre-normal
form using the laws given above.
Proof . In this proof we assume the use of the associative Laws 4 and 5 where
necessary. The proof proceeds like the one for the cut-free normal form.

Base cases :
skip = succs skip; (; i :∅)

fail = |
j :∅

law l = succs (law l); law l [Law 20]

Inductive step: We assume that

t1 = (|
j :J

gj ; (; i :Ij Mi))

t2 = (|
k :K

gk ; (; l :Lk
Ml))

We must prove that

a) t1 | t2 can be put in pre-normal form

74

Using the associative Laws 4 and 5 we can easily transform the tactic

= (|
j :J

gj ; (; i :Ij Mi)) | (|
k :K

gk ; (; l :Lk
Ml)))

to the cut-free normal form.

b) t1; t2 can be put in pre-normal form

= (|
j :J

gj ; (; i :Ij Mi)); (|
k :K

gk ; (; l :Lk
Ml))

= |
j :J

((gj ; (; i :Ij Mi)); (|
k :K

gk ; (; l :Lk
Ml))) [Law 6′]

= |
j :J

(!(gj ; (; i :Ij Mi)); (|
k :K

gk ; (; l :Lk
Ml))) [Lemma 3]

We can generalize the Law 11 as

Law 11′. !t1; (|
i :I

ti) = |
i :i

t1; ti

And so we have

|
j :J

(!(gj ; (; i :Ij Mi)); (|
k :K

gk ; (; l :Lk
Ml)))

= |
j :J

(|
k :K

(!(gj ; (; i :Ij Mi)); (gk ; (; l :Lk
Ml)))) [Law 11′]

= |
j :J

(|
k :K

(gj ; (; i :Ij Mi); gk ; (; l :Lk
Ml))) [Lemma 3]

This tactic has the form

|
i :I

(g1i ; t1i ; g2i ; t2i)

Since t1i are sequences of laws and structural combinators, we have that t1i =!t1i

(Lemma 3). Now we can apply the laws 31 and/or 36 to assemble the guard com-
ponents at the beginning of each alternation branch, and remove the cut operators
by applying again the Lemma 3. For example, consider the tactic

succs (law l1); law l1; succs (law l2 ; law l3); law l2 ; law l3

| succs (law l4); law l4; succs (law l5; law l6); law l5; law l6
= succs (law l1); ! law l1; succs (law l2 ; law l3); ! law l2 ; law l3

| succs (law l4); ! law l4; succs (law l5; law l6); !(law l5; law l6)
[Lemma 3]

= succs (law l1); succs(! law l1; law l2 ; law l3); ! law l1; !(law l2 ; law l3)

| succs (law l4); succs(! law l4; law l5; law l6); ! law l4; !(law l5; law l6)
[Law 36]

75

= succs (law l1); succs(law l1; law l2 ; law l3); law l1; law l2 ; law l3

| succs (law l4); succs(law l4; law l5; law l6); law l4; law l5; law l6
[Lemma 3]

The resulting tactic will be in pre-normal form.
c) !t can be put in pre-normal form.
The tactic !t can be normalized via repeated (if needed) uses of Law 25. As t

is in the pre-normal formal (inductive hypothesis) this repeated application of this
law will distribute the cuts onto the sequential components, from where they can
be removed, using Lemma 3, as we can see in

!(|
j :J

gj ; (; i :Ij Mi))

= !(g1j ; (; i :I1j
Mi)) |

fails(g1j ; (; i :I1j
Mi)); !(|

j :J\{1} gj ; (; i :Ij Mi)) [Law 25]

= (g1j ; (; i :I1j
Mi)) |

fails(g1j ; (; i :I1j
Mi)); !(|

j :J\{1} gj ; (; i :Ij Mi)) [Lemma 3]

This distribution may result in the creation of nested instances of succs and
fails. Laws 32, 33, and 53-58 can be used to remove those nested instances. At this
point, applying the distributive Laws 6 and 11, together with the Lemma 3 will put
the tactic in pre-normal form.

For example, consider the tactic

!(succs(law l1); law l1

| succs(law l1; law l2); law l1; law l2)
= !(succs(law l1); law l1)

| (fails(succs(law l1); law l1); !(succs(law l1; law l2); law l1; law l2))
[Law 25]

= (succs(law l1); law l1)

| (fails (law l1) |
succs(law l1); fails(law l1)); (succs(law l1; law l2); law l1; law l2))

[Lemma 3]
= (succs(law l1); law l1)

| (fails (law l1); succs(law l1; law l2); law l1; law l2)

| (succs(law l1); fails(law l1); succs(law l1; law l2); law l1; law l2)
[Law 6]

d) fails t can be put in pre-normal form (inductive hypothesis), and so it is an
alternation. We can apply a generalized version of Law 28 to the tactic fails t to
distribute the fails through the alternation.

76

Generalizing Law 28 we have that

Law 28′. fails(|
i :I

ti) =; i :I fails(ti)

And so we have

fails(|
j :J

gj ; (; i :Ij Mi))

= ; j :J fails(gj ; (; i :Ij Mi)) [Law 28′]

Again, the nested instances of succs and fails can be removed using the Laws
32, 33 and 53-58. In this way, we may introduce alternations as above, and then
distributive laws can be used to transform the resulting tactics into pre-normal
form.

e) Similar arguments are used to the case succs t . The only difference is to
change the application of the Law 28 by the application of the Law 52, and to
proceed like we did for the fails t case.

f) The proofs for the structural combinators are a direct application of the
definition of the pre-normal form.

In the next subsection we extend the pre-normal form to the general normal
form.

3.2.3 General Normal Form

The pre-normal form does not guarantee uniqueness. For example, let s and t be
sequence of laws and structural combinators, then the tactics

s ; t
(succs s); s ; t
(succs s ; t); s ; t
(succs s); (succs s ; t); s ; t

are all equivalent, but they are not in the same pre-normal form.
In order to define the general normal form, it is important to introduce some

new concepts. Law and structural combinator sequences are sequences of law ap-
plications and structural combinators in the form M1; ...; Mn , where Mi are law
applications or structural combinators applied to law and structural combinator
sequences. For instance, the sequence law l1; (law l2 ; law l4) represents such a
sequence. A set T of such sequences is prefix-closed if for any sequence t in T , T

77

also contains all initial subsequences of t . For example, the set

T = {law l1, law l1; (law l2 ; law l4), law l1; ((law l2; law l3) ; law l4)}

is prefix-closed, but the set

T = {law l1, law l1; ((law l2; law l3) ; law l4)}

is not, since the element law l1; (law l2 ; law l4) is missing.
In the sequel we present the General Normal Form, which is based in the cut-free

normal form. The pre-normal form is used in the proof of the lemmas.

Definition 5. (General Normal Form) A tactic t is in general normal form,
relative to a law and structural combinator sequence T , if it has the form

|
j :J

gj ; vj

where vj are tactics in the cut-free normal form and gj are guards as in the pre-
normal form, with certain provisos:

• (Consistency) for each guard gj , if for some law and structural combinator
sequence t , gj contains succs t , it must not contain fails s , for any prefix s
of t (or t itself);

• (Maximality) for each j , for all t in T , either succs t or fails t must be
present in gj ;

• (Sufficiency) for each j , the success of gj must be sufficient to guarantee the

success of all the alternate clauses in vj , i.e., if vj = |
k

vjk , then for all k ,
succs vjk must be present in gj ;

• (Mutual Exclusivity) the guards are mutually exclusive; that is, for i and j ,
with i �= j , there must be some law and structural combinator sequence t for
which gi contains succs t and gj contains fails t (or vice-versa).

We extend the pre-normal form, imposing the above restrictions on the guards, in
order to guarantee uniqueness.

If the conditions above are satisfied we have the following properties.

1. gi �= fail: Since the maximality property guarantees that for all t in T , either
succs t or fails t must be present in gi . So, it can not be fail.

78

2. succs t ; gj = gj or fails t ; gj = gj : Again the maximality property guaran-
tees that all sequence of laws and structural combinators are already guarded
in gi , either with succs or fails. The consistency property guarantees that if
there is succs t , there must not be fails s , for s some prefix of t . In both
cases, using the Laws 24, 39, 38, 48, and 49 we can eliminate the first guard
succs t or fails t and maintain only the guards gj .

3. succs gj = succs gj ; succs vjk : Since the sufficiency property afirms that
succs vjk is a consequence of succs gj .

4. gi ; gj = fail (i �= j): Since the mutual exclusivity property says that for two
different guards gi and gj (i �= j) there is some law and structural combinator
sequence t for which gj contains succs t and gj contains fails t (or vice-
versa). So, if succs t skips in gi , then fails t fails (or vice-versa), then we
use the Laws 1, 2 and 3.

For example, consider two mutual excludents guards

succs(law l1); fails(law l2)
fails(law l1); fails(law l2)

if we compose these two guards, we have

succs(law l1); fails(law l2); fails(law l1); fails(law l2)
= succs(law l1); fails(law l1); fails(law l2); fails(law l2) [Law 24]
= succs(law l1); fails(law l1); fails(law l2) [Law 48]
= fail; fails(law l2) [succs t = skip ⇒ fails t = fail]

[succs t = fail ⇒ fails t = skip]
= fail [Law 3]

Using the conditions seen above, we can say that a tactic in the general normal
form has, for example, the form

...

| ...; succs t ; ...; vn

...

| ...; fails t ; ...; vm

...

Using the Laws 24, 39, and 38 we can re-order the components of the guards of

79

these tactics to the form

...

| succs t ; ...; vn

...

| fails t ; ...; vm

...

This property, together with the mutual exclusion property, means that the outer-
most alternation can also be re-ordered.

...

| succs t ; ...; vn

| fails t ; ...; vm

...

Therefore, an arbitrary pair of adjacent alternation branches of a tactic in general
normal form can be considered to have the form

succs t ; s1 | fails t ; s2

= (fails t | succs t); (succs t ; s1 | fails t ; s2) [Laws 51 and 1]
= (fails t ; succs t ; s1)

| (fails t ; fails t ; s2)

| (succs t ; succs t ; s1)

| (succs t ; fails t ; s2) [Laws 6 and 11,Lemma 3]

= fails t ; s2 | succs t ; s1 [Laws 50,2,48 and 49]

So, we can say that the ordering of the tactic may be changed arbitrarily. This
means that the normal forms achieved below is unique only modulo these two
forms of reordering. This relative definition is important since the guards gi of two
tactics, for example, t1 and t2, can be syntactically different, but equivalent, given
the commutative laws on succs and fails, and so, the tactics are equivalent.

Lemma 5. Given a sufficiently large prefix-closed set of law and structural combi-
nator sequences, T , any tactic in pre-normal form can be put into a unique general
normal form, relative to T (unique modulo reordering of the guards), using laws
drawn from the set given above. T is sufficiently large if contains at least the min-
imal set of law and structural combinator sequences determined by consideration
of the tactic t in pre-normal form: T must contain all the instances of law and
structural combinator sequences.
Proof . The idea behind this proof is to sequentially compose an alternation of

80

guards which is equivalent to skip with the tactic in pre-normal form (since it is
equivalent to the tactic itself by Law 1), and then to transform it into a tactic in
general normal form.

First, consider the tactic formed from all possible guards for law and structural
combinator sequences in T :

; t :T (succs t | fails t)

This is equivalent to skip since one of the branches will succeed and behave like
skip. Using the distributive Laws 6 and 11 (applying Lemma 3 when necessary),
we can transform this expression into

|
i :I

gi

where gi = succs t or gi = fails t for all t : T .
It is still equal to skip because the laws preserve the functionality of the tactics.

Using Law 34 and the commutative Laws 24, 39, and 38, we can remove all those
i from I for which gi is equivalent to fail. Let us name this new I as I ′.

To illustrate these first steps let us have T = {l1, l1; l2, l1; l2; l3 ; l4}. We have the
tactic formed from all possible guards for law and structural combinator sequences
in T as seen below:

(succs l1 | fails l1);

(succs l1; l2 | fails l1; l2);

(succs l1; l2; l3 ; l4 | fails l1; l2; l3 ; l4)

Using the sequential composition and alternation distributive laws we get the
following alternation.

succs l1; succs (l1; l2); succs(l1; l2; l3 ; l4) [1]

| succs l1; fails (l1; l2); succs(l1; l2; l3 ; l4) [2]

| fails l1; succs (l1; l2); succs(l1; l2; l3 ; l4) [3]

| fails l1; fails (l1; l2); succs(l1; l2; l3 ; l4) [4]

| succs l1; succs (l1; l2); fails(l1; l2; l3 ; l4) [5]

| succs l1; fails (l1; l2); fails(l1; l2; l3 ; l4) [6]

| fails l1; succs (l1; l2); fails(l1; l2; l3 ; l4) [7]

| fails l1; fails (l1; l2); fails(l1; l2; l3 ; l4) [8]

The branches [2],[3],[4] and [7] can be removed using Laws 34, 24, 39, and 38.

81

Finally, we get

| succs l1; succs (l1; l2); succs(l1; l2; l3 ; l4) [1]

| succs l1; succs (l1; l2); fails(l1; l2; l3 ; l4) [5]

| succs l1; fails (l1; l2); fails(l1; l2; l3 ; l4) [6]

| fails l1; fails (l1; l2); fails(l1; l2; l3 ; l4) [8]

This final tactic has the mutual exclusion property mentioned in the definition of
the general normal form. It also has the consistency property, since those branches
which were equal to fail were removed, and the maximality property, in that for
each t in T , for each i , either gi contains fails t or succs t .

Proceeding with the proof, if we sequentially compose the tactic we worked out
above with the tactic in pre-normal form we have

(|
i :I ′ gi); (|

j :Ji
hj ; (; k :Kj Mk))

Applying the distributive laws we have

|
i :I ′ |

j :Ji
gi ; hj ; (; k :Kj Mk)

This tactic is still equivalent to the original tactic in pre-normal form.
By the maximality property, and the sufficient size of T , for each hj , gi pair, we

have either that each component of hj is present in gi , and so, by the commutative
laws and Laws 48 and 49, gi ; hj = gi , or that hj has a succs t for which gi has a
fails t , and so, by the commutative laws and Law 34, we have that gi ; hj = fail.
Using the commutative laws and Law 2, we can rewrite the tactic, removing the
branches from Ji (J ′

i replaces Ji) which are equal to fail.

|
i :I ′ |

j :J ′
i
gi ; (; k :Kj Mk)

The next step is to omit (using the commutative laws and Law 2) the inner
alternation branches whose guards contains an instance of fails(; kMk), since this
branch will fail (J ′′

i replaces J ′
i). In the case J ′′

i becomes empty, and so denotes fail,
this i can be omitted from I ′ using Law 2.

Finally, the distributive law can be used to transform the tactic into the required
normal form:

|
i :I ′ (gi ; |

j :J ′′
i

(; k :Kj Mk))

This is in normal form, since the gi remain maximal, consistent, and mutually
exclusive. Their sufficiency arises as a result of the maximality and the omission
(in the last step, above) of clauses which must fail.

82

Lemma 6. Two tactics in general normal form (relative to some sufficiently large
prefix-closed set of rule and structural combinator sequences T) are equivalent if,
and only if, they are identical modulo reordering of the guards.
Proof . The first part of this proof is to show that if two tactics are identical modulo
reordering of the guards, then they are equivalent. This is trivial since the Laws
24, 38, and 39 makes reordering possible and the laws are sound.

The second part of the proof is to show that, if two tactics in general normal form
are equivalent, then they are identical modulo reordering of the guards. We assume
that the laws and structural combinators we refer to are M1,M2, ...,Mn and the
RCells are decorated with pairs. The first element of this pair is a prefix-closed set
of law and structural combinator sequences. These sequences are those which can
succeed when applied to that RCell . The second element is the law and structural
combinator sequence which contains the laws and the structural combinators which
have been already successfully applied.

This is

Mi rs,t �= [] ⇔ ∃ xs : s | head xs = Mi .

and

Mi rs,t = rs′,t�〈ri 〉 where s ′ = xs | ri : xs ∈ s

otherwise the laws application fails.
Analyzing the behavior of a tactic applied to different RCells , we can determine

the guard/body (in cut-free normal form) pairs of its normal form. The application
of a tactic to an RCell rs,〈〉 will either result in the empty sequence or in a sequence
of the form rs1,t1 , ..., rsn ,tn . The former case does not interest us since it will not help
us to reconstruct the tactic in general normal form.

In the latter case, the body part of an alternation can be reconstructed as the
alternation of t1, ..., tn . The guard for that branch can be also reconstructed from
succs applied to each member of s and fails applied to each member of T \ s .

If we take all the initials RCells rs,〈〉 (with s any prefix-closed subset of T) for
which the outcome is not the empty sequence, it is possible to reconstruct the whole
tactic in normal form.

For example, let us consider an hypothetical case where the set

T = {l1, l1; l2, l1; l3, l1; l2; l3 ; l4}
and there are only two possible initial RCell which are

R〈l1,l1; l2,l1; l3,l1; l2; l3 ; l4〉,〈〉
R〈l1,l1; l2,l1; l2; l3 ; l4〉,〈〉

Now, we consider that when we apply a tactic t1 to these two RCells we get,

83

respectively,

〈R〈l3〉,〈l1,l2,l3 ; l4〉
,R〈l2,l2; l3 ; l4〉,〈l1,l3〉

〉
〈R〈〉,〈l1,l2,l3 ; l4〉

〉

If we rebuild this tactic as described before, we have, for the first branch (from the
first RCell)

succs(l1); succs(l1; l2); succs(l1; l3);

succs(l1; l2; l3 ; l4); (l1; l2; l3 ; l4 | l1; l3)

fails does not appear because T \ s is empty for the first RCell . For the second
RCell we have

succs(l1); succs(l1; l2); succs(l1; l2; l3 ; l4); fails(l1; l3); (l1; l2; l3 ; l4)

Now, we make an alternation of these to branches, and we have the tactic in the
normal form.

succs(l1); succs(l1; l2); succs(l1; l3);

succs(l1; l2; l3 ; l4); (l1; l2; l3 ; l4 | l1; l3)

|
succs(l1); succs(l1; l2); succs(l1; l2; l3 ; l4); fails(l1; l3); (l1; l2; l3 ; l4)

We guarantee the maximality property by ensuring that every member of T
is present in each guard, since we apply succs to each member of s and fails to
each member of T \ s . The mutual exclusivity is ensured by the fact that the sets
s we consider in each initial RCell rs,〈〉 are different, and so, the set of sequences
with succs are different. The consistency property is ensured by the fact that the
guards either contains succs x if x ∈ s or fails x if x ∈ T \ s . The last property,
the sufficiency, is guaranteed by the fact that the law and structural combinators
sequences t1, ..., tn are those which succeeds when applied to the initial RCell . So,
these law and structural combinator sequences are in s , and consequently, succs ti
is in the guard gj .

In this way, a tactic in normal form can be completely characterized (modulo
reordering) by the set of goals on which it succeeds and the outcomes when it does
so, and the result follows immediately.

84

Theorem 2. Two tactics are equivalent under all law and structural combinators
instantiations if, and only if, they have the same general normal form, modulo
reordering of the guards.
Proof . Let t1n and t2n be the normal form of t1 and t2, respectively. First we must
prove that t1 ≡ t2 ⇒ t1n is identical to t2n , modulo reordering of the guards. Since
t1 ≡ t2 and t1n and t2n are the normal forms of t1 and t2 respectively, we can say
that t1 ≡ t1n and t2 ≡ t2n . This is valid because all the laws used in the reduction
to the normal form are already proved. So, we can also say that t1n ≡ t2n , and then,
using Lemma 6, that t1n is identical to t2n , modulo reordering of the guards.

Then we prove that t1n is identical to t2n , modulo reordering of the guards,
implies t1 ≡ t2. Since t1n and t2n are the normal forms of t1 and t2 respectively, we
can say that, t1n ≡ t1 and that t2n ≡ t2. But, we know that, t1n is identical to t2n ,
modulo reordering of the guards, and so, t1 ≡ t2.

Corollary 2. The set of laws is complete for the language described above.
Proof . The proof of this corollary is similar to the proof of the Corollary 1.

In order to put tactics which involve tactic t in the general normal form, we
can replace the tactic call by the tactic body itself. It must be in the general normal
form, or it must be possible to reduce it to the general normal form.

We are yet to consider tactics involving recursion, abort, con, and
applies to . . . do. This is left as further work.

85

Chapter 4

Gabriel: a tool for ArcAngel

In this chapter we present Gabriel. We present its concepts, discuss its user inter-
face, and present the constructs of ArcAngel available in Gabriel. Finally, we present
an example of writing and using a tactic.

86

4.1 Gabriel Concepts

Gabriel [27] is a tactic editor plugged-in to Refine [8], a tool that supports program
development using Morgan’s refinement calculus. Using Refine, the user starts with
a formal specification, and repeatedly applies laws of refinement in order to obtain
the program which correctly implements the initial formal specification. After each
law application, Refine shows to the user the program development, the collected
code and the proof obligations generated with the law applications. Refine also al-
lows users to save a program development in order to continue it later. Furthermore,
Refine also has the undo and redo operations.

Gabriel is activated from Refine. Using Gabriel, the user can:

• Create a tactic: the user writes a tactic in ASCII ArcAngel(see Section 4.3);

• Edit a tactic;

• Generate a tactic: the system verifies the syntax correctness, and includes
the tactic to the list of tactics of Refine. Afterwards, the user can apply the
generated tactic in program developments;

• Remove a tactic;

• Apply a tactic.

The generation of a tactic automatically from a program development in Refine
is also a required functionality. However, this is not implemented in the current
version of Gabriel and is left as future work.

Some diagrams of Gabriel implementation can be found in Appendix E. We
present the class diagrams of the Gabriel-Refine integration and tactics hierarchy,
and the sequence diagrams for tactic generation and application.

4.2 Gabriel’s User Interface

Gabriel has a simple user interface. This interface is presented in Figure 4.1. The
buttons descriptions are (from left to right):

• Start new tactic;

• Open existing tactic;

• Save tactic;

• Generate tactic and insert it into the tactics list of Refine;

87

Figure 4.1: Gabriel’s User Interface

• Open symbols keyboard, which is used to insert the ASCII representation of
ArcAngel’s constructs.

Refine’s user interface was modified in order to use Gabriel. Basically, the changes
are: the creation of the tactics list and the addition of a button that opens Gabriel.
Figure 4.2 shows the tactics list window.

Gabriel’s user interface is based [24] on the LUCID, the User-Centered Interface
Design [16]. First, we made an action-object analysis; this activity consists of build-
ing a directed-graph describing the activities of program refinements, and building
an object-tree containing the objects of Refine-Gabriel’s user interface. Using this
technique we analyzed the correspondence of program refinement activities and the
user-interface of Refine and Gabriel.

Finally, a test was made with Refine-Gabriel’s potential users. This test consisted
of a tactic creation and application using Gabriel and Refine, respectively. After the
tests, we interviewed the users, identifying usage difficulties and the reasons for
them. Based on the whole test, the users identified positive points of Gabriel and
made suggestions for improvement. The positive aspects pointed were:

88

• Easy to open the tactic editor (Gabriel);

• Easy to see the result of a tactic creation;

• Easy application of laws and tactics;

• Nice integration Refine-Gabriel

Figure 4.2: Refine’s Tactics List

The suggestions made were the inclusion of:

• A symbol keyboard for Gabriel;

• ArcAngel documentation in the help;

• A Generate tactic button in Gabriel;

• A Show tactic/law details facility with a double click on the tactic/law in the
tactic/law list in Refine;

• A tactic template to start new tactics.

Most of these suggestions were applied to Refine and Gabriel.

4.3 Constructs of Gabriel

Gabriel uses ArcAngel as a tactic language. However, some constructs of ArcAngel,
as structural combinators, cannot be written in ASCII. For this reason, Gabriel uses
an ASCII representation of ArcAngel which is presented in Appendix F.1. The

89

tactics con, µ, val , res , and val-res are not implemented in the current version
of Gabriel. These are left as future work.

Furthermore, Gabriel supports most of the laws of Morgan’s refinement cal-
culus. The names of the laws implemented in Refine and their usage template
are presented in Appendix F.2. The law usage template defines the name of the
law and its arguments. For example, the strengthening post-condition law must
be used as strPost(PRED(newPost)), where strPost is the name of the law and
PRED(newPost) is the argument of the law.

All the arguments are typed. The types that can be used in Gabriel are presented
in Appendix F.3. The list of tactics as an argument is not implemented in this
version of Gabriel and is left as future work.

4.4 Using Gabriel

In this section we present an example of a tactic creation and application. We use

Figure 4.3: takeConjAsInv written in ASCII ArcAngel

90

the tactic takeConjAsInv(Section 2.2.3) and the example presented in page 23.
In order to create a tactic we must open Gabriel pressing Gabriel’s button in

Refine. Afterwards, we must write the tactic takeConjAsInv in ASCII ArcAngel as
seen in Figure 4.3.

After writing the tactic, we must save it before its generation. We can save
a tactic pressing the save button or choosing the save option in the file menu of
Gabriel.

After saving the tactic we can generate it pressing the generate button or choos-
ing the generate option in the file menu of Gabriel. If the generation succeeds, the
tactic is inserted in the list of tactics of Refine. However, if some syntax error is
found, the system shows an error message indicating the line of the error.

Once the tactic is generated we can apply it in Refine. In our example, the
program q , r : [a >= 0 & b > 0, (a = q ∗b+r & 0 <= r) & not r >= b] is the initial
program. We start the program by pressing the start new development button.
Figure 4.4 presents Refine’s window used to insert the new start specification.

Figure 4.4: Refine’s New Development Window

Then, we select the program in the development window and the tactic takeConjAsInv
in the tactics list window and press the apply button in this window. The system

91

will require the parameters of the tactic application, as presented in Figure 4.5.

Figure 4.5: Gabriel’s Arguments Window

We insert the values presented in Table 4.1.

Figure 4.6: Refine’s Development Window

After the insertion of the last argument value, Refine actually applies the tactic.
The program development window, the proof obligations window and the collected
code window are actualized. Figure 4.6 presents the resulting development window.

Finally, we select the guarded program in the iteration by clicking the left-button
of the mouse on it, select the assignment with initial variables law in the list of laws
window, and apply it by pressing the apply button of this window. We use the

92

arguments q , r and q + 1, r − b.

Argument Name Argument’s Value

invBound b > 0
lstVar q , r
lstVal 0, a

variante r

Table 4.1: Argument’s Values

At the end of the development, the resulting collected code window is that

Figure 4.7: Refine’s Collected Code Window

presented in Figure 4.7.

93

Chapter 5

Conclusions

In this chapter we give an overview of the results of our work. Related works are
also presented in this chapter. Finally, we suggest topics for future work.

94

5.1 Contributions and Conclusions

We have presented ArcAngel, a refinement-tactic language. Using this language, it is
possible to specify commonly used strategies of program development. Tactics can
be used as transformation rules; this shortens developments and improves their read-
ability. We have identified some strategies of program development, documented
them as tactics using ArcAngel, and used them in some program developments as
single transformation rules.

We have defined the semantics of ArcAngel based on the Angel semantics. The
main difference is that Angel is a very general language and its goals have no defined
structure. For us, a goal is called an RCell , which is a pair with a program as its first
element and a set of proof obligations as its second element. The application of a
tactic to an RCell returns a list of RCells containing the possible output programs,
with their corresponding set of proof obligations.

We have shown the soundness of algebraic laws for reasoning about ArcAngel
tactics. We have covered most of the laws that have been proposed for Angel.
However, most of them have no available proof in the literature. These proofs are
provided here in the context of ArcAngel. Since these laws are valid, the strategy
proposed to reduce finite Angel tactics to a normal form has been applied to ArcAngel
tactics.

Finally, we have presented Gabriel , a tool to support the use of ArcAngel. We
have presented the concepts of the tool and briefly discussed its user interface. We
have presented the constructs of ArcAngel available in Gabriel, the names of the laws
of Morgan’s refinement calculus available in ArcAngel, and the types of arguments
which can be used in the tool. An example of a tactic creation and application has
also been presented.

5.2 Related Work

Several other tools that support program refinement are available in the literature.
Some of them provide facilities for use of tactics, but, as far as we know, none of
them has a special purpose language, like ArcAngel.

The aim of the work and the tool described in [11] is also to find a way of
encoding developing strategies and reusing them in other developments. As Gabriel
their system helps the user to develop programs using the refinement calculus.
It supports the specification and programming constructs described in [23]. The
user loads an initial program (or types it), and then, repeatedly uses commands
displayed in a menu. Basically, the user can apply a refinement law or a tactic
(refine command), undo the last refinement step, elide a part of the program, or
expand to see hidden parts again. The expand and print command produces a
LATEX description of the refinement step. The rerun command is also supported

95

by this system. The interaction between the user and the system is menu-mouse
based.

This system supports data refinement of variable blocks. The user specifies the
abstract variables, the concrete variables, and the coupling invariant that defines the
relationship between them. It uses an assisted, theory-driven rewriter to discharge
proof obligations. This is possible only if they can be simplified to true, otherwise
the user is asked to prove it. Also, trivial predicates are automatically removed from
specification statements. This facility is still not supported by Refine, nevertheless
their system does not display rules and proof obligations as Refine does.

Tactics in their system can be written in a language that is embedded in Prolog,
which has a formal semantics [18, 1]. As far as we know, however, the extension
of Prolog used as a tactic language does not have a well defined semantics. This
language has operators for sequential, alternate, and conditional composition. The
sequential and the alternate composition are as in ArcAngel, and the conditional
composition corresponds to ArcAngel’s cut operator. Constructs for tackling parts
of the programs are also provided. Nevertheless, their tactic language does not have
a recursion operator.

Their tactic language has a different style if compared with ArcAngel’s. At each
step of the tactic, the user defines the part of the program that is being refined, the
refinement law, and the structure of the resulting program. In ArcAngel, the user
must only define the refinement law and to which point of the program it applies.
The structure of the resulting program is contained in the law definition. Although
the former gives an easier-to-read tactic, the latter allows tactic programs that can
be implemented using parallel application of tactics. For instance, to implement
if t1 t2 fi , we can apply t1 and t2 in parallel.

Primitive refinement rules can also be defined using the same language. This
brings to the user the possibility to include new refinement laws in the system.
Nevertheless, it is improbable that new laws beyond those in Morgan’s refinement
calculus are needed in any development.

The Refinement Editor [33, 34] has an embedded tactic language. A fundamental
feature of the editor is a record of law applications in a program development, and its
reuse in later developments. The Refinement Editor is a multiple windows system
containing a main window for the overall development; a window for the refinement
of a sub-program; a window for the proof obligations; a window for the list of
available commands; and a window that displays the record of law applications. The
main window accepts commands and displays the transformations. The user can
save and load a development, cut and paste parts of a development, modify existing
law applications, and label segments of the development. The proof obligations can
be discharged using an theorem prover that needs to be provided by the user, but
may be invoked directly from the editor. The support for data refinement is still to
be done.

96

The record of law applications uses a tactic language similar to ArcAngel. It has
constructs for sequential composition and structural combinators. Nevertheless, the
Refinement Editor tactic language does not have operators for alternation, recursion
and backtracking. The tactic language also does not have a formal semantics. The
library of basic laws contains the laws of Morgan’s refinement calculus. This library
can be extended with user-defined laws. Their definitions use pre-defined laws and
must provide the provisos and the parameters of the laws. This brings advantages
and disadvantages as already discussed.

The Proxac system [31, 32] is a very general transformation editor. Its goal
is to support the application of a sequence of transformation steps based on alge-
braic rules of one or more theories. As such, Proxac supports both refinement by
calculation and theorem proving. Proxac offers a reduce option, which applies a pre-
defined set of transformations exhaustively. Some of the main functions are: apply
a rule (possibly with a hint to the system), delete the last step, and manipulate
expressions.

Its user-interface is based on windows, and uses mouse and keyboard for the
interaction with the user. By selecting the line to which the rule is going to be
applied, selecting a rule in the rules window, and pressing the a-key, the rule is
applied to the selected line. The editor attempts to match it against the left-hand
side or the right-hand side of the rule. If they do not match, then the editor proceeds
by attempting to match a sub-expression of the selected line. The system attempts
to verify the side conditions. If it fails, then the editor questions their validity. The
user must decide whether to proceed or not.

Proxac theories are organized in modules. A module has a name, and declares a
list of items. These items are declarations of identifiers, operators, imports of other
modules, and statements of a property or a rule. Those are written using a specific
language described in [31]. A transformation session occurs in the context of the
definitions in one or more modules. Proxac contains a module with all the laws of
Morgan’s refinement calculus, as well as modules with pre-defined operators and
properties.

Proxac does not have a tactic language, and also does not provide the reuse of
previous derivations. The user can only save the derivation to edit it later.

The aim of the tool presented in [12, 13] is to support more flexible styles of pro-
gram developments than the strict top-down. In particular, program construction
by incremental enhancement and program reuse is considered.

The tool has two windows: the program window, where the user can select
components of the program to be transformed by clicking and dragging with the
mouse; and the script window, which is divided in three parts. The center part
displays the refinement step that is currently being assembled or ready to be applied.
The top part contains the history of steps that have been applied (script). The
bottom part contains the steps that are available to be applied.

97

At each step of the derivation, the user can perform several operations on the
script window: insert a new refinement step; step backwards through previous steps;
jump to any earlier step; apply the next step from the script, possibly modifying
a step; delete the next step of a script; insert an existing script into the script
window; and apply remaining steps from the script automatically, until a step fails.
The modifications can be propagated to later steps in a script. Adaptations use
an editor which has only a query-replace facility. The refinement tool automati-
cally constructs a script describing the derivation. These derivation scripts can be
constructed, saved, copied, and edited.

The script language used to record the derivations is an easy to learn tactic lan-
guage also based in Prolog terms. Its only construct is the sequential composition.
It has the same style as [11]. We have not found in the literature a definition of the
script language formal semantics.

The tool also attempts to discharge proof obligations using a library of rewrite
rules. Nevertheless, the tool allows the derivations to proceed if it cannot discharge
the proof obligations. Data refinement rules are available. Procedures can be
introduced extracting a fragment of the script, inserting a corresponding procedure
declaration, and replacing the removed fragment by a procedure call.

In [4, 35, 36] the HOL System, a theorem-proving assistant that can be used
to formalize theories and verify proofs within these theories, is used in program
refinements. The user interacts with the HOL System through ML, a functional
programming language, making definitions and evaluating expressions. Definitions
and expressions are written in a combination of predicate calculus and typed lambda
calculus. All this requires quite an amount of ML programming.

Using this language, the user can program tactics that can be used in later
developments. The combinators available are THEN, a sequential composition;
REPEAT, which repeats a tactic as long as it is applicable; and ORELSE, which
tries a second tactic if the first one fails.

The formalization of the refinement concepts includes a theory of commands. A
number of algorithmic and data refinement rules have also been proved. The specifi-
cation language formalized is more restricted than the refinement calculus language
of Back and Wright [3]. For example, multiple assignments and recursion cannot
be expressed in this specification language. Beyond the sequential, assignment,
alternation, iteration commands, and variable and logical constants blocks, Back
and Wright refinement calculus language presents also non-deterministic assign-
ment (angelical and demonic), and inverse commands. Procedures and parameters
are not supported by their language, although their language can be extended to
support them.

In order to prove a refinement, the programmer must express the problem in
their formalization. The proof mainly consists of rewriting using basic definitions.

The Program Refinement Tool (PRT) [6] is built as an extension of the Ergo

98

theorem prover [5]. It supports a language similar to Morgan’s refinement calculus.
PRT uses the window inference proof paradigm, which is based on term rewrit-

ing [29]. In this paradigm, the proof is conducted with a stack of windows. Each
window has a focus, which is the expression to be transformed; a set of assumptions
from the context of the window; a relation between the focus and the expression
to which it is tranformed; and a theorem which relates the focus of the window to
that of the window that originated it (the parent window). In order to transform
a subexpression, the user opens a subwindow using special inference rules, called
window rules. This pushs a new window onto the stack of windows. When the
transformation of a window is finished, the user closes the window using a window
rule. This pops the window from the stack and uses its theorem to infer how to
transform the parent window.

The program window inference theory of PRT has support for dealing with
program variables, applying refinement rules, and managing the kind of context
that arises during refinement. This support includes a definition of the refinement
relation, the refinement rules, window opening and closing rules, a mechanism for
handling program variables and their substitution, a tactic support for applying and
instantiating refinement rules, and a proof interface. Using PRT, each refinement
step is an application of an instance of a theorem schema in the theory inserted in
the tool, with the meta variables instantiated to correspond to the current context.

The interface of PRT is a window divided in several frames. The most important
frames are the proof frame, which contains the panes that display the current state
of the refinement; the proof script frame, where the commands required to perform
the refinement are recorded; the rules frame, which controls the display and selection
of matching rules; and the help frame. To select a subterm of the proof or a law to
be applied, the user can point and click with the mouse. This opens a frame on the
subterm, the proof browser, or applies the selected rule to the highlighted term.

Some proof obligations are discharged using the Ergo window inference theory,
which includes logic, set theory, arithmetic, and structures such as sequences. The
remaining proof obligations are handled in one of three ways. The default is to
record them as conjectures, which must be discharged before closing the current
window. Another possibility is to record them as postulates in the theory, which
can be discharged later as separated proofs. Finally, they can be discharged as they
are generated. The theorem and its proof are stored and can be viewed subsequently
using the browser and applied in subsequent developments.

Tactics support is in the form of proof scripts written in a language based on
Prolog. It includes commands for all the rule applications and the proofs of their
side-conditions as sub-proofs. The user can copy, combine, and edit scripts. As
mentioned above, PRT records proof scripts as developments. We can also load a
script and replay it line by line to recreate the proof. We have not found a detailed
description of this language.

99

New refinement rules can be postulated and proved with the definition of re-
finement and the weakest precondition semantics of the program constructs used.
Application theories can be defined building upon an existing library that includes
first-order predicate logic, arithmetic, and set theory.

Jim Grundy [14] uses the HOL System to formalize a refinement support system.
Instead of formalizing the refinement calculus based on weakest pre-conditions, he
formalizes programs as predicates. This has a goal-oriented reasoning approach,
which is a popular method of proving theorems. However, this is not usual when
we are refining programs, since we do not know the final implementation of the
specification before finishing its refinement.

In his formalization, refinements preserve only partial correctness with respect
to a specification. This means that a program implements correctly a specification
if it stops. Otherwise, it may run indefinitely.

Specifications are written using logic, with a extension to support initial vari-
ables. The executable constructs are skip, multiple assignment, alternation, sequen-
tial composition, and recursion. These constructs and the support for initial vari-
ables are a syntactic sugaring of standard notations supplied by an user-interface.
The laws formalized in the system are skip introduction, assignment, alternation,
iteration, and sequential composition.

The user creates tactics as sets of commands that automate, or partially auto-
mate, common program refinement steps. Users can add these tactics in order to
use them in later developments.

5.3 Future Work

Generalizing the normal form to encompass the rest of the language is not trivial
and is still to be done. Recursion, abort, con, and applies to . . . do are still to be
inserted in the subset of ArcAngel that has a defined unique normal form. Moreover,
the simple approach for expression arguments must also be extended. These should
be evaluated before being used.

The automatic tactic generation from a program development in Refine is not
implemented in the current version of Gabriel. Besides, Gabriel does not implement a
subset of ArcAngel. This subset includes recursion (µ), con v • t , and the structural
combinators val , res , and val-res . The inclusion of the structural combinators
in Gabriel is very simple. However, the inclusion of recursion and con v • t , and
the automatic tactic generation needs more complex analysis and implementation.

Furthermore, in Gabriel tactics cannot be passed as argument. The implemen-
tation of tactics as arguments allows the implementation of some tactics which are
not yet implementable in Gabriel [25]. However, this needs a theoretical analysis
which is still to be done. Moreover, the functions tail , head ′, and seqToList , used

100

to define the tactic procCalls(Section 2.2.8) and the tactic procArgs(Section 2.2.9),
are not implemented in Gabriel. Their implementation makes it possible their use
in Gabriel and, consequently, the use of the tactic recProcArgs(Section 2.2.10). The
implementation of these functions in Gabriel is very simple.

Gabriel’s error messages in tactic applications do not express precisely the reasons
of the error. This happens to allow backtracking in these applications. In the
current implementation of Gabriel, if we display a tactic application failure, further
applications are not possible anymore. For this reason, when a tactic application in
Gabriel fails, an error message is given to the user indicating only that an error has
occurred. However, the reasons of the failure are not displayed. In order to give
the user some feedback about the application errors, an application log is generated
and indicated by the error message. Implementing a way to display the application
log is very simple and is left as future work.

The discharge of trivial proof obligations is not implemented in Refine. Using
an existing theorem-prover to discharge them is also required. Finally, generating a
LATEX document describing a program development and a tactic can also be inserted
in Refine and Gabriel, respectively.

101

Appendix A

ArcAngel’s Novel Constructs

Here, we distinguish the tactics of ArcAngel which are inherited from Angel and
the tactics of ArcAngel which are not defined in Angel. In the figure below, we
reproduce part of the syntax of ArcAngel and indicate on the right the constructs
that we already available in Angel.

tactic ::= law name args

| tactic name args

| skip | fail | abort [Angel′s Constructs]

| tactic; tactic | tactic | tactic [Angel′s Constructs]

| ! tactic | µ name • tactic [Angel′s Constructs]

| succs tactic | fails tactic [Angel′s Constructs]

| tactic ; tactic

| if tactic+ fi | do tactic+ od

| var tactic]] | con tactic]]

| pmain tactic]] | pmainvariant tactic]]

| pbody tactic]] | pbodyvariant tactic]]

| pbodymain tactic tactic]]

| pmainvariantbody tactic tactic]]

| val tactic | res tactic | val-res tactic

| parcommand tactic

| con v • tactic [Angel′s Construct]

| applies to program do tactic

Figure A.1: ArcAngel’s Novel Constructs

102

Appendix B

Infinite Lists

We present the model for infinite lists adopted here [19]. The set of the finite and
partial sequences of members of X is defined as

pfseq X ::= partial〈〈seq X 〉〉 | finite〈〈seq X 〉〉

We define an order � on these pairs such that for a, b : pfseq X , if a is finite, then
a � b if, and only if, b is also finite and equal to a. If a is partial, then a � b if,
and only if, a is a prefix of b.

� : pfseq X ↔ pfseq X

∀ gs , hs : seq X •
finite gs � finite hs ⇔ gs = hs
finite gs � partial hs ⇔ false
partial gs � finite hs ⇔ gs prefix hs
partial gs � partial hs ⇔ gs prefix hs

A chain of sequences is a set whose elements are pairwise related.

chain : P(P(pfseq X))

∀ c : P(pfseq X) • c ∈ chain ⇔ (∀ x , y : c • x � y ∨ y � x)

The set pchain contains all downward closed chains.

pchain : P chain[X]

∀ c : chain[X] • c ∈ pchain ⇔ (∀ x : c; y : pfseq X | y � x • y ∈ c)

The set pfiseq contains partial, finite, and infinite list of elements of X , which are

103

prefixed-closed chains of elements in pfseq X .

pfiseq X == pchain[X]

The idea is that ⊥ = partial 〈〉, the empty list [] = finite 〈〉, and the finite list
[e1, e2, . . . , en] is represented by the set containing finite 〈e1, e2, . . . , en〉 and all ap-
proximations to it. An infinite list is represented by an infinite set of partial ap-
proximations to it. The infinite list itself is the least upper bound of such a set.

The definitions of the functions used in this thesis are as follows.

1. The map function ∗ maps a function f to each element of a possibly infinite
list.

∗ : (X → Y) → pfiseq X → pfiseq Y

∀ c : pfiseq X ; f : X → Y •
f ∗ ⊥ = ⊥
f ∗ c = { x : c • pfmap f x }

The function pfmap maps the function f to the second element of x .

pfmap : (X → Y) → pfseq X → pfseq Y

∀ xs : seq X ; f : X → Y •
pfmap f (finite xs) = finite (f ◦ xs) ∧
pfmap f (partial xs) = partial (f ◦ xs)

2. The distributed concatenation returns the concatenation of all the elements
of a possibly infinite list of possibly infinite lists.

∞�/ : pfiseq(pfiseq X) → pfiseq X

∀ s : pfiseq(pfiseq X) •
∞�/ s =

⊔
∞{ c : s • ∞∧/ c }

It uses the function
∞∧/, which is the distributed concatenation for pfseq(pfiseq X).

104

The function cat is the standard concatenation function for X ∗.
∞∧/ : pfseq(pfiseq X) → pfiseq X
∞∧/(f , 〈〉) = ∅
∞∧/(p, 〈〉) = (p, 〈〉)
∞∧/(f , 〈g〉) = [g]
∞∧/(p, 〈g〉) = [g] ∧ {(p, 〈〉)}
∞∧/(f , gs � hs) = (

∞∧/(f , gs))
∞� (

∞∧/(f , hs))
∞∧/(f , gs � hs) = (

∞∧/(f , gs))
∞� (

∞∧/(p, hs))

The function
∞� is the concatenation function for possibly infinite lists. Its

definition is

∞� : pfiseq X × pfiseq X → pfiseq X

∀ a, b : pfiseq X •
a
∞� b = { x : a; y : b • x ∧ y }

where the function ∧ is the concatenation function for pfseq X defined as

∧ :: pfseq X × pfseq X → pfseq X

∀ gs , hs : seq X ; s : pfseq X •
finite gs ∧ finite hs = finite (gs � hs)
finite gs ∧ partial hs = partial(gs � hs)
partial gs ∧ s = partial gs

3. The function head ′ returns a list containing the first element of a possibly
infinite list.

head ′ : pfiseq X → pfiseq X

head ′ xs = take 1 xs

It uses the function take that returns a list containing the first n elements of
a possibly infinite list.

take : N → pfiseq X → pfiseq X

take n ⊥ = ⊥
take 0 xs = []
take n [] = []
take n xs = [head xs] � (take (n − 1) (tail xs))

For a list (x : xs), the function head returns x and the function tail returns xs .
For a pair (a, b), the function first returns a and the function second returns
b.

105

4. The function ◦ applies a possibly infinite list of functions to a single argument.

◦ : pfiseq(X �→ Y) → X → pfiseq Y

⊥◦ x = []
[]◦ x = []
[f]◦ x = [f x]
(fs � gs)◦ x = fs◦ x � gs◦ x

5. The function Π is the distributed cartesian product for possibly infinite lists.

Π : seq(pfiseq X) → pfiseq(seq X)

Π〈xs〉 = e2l ∗ xs
Π(xs : xss) = [(a : as) | a ← xs , as ← Π xss]
where
e2l x = [x]

106

Appendix C

Refinement Laws

We present the refinement laws of Morgan’s refinement calculus. For each law, we
present its name, the arguments used for its application, the transformation of the
program to which it is applied, and the provisos of its application.

Law strPost(post2).
w : [pre, post1] � w : [pre, post2]
provided post2 ⇒ post1

Law weakPre(pre2).
w : [pre1, post] � w : [pre2, post]
provided pre1 ⇒ pre2

Law assign(w := E).
w : [pre, post] � w := E
provided pre ⇒ post [w \ E]

Law simpleEspec().
w : [w = E] = w := E
provided E does not contain w

Law absAssump(). {pre ′}w : [pre, post] = w : [pre ′ ∧ pre, post]

Law skipIntro(). w , x : [pre, post] � skip provided w = w0 ∧ pre ⇒ post

Law seqComp(mid).
w : [pre, post] � w : [pre,mid]; w : [mid , post]
provided mid and post have no free initial variables.

Law skipComp().
For any program p
skip; p = p; skip = p

Law fassign(x := E).
w , x : [pre, post] � w , x : [pre, post [x \ E]]; x := E

107

Law alt(〈G0, ...,Gn〉). w : [pre, post] � if (? i .Gi → w : [Gi ∧ pre, post]) fi
provided pre ⇒ G0 ∨ ... ∨ Gn

Law altGuards(〈H0, ...,Hn〉).
Let GG = G0 ∨ . . . ∨ Gn and HH = H0 ∨ . . . ∨ Hn .
if (? i .Gi → w : [Gi ∧ pre, post]) fi �

if (? i .Hi → w : [Hi ∧ pre, post]) fi
provided GG ⇒ HH and for each i, GG ⇒ (Hi ⇒ Gi)

Law strPostIV (post2).
w : [pre, post1] � w : [pre, post2]
provided pre[w \ w0] ∧ post2 ⇒ post1

Law assignIV (w := E).
w , x : [pre, post] � w := E
provided (w = w0) ∧ pre ⇒ post [w \ E]

Law skipIntroIV ().
w : [pre, post] � skip
provided (w = w0) ∧ pre ⇒ post

Law contractFrame(x).
w , x : [pre, post] � w : [pre, post [x0 \ x]]

Law iter(〈G1, ...,Gn〉,V). For any formulae inv , the invariant; and any
integer expression V , the variant, w : [pre, post] �

do (? i .Gi → w : [inv ∧ Gi , inv ∧ 0 ≤ V ≤ V [w \ w0]]) od

Law varInt(n : T).
w : [pre, post] � [[var x : T • w , x : [pre, post]]]
provided x does not occurs in w , pre, and post .

Law conInt(c : T , pre ′).
w : [pre, post] � [[con c : T • w : [pre ′, post]]]
provided pre ⇒ (∃ c : T • pre ′) and c does not occurs in w , pre and post .

Law fixInitValue(c : T ,E).
For any term E
w : [pre, post] � [[con c : T • w : [pre ∧ c = E , post]]]
provided pre ⇒ E ∈ T and c is a new name.

Law removeCon(x).
[[con c : T • p]] � p
provided c does not occur in p.

Law expandFrame(x).
w : [pre, post] � w , x : [pre, post ∧ x = x0]

108

Law seqCompCon(mid ,X , x).
w , x : [pre, post] �

[[con X • x : [pre,mid]; w , x : [mid [x0 \ X], post [x0 \ X]]
provided mid does not contain other initial variables beyond x0.

Law seqCompIV (mid , x).
w , x : [pre, post] � x : [pre,mid] ; w , x : [mid , post]
provided mid does not contain any initial variables and post does not
contain x0.

Law procNoArgsIntro(pn, p1). p2 = [[proc pn = p1 • p2]]
provided pn is not free in p2

Law procNoArgsCall(). [[proc pn = p1 • p2[p1]]] = [[proc pn = p1 • p2[pn]]]

Law procArgsIntro(pn, p1, par). p2 = [[proc pn = (par • p1) • p2]]
provided pn is not free in p2

Law procArgsCall().
[[proc pn =

(par • p1) • p2[(par • p1)(a)]]] = [[proc pn = (par • p1) • p2[pn(a)]]]

Law callByValue(f , a).
w : [pre[f \ a], post [f , f0 \ a, a0]] =

(val f • w : [pre, post])(a)
provided f is not in w and w is not free in a

Law callByValueIV (f , a).
w : [pre[f \ a], post [f0 \ a0]] =

(val f • w , f : [pre, post])(a)
provided f is not in w and w is not free in post

Law callByResult(f , a). w , a : [pre, post] = (res f • w , f : [pre, post [a \ f]])(a)
provided f is not in w , and is not free in pre or post and, f0 is not free in
post

Law multiArgs(). (par1 f1 • (par2 f2)(a2))(a1) = (par1 f1; par2 f2)(a1, a2)

Law callByValueResult(f , a).
w , a : [pre[f \ a], post [f0 \ a0]] = (val-res f • w , f : [pre, post [a \ f]])(a)
provided f is not in w , and is not free in post

Law variantIntro(pr , p1, n, e, pars).
p2 = [[proc pr = (par • w : [n = e ∧ pre, post]) variant n is e • p2]]
provided pr and n are not free in e and p2

109

Law procVariantBlockCall().
[[proc pr = (par • p1) variant n is e • p2[(par • p3)(a)]]]

= [[proc pr = (par • p1) variant n is e • p2[(pr)(a)]]]
provided pr is not recursive, n is not free in e and p3, and {n = e}p3 � p1

law recursiveCall().
[[proc pr = (par • p1[(par • {0 ≤ e < n}p3)(a)]) variant n is e • p2]]

= [[proc pr = (par • p1[pr(a)]) variant n is e • p2]]
provided n is not free in p3 and

p1[pr(a)], and {n = e}p3 � p1[(par • {0 ≤ e < n}p3)(a)]

Law variantNoArgsIntro(pr , p1, n, e).
p2 = [[proc pr = w : [n = e ∧ pre, post] variant n is e • p2]]
provided pr and n are not free in e and p2

Law procVariantBlockCallNoArgs().
[[proc pr = w : [n = e ∧ pre, post]) variant n is e • p2[w : [pre, post]]]]

� [[proc pr = w : [n = e ∧ pre, post] variant n is e • p2[pr]]]
provided nm is not recursive, n is not free in e and w : [pre, post].

Law recursiveCallNoArgs().
[[proc pr = p1[w : [0 ≤ e < n ∧ pre, post]] variant n is e • p2]]

� [[proc pr = p1[pr(a)] variant n is e • p2]]
provided n is not free in w : [pre, post] and p1[pr] and

w : [n = e ∧ pre, post] � p1.

Law coercion(). [post] = : [true, post]
provided post does not contain any initial variables.

Law absCoercion(). w : [pre, post]; [post ′] = w : [pre, post ∧ post ′]

Law intCoercion(). skip � [post]

110

Appendix D

Proofs of the Laws

In this Appendix we prove the laws presented in this thesis. The laws marked with
* are not valid with infinite lists and are proved only for finite lists. The lemmas
used are presented and proved in the Appendix D.6.

D.1 Basic properties of composition

Law 1(a). skip ; t = t

[[skip; t]]ΓL ΓT r
=

∞�/ • ([[t]]ΓL ΓT)∗ • [[skip]]ΓL ΓT r [Definition of ;]
=

∞�/(([[t]]ΓL ΓT) ∗ ([[skip]]ΓL ΓT r)) [Functional Composition]
=

∞�/(([[t]]ΓL ΓT) ∗ [r]) [Definition of skip]
=

∞�/[[[t]]ΓL ΓT r] [Definition of ∗]
= [[t]]ΓL ΓT r [Property of

∞�/]

Law 1(b). t = skip; t

[[skip; t]]ΓL ΓT r
=

∞�/ • ([[t]]ΓL ΓT)∗ • [[skip]]ΓL ΓT r [Definition of ;]
=

∞�/([[t]]ΓL ΓT) ∗ (([[skip]]ΓL ΓT r)) [Functional Composition]
=

∞�/([[t]]ΓL ΓT) ∗ [r] [Definition of skip]
=

∞�/[[[t]]ΓL ΓT r] [Definition of ∗]
= [[t]]ΓL ΓT r [Property of

∞�/]

111

Law 2(a). t | fail = t

[[t | fail]]ΓL ΓT r
= (

∞�/[([[t]]ΓL ΓT), ([[fail]]ΓL ΓT)]◦) r [Definition of |]
=

∞�/[[[t]]ΓL ΓT r , [[fail]]ΓL ΓT r] [Definition of ◦]
[Functional Composition]

=
∞�/[[[t]]ΓL ΓT r , []] [Definition of fail]

=
⊔

∞{c : [[[t]]ΓL ΓT r , []] • ∞∧/ c} [Definition of
∞�/]

=
⊔

∞{
∞∧/(f , < [[t]]ΓL ΓT r , [] >)} [Sets theory]

=
⊔

∞{
∞∧/(f , < [[t]]ΓL ΓT r >

∞� ∞∧/(f , < [] >)} [Definition of
∞�/]

=
⊔

∞{[[t]]ΓL ΓT r
∞� []} [Definition of

∞�/]

=
⊔

∞{{x : [[t]]ΓL ΓT r ; y : [] • x ∧ y}} [Definition of
∞�]

=
⊔

∞{{x : [[t]]ΓL ΓT r • x ∧ (f , <>)}} [Definition of []]

=
⊔

∞{{(s , l) : [[t]]ΓL ΓT r • (s , l)� <>)}} [Definition of ∧]

=
⊔

∞{{(s , l) : [[t]]ΓL ΓT r • (s , l)}} [Definition of �]

=
⊔

∞{[[t]]ΓL ΓT r} [Set theory]

=
⋃

([[t]]ΓL ΓT r) [Definition of
⊔

∞]

= [[t]]ΓL ΓT r [Definition of
⋃

]

Law 2(b). t = fail | t
([[t]]ΓL ΓT) r

=
⋃

([[t]]ΓL ΓT r) [Definition of
⋃

]

=
⊔

∞{[[t]]ΓL ΓT r} [Definition of
⊔

∞]

=
⊔

∞{{(s , l) : [[t]]ΓL ΓT r • (s , l)}} [Set theory]

=
⊔

∞{{(s , l) : [[t]]ΓL ΓT r •<>
∞� (s , l))}} [Definition of cat]

=
⊔

∞{{x : [[t]]ΓL ΓT r • (f , <>) ∧ x}} [Definition of ∧]

=
⊔

∞{{x : [[t]]ΓL ΓT r ; y : [] • y ∧ x}} [Definition of []]

=
⊔

∞{[]
∞� [[t]]ΓL ΓT r} [Definition of ∧]

=
⊔

∞{
∞∧/(f , < [] >)

∞� ∞∧/(f , < [[t]]ΓL ΓT r >)} [Definition of
∞�/]

=
⊔

∞{
∞∧/(f , < []

∞� [[t]]ΓL ΓT r)} [Definition of
∞�/]

=
⊔

∞{c : [[], [[t]]ΓL ΓT r] • ∞∧/ c} [Set theory]

=
∞�/[[], ([[t]]ΓL ΓT) r] [Definition of

∞�/]
=

∞�/[([[fail]]ΓL ΓT) r , ([[t]]ΓL ΓT) r] [Definition of fail]
=

∞�/[([[fail]]ΓL ΓT), ([[t]]ΓL ΓT)]◦ r [Definition of ◦]
= [[fail | t]]ΓL ΓT r [Definition of |]

112

Law 3(a)∗. t ; fail = fail

[[t ; fail]]ΓL ΓT r
=

∞�/ • ([[fail]]ΓL ΓT)∗ • ([[t]]ΓL ΓT) r [Definition of ;]
=

∞�/([[fail]]ΓL ΓT) ∗ ([[t]]ΓL ΓT r) [Functional Composition]
=

∞�/[[]]length([[t]]ΓL ΓT r) [Definition of fail and ∗]

where

[lst]0 = []
[lst]n = [lst]

∞� ([lst]n−1)

As ([[t]]ΓL ΓT) r is a finite list, we follow as

= [] [Definition of
∞�/]

= ([[fail]]ΓL ΓT) r [Definition of fail]

Law 3(b). fail = t ; fail

[[fail]]ΓL ΓT r = [] [Definition of fail]
=

∞�/[] [Property of
∞�/]

=
∞�/([[fail]]ΓL ΓT) ∗ [] [Definition of ∗]

=
∞�/ • ([[fail]]ΓL ΓT)∗ • ([[fail]]ΓL ΓT) r [Definition of fail]

= [[t ; fail]]ΓL ΓT r [Definition of ;]

Law 4. t1 | (t2 | t3) = (t1 | t2) | t3
[[t1 | (t2 | t3)]]ΓL ΓT r
=

∞�/[[[t1]]ΓL ΓT , [[(t2 | t3)]]ΓL ΓT]◦ r [Definition of |]
[Functional Composition]

= ([[t1]]ΓL ΓT r)
∞� ([[(t2 | t3)]]ΓL ΓT r) [Lemma D.6.17]

= ([[t1]]ΓL ΓT r)
∞� (

∞�/([[[t2]]ΓL ΓT , [[t3]]ΓL ΓT]◦ r)) [Definition of |]
[Functional Composition]

= ([[t1]]ΓL ΓT r)
∞� (([[t2]]ΓL ΓT r)

∞� ([[t3]]ΓL ΓT r)) [Lemma D.6.17]
= (([[t1]]ΓL ΓT r)

∞� ([[t2]]ΓL ΓT r))
∞� ([[t3]]ΓL ΓT r) [Lemma D.6.24]

= (
∞�/[([[t1]]ΓL ΓT), ([[t2]]ΓL ΓT)]◦ r)

∞� ([[t3]]ΓL ΓT r) [Definition of
∞�/ and ◦]

= ([[t1 | t2]]ΓL ΓT r)
∞� ([[t3]]ΓL ΓT r) [Definition of |]

[Functional Composition]
=

∞�/[[[t1 | t2]]ΓL ΓT , [[t3]]ΓL ΓT]◦ r [Definition of
∞�/ and ◦]

= [[(t1 | t2) | t3]]ΓL ΓT r [Definition of |]

113

Law 5. t1; (t2; t3) = (t1; t2); t3

([[t1; (t2; t3)]]ΓL ΓT))
=

∞�/ • ([[t3]]ΓL ΓT)∗ • ([[(t1; t2)]]ΓL ΓT) [Definition of ;]
=

∞�/ • ([[t3]]ΓL ΓT)∗ • (
∞�/ • ([[t2]]ΓL ΓT)∗ • ([[t1]]ΓL ΓT)) [Definition of ;]

=
∞�/ • ([[t3]]ΓL ΓT)∗ • ∞�/ • ([[t2]]ΓL ΓT)∗ • ([[t1]]ΓL ΓT) [Property of •]

=
∞�/ • ∞�/ • ([[t3]]ΓL ΓT) ∗ ∗ • ([[t2]]ΓL ΓT)∗ • ([[t1]]ΓL ΓT) [Lemma D.6.2]

=
∞�/ • ∞�/ ∗ • ([[t3]]ΓL ΓT) ∗ ∗ • ([[t2]]ΓL ΓT)∗ • ([[t1]]ΓL ΓT) [Lemma D.6.3]

=
∞�/ • (

∞�/ • ([[t3]]ΓL ΓT)∗ • ([[t2]]ΓL ΓT))∗ • ([[t1]]ΓL ΓT) [Property of • and ∗]
=

∞�/ • (([[t2]]ΓL ΓT); ([[t3]]ΓL ΓT))∗ • ([[t1]]ΓL ΓT) [Definition of ;]
= ([[t1; (t2; t3)]]ΓL ΓT) [Definition of ;]

Law 6. (t1 | t2); t3 = (t1; t3) | (t2; t3)

[[(t1 | t2); t3]]ΓL ΓT r
=

∞�/ • ([[t3]]ΓL ΓT)∗ • [[(t1 | t2)]]ΓL ΓT r [Definition of ;]
=

∞�/ • ([[t3]]ΓL ΓT)∗ • ∞�/ • [[[t1]]ΓL ΓT , [[t2]]ΓL ΓT]◦ r [Definition of |]
=

∞�/ • ([[t3]]ΓL ΓT)∗ • ∞�/[[[t1]]ΓL ΓT r , [[t2]]ΓL ΓT r] [Definition of ◦]
=

∞�/ • ([[t3]]ΓL ΓT)∗ • ([[t1]]ΓL ΓT r)
∞� ([[t2]]ΓL ΓT r) [Definition of

∞�/]
= (

∞�/ • (([[t3]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r))
∞� (

∞�/ • (([[t3]]ΓL ΓT)∗ • [[t2]]ΓL ΓT) r)
[Lemma D.6.19]

= ([[(t1; t3)]]ΓL ΓT) r
∞� ([[(t2; t3)]]ΓL ΓT) r [Definition of ;]

=
∞�/ • [[[(t1; t3)]]ΓL ΓT , [[(t2; t3)]]ΓL ΓT]◦ r [Definition of

∞�/ and ◦]
= [[(t1; t3) | (t2; t3)]]ΓL ΓT r [Definition of |]

Law 6′. (|
i :I

ti); t3 = (|
i :I

ti ; t3)

[[(|
i :I

ti); t3]]ΓL ΓT r

=
∞�/ • ([[t3]]ΓL ΓT)∗ • [[(|

i :I
ti)]]ΓL ΓT r [Definition of ;]

=
∞�/ • ([[t3]]ΓL ΓT)∗ • ∞�/ • [[[t1]]ΓL ΓT , . . . , [[tn]]ΓL ΓT]◦ r [Definition of |]

=
∞�/ • ([[t3]]ΓL ΓT)∗ • ∞�/[[[t1]]ΓL ΓT r , . . . , [[tn]]ΓL ΓT r] [Definition of ◦]

=
∞�/ • ([[t3]]ΓL ΓT)∗ • ([[t1]]ΓL ΓT r)

∞� . . .
∞� ([[t2]]ΓL ΓT r) [Definition of

∞�/]
= (

∞�/ • (([[t3]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r))
∞� . . .

∞� (
∞�/ • (([[t3]]ΓL ΓT)∗ • [[tn]]ΓL ΓT) r)

[Lemma D.6.19]
= ([[(t1; t3)]]ΓL ΓT) r

∞� . . .
∞� ([[(tn ; t3)]]ΓL ΓT) r [Definition of ;]

=
∞�/ • [[[(t1; t3)]]ΓL ΓT , . . . , [[(tn ; t3)]]ΓL ΓT]◦ r [Definition of

∞�/ and ◦]
= [[(|

i :I
ti ; t3)]]ΓL ΓT r [Definition of |]

114

Law 7. t1; (t2 | t3) = (t1; t2) | (t1; t3) for any sequential tactic.

[[t1; (t2 | t3)]]ΓL ΓT r
=

∞�/ • ([[t2 | t3]]ΓL ΓT)∗ • ([[t1]]ΓL ΓT r) [Definition of ;]
=

∞�/ • (
∞�/ • [[[t2]]ΓL ΓT , [[t3]]ΓL ΓT]◦)∗ • [[t1]]ΓL ΓT r [Definition of !]

=
∞�/[

∞�/ • ([[t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r ,
∞�/ • ([[t3]]ΓL ΓT)∗ • ([[t1]]ΓL ΓT r)]

[Definition of ◦ and ∗]
[Property of ∗]

=
∞�/ • [[[t1; t2]]ΓL ΓT r , [[t1; t3]]ΓL ΓT r] [Definition of ;]

=
∞�/ • [[[t1; t2]]ΓL ΓT , [[t1; t3]]ΓL ΓT]◦ r [Definition of ◦]

= [[(t1; t2) | (t1; t3)]]ΓL ΓT r [Definition of !]

Law 7′. t1; (|
i :I

ti) = (|
i :I

t1; ti) for any sequential tactic.

[[t1; (|
i :I

ti)]]ΓL ΓT r

=
∞�/ • ([[(|

i :I
ti)]]ΓL ΓT)∗ • ([[t1]]ΓL ΓT r) [Definition of ;]

=
∞�/ • (

∞�/ • [[[t2]]ΓL ΓT , . . . , [[tn]]ΓL ΓT]◦)∗ • [[t1]]ΓL ΓT r [Definition of !]
=

∞�/[
∞�/ • ([[t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r , . . . ,

∞�/ • ([[tn]]ΓL ΓT)∗ • ([[t1]]ΓL ΓT r)]
[Definition of ◦ and ∗]
[Property of ∗]

=
∞�/ • [[[t1; t2]]ΓL ΓT r , . . . , [[t1; tn]]ΓL ΓT r] [Definition of ;]

=
∞�/ • [[[t1; t2]]ΓL ΓT , . . . , [[t1; tn]]ΓL ΓT]◦ r [Definition of ◦]

= [[(|
i :I

t1; ti)]]ΓL ΓT r [Definition of !]

D.2 Laws involving Cut

Law 8. !skip = skip

[[!skip]]ΓL ΓT r
= head ′ • [[skip]]ΓL ΓT r [Definition of !]
= head ′[r] [Definition of skip]
= [r] [Definition of head ′]
= [[skip]]ΓL ΓT r [Definition of skip]

115

Law 9. !fail = fail

[[!fail]]ΓL ΓT r
= head ′ • [[fail]]ΓL ΓT r [Definition of !]
= head ′[] [Definition of fail]
= [] [Definition of head ′]
= [[fail]]ΓL ΓT r [Definition of fail]

Law 10. !(law l (args)) = law l (args)

[[! law l (args)]]ΓL ΓT r
= head ′ • ([[law l (args)]]ΓL ΓT r) [Definition of !]
= head ′([[law l (args)]]ΓL ΓT r) [Functional Composition]
= [[law l (args)]]ΓL ΓT r [Lemma D.6.20]

[Definition of head ′]

Law 11. !t1; (t2 | t3) = (!t1; t2) | (!t1; t3)

[[!t1; (t2 | t3)]]ΓL ΓT r
= ([[(t2 | t3)]]ΓL ΓT)∗ • [[!t1]]ΓL ΓT r [Definition of ;]
= (

∞�/ • [[[t2]]ΓL ΓT , [[t3]]ΓL ΓT]◦)∗ • [[!t1]]ΓL ΓT r [Definition of |]
= (

∞�/ • ([[t2]]ΓL ΓT) ∗ ([[!t1]]ΓL ΓT r)
∞� ([[t3]]ΓL ΓT) ∗ ([[!t1]]ΓL ΓT r)

[Definition of ◦ and ∗]
= (

∞�/ • ([[t2]]ΓL ΓT) ∗ ([[!t1]]ΓL ΓT r))
∞� (

∞�/ • ([[t3]]ΓL ΓT) ∗ ([[!t1]]ΓL ΓT r))
[Lemma D.6.5]

= ([[!t1; t2]]ΓL ΓT)
∞� ([[!t1; t3]]ΓL ΓT r) [Definition of ;]

=
∞�/ • [[[!t1; t2]]ΓL ΓT , [[!t1; t3]]ΓL ΓT]◦ r [Definition of

∞�/ and ◦]
= [[(!t1; t2) | (!t1; t3)]]ΓL ΓT r [Definition of |]

Law 11′. !t1; (|
i :I

ti) = |
i :i

t1; ti

[[!t1; (|
i :I

ti)]]ΓL ΓT r

= ([[(|
i :I

ti)]]ΓL ΓT)∗ • [[!t1]]ΓL ΓT r [Definition of ;]
= (

∞�/ • [[[t2]]ΓL ΓT , . . . , [[tn]]ΓL ΓT]◦)∗ • [[!t1]]ΓL ΓT r [Definition of |]

116

= (
∞�/ • ([[t2]]ΓL ΓT) ∗ ([[!t1]]ΓL ΓT r)

∞� . . .
∞� ([[tn]]ΓL ΓT) ∗ ([[!t1]]ΓL ΓT r)

[Definition of ◦ and ∗]
= (

∞�/ • ([[t2]]ΓL ΓT) ∗ ([[!t1]]ΓL ΓT r))
∞� . . .

∞� (
∞�/ • ([[tn]]ΓL ΓT) ∗ ([[!t1]]ΓL ΓT r))

[Lemma D.6.5]
= ([[!t1; t2]]ΓL ΓT)

∞� . . .
∞� ([[!t1; tn]]ΓL ΓT r) [Definition of ;]

=
∞�/ • [[[!t1; t2]]ΓL ΓT , . . . , [[!t1; tn]]ΓL ΓT]◦ r [Definition of

∞�/ and ◦]
= |

i :i
t1; ti]]ΓL ΓT r [Definition of |]

Law 12. !t1; !t2 =!(!t1; !t2)

[[!t1; !t2]]ΓL ΓT r
=

∞�/ • ([[!t2]]ΓL ΓT)∗ • [[!t1]]ΓL ΓT r [Definition of ;]
=

∞�/ • ([[!t2]]ΓL ΓT)∗ • head ′([[t1]]ΓL ΓT r) [Definition of !]
=

∞�/ • ([[!t2]]ΓL ΓT) ∗ [head ([[t1]]ΓL ΓT r)] [Definition of head ′]
=

∞�/ • ([[!t2]]ΓL ΓT) head ([[t1]]ΓL ΓT r) [Definition of ∗]
=

∞�/ • head ′(([[t2]]ΓL ΓT) head ([[t1]]ΓL ΓT r)) [Definition of !]
=

∞�/ • [head (([[t2]]ΓL ΓT) head ([[t1]]ΓL ΓT r))] [Definition of head ′]
= [head (([[t2]]ΓL ΓT) head ([[t1]]ΓL ΓT r))] [Definition of

∞�/]
= [head ([head (([[t2]]ΓL ΓT) head ([[t1]]ΓL ΓT r))])] [Definition of take]
= head ′([head (([[t2]]ΓL ΓT) head ([[t1]]ΓL ΓT r))]) [Definition of head ′]
= head ′(∞�/[head (([[t2]]ΓL ΓT) head ([[t1]]ΓL ΓT r))]) [Definition of

∞�/]
= head ′(∞�/ • head ′(([[t2]]ΓL ΓT) head ([[t1]]ΓL ΓT r))) [Definition of head ′]
= head ′(∞�/ • ([[!t2]]ΓL ΓT) head ([[t1]]ΓL ΓT r)) [Definition of !]
= head ′(∞�/ • ([[!t2]]ΓL ΓT)∗ • [head ([[t1]]ΓL ΓT r)]) [Definition of ∗]
= head ′(∞�/ • ([[!t2]]ΓL ΓT)∗ • head ′(([[t1]]ΓL ΓT r)) [Definition of head ′]
= head ′(∞�/ • ([[!t2]]ΓL ΓT)∗ • ([[!t1]]ΓL ΓT r) [Definition of !]
= head ′([[(!t1; !t2)]]ΓL ΓT r) [Definition of ;]
= [[!(!t1; !t2)]]ΓL ΓT r [Definition of !]

117

Law 13. !(t1; t2) =!(t1; !t2)

[[!(t1; t2)]]ΓL ΓT r
= head ′([[t1; t2]]ΓL ΓT r) [Definition of !]
= head ′(∞�/ • ([[t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r) [Definition of ;]
= [head(

∞�/ • ([[t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r)] [Definition of head ′]
=]head([head(([[t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r)])] [Definition of

∞�/]
= head ′([head(([[t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r)]) [Definition of head ′]
= head ′(∞�/ • [head(([[t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r)]) [Definition of

∞�/]
= head ′(∞�/ • head ′ • ([[t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r) [Definition of head ′]
= head ′(∞�/ • ([[!t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r) [Definition of !]
= head ′([[t1; !t2]]ΓL ΓT r) [Definition of ;]
= [[!(t1; !t2)]]ΓL ΓT r [Definition of !]

Law 14(a). !(t1 | t2) =!(!t1 | t2)
[[!(t1 | t2)]]ΓL ΓT r
= head ′([[t1 | t2]]ΓL ΓT r) [Definition of !]
= head ′(∞�/ • [[[t1]]ΓL ΓT , [[t2]]ΓL ΓT]◦ r) [Definition of !]
= head ′(∞�/[[[t1]]ΓL ΓT r , [[t2]]ΓL ΓT r] [Definition of ◦]
= head ′(([[t1]]ΓL ΓT r)

∞� ([[t2]]ΓL ΓT r)) [Definition of
∞�/]

= [head (([[t1]]ΓL ΓT r)
∞� ([[t2]]ΓL ΓT r))] [Definition of head ′]

Case [[t1]]ΓL ΓT r = []

= [head ([[t2]]ΓL ΓT r)] [Definition of
∞�]

= [head ((head ′([[t1]]ΓL ΓT r))
∞� [[t2]]ΓL ΓT r)] [Definition of head ′,∞�]

[Assumption]
= head ′(∞�/[head ′([[t1]]ΓL ΓT r), [[t2]]ΓL ΓT r]) [Definition of

∞�/]
= head ′(∞�/[head ′([[t1]]ΓL ΓT), [[t2]]ΓL ΓT]◦ r) [Definition of ◦]
= [[!(!t1 | t2)]]ΓL ΓT [Definition of !, |]

Case [[t1]]ΓL ΓT r �= []

= [head ([head ([[t1]]ΓL ΓT r)]
∞� ([[t2]]ΓL ΓT r))] [Lemma D.6.22]

= head ′([head ([[t1]]ΓL ΓT r)]
∞� ([[t2]]ΓL ΓT r)) [Definition of head ′]

= head ′(∞�/[[head([[t1]]ΓL ΓT r)], [[t2]]ΓL ΓT r]) [Definition of
∞�/]

= head ′(∞�/[head ′([[t1]]ΓL ΓT) r , [[t2]]ΓL ΓT r]) [Definition of head ′]
= head ′(∞�/[[[!t1]]ΓL ΓT r , [[t2]]ΓL ΓT r]) [Definition of !]
= head ′(∞�/ • [[[!t1]]ΓL ΓT , [[t2]]ΓL ΓT]◦ r) [Definition of ◦]
= head ′([[!t1 | t2]]ΓL ΓT r) [Definition of !]
= [[!(!t1 | t2)]]ΓL ΓT [Definition of !]

118

Law 14(b). !(t1 | t2) =!(t1 |!t2)
[[!(t1 | t2)]]ΓL ΓT r
= head ′([[t1 | t2]]ΓL ΓT r) [Definition of !]
= head ′(∞�/ • [[[t1]]ΓL ΓT , [[t2]]ΓL ΓT]◦ r) [Definition of !]
= head ′(∞�/[[[t1]]ΓL ΓT r , [[t2]]ΓL ΓT r] [Definition of ◦]
= head ′(([[t1]]ΓL ΓT r)

∞� ([[t2]]ΓL ΓT r)) [Definition of
∞�/]

= [head(([[t1]]ΓL ΓT r)
∞� ([[t2]]ΓL ΓT r))] [Definition of head ′]

Case [[t2]]ΓL ΓT r = []

= [head ([[t1]]ΓL ΓT r)] [Definition of
∞�]

= [head (([[t1]]ΓL ΓT r)
∞� head ′([[t2]]ΓL ΓT r))] [Definition of head ′,∞�]

[Assumption]
= head ′(∞�/[[[t1]]ΓL ΓT r , head ′([[t2]]ΓL ΓT r)]) [Definition of

∞�/]
= head ′(∞�/[[[t1]]ΓL ΓT , head ′([[t2]]ΓL ΓT)]◦ r) [Definition of ◦]
= [[!(!t1 | t2)]]ΓL ΓT [Definition of !, |]

Case [[t2]]ΓL ΓT r �= []

= [head(([[t1]]ΓL ΓT r)
∞� [head ([[t2]]ΓL ΓT r)])] [Lemma D.6.23]

= head ′(([[t1]]ΓL ΓT r)
∞� [head ([[t2]]ΓL ΓT r)]) [Definition of head ′]

= head ′(∞�/[([[t1]]ΓL ΓT r), [head ([[t2]]ΓL ΓT r)]]) [Definition of
∞�/]

= head ′(∞�/[([[t1]]ΓL ΓT r), head ′([[t2]]ΓL ΓT r)]) [Definition of head ′]
= head ′(∞�/[[[t1]]ΓL ΓT r , [[!t2]]ΓL ΓT r]) [Definition of !]
= head ′(∞�/ • [([[t1]]ΓL ΓT), ([[!t2]]ΓL ΓT)]◦ r) [Definition of ◦]
= head ′([[t1 |!t2]]ΓL ΓT r) [Definition of !]
= [[!(t1 |!t2)]]ΓL ΓT r [Definition of !]

Law 15. !(t1 | t1; t2) =!t1

[[!(t1 | t1; t2)]]ΓL ΓT r
= head ′([[t1 | t1; t2]]ΓL ΓT r) [Definition of !]
= head ′(∞�/ • [[[t1]]ΓL ΓT , [[t1; t2]]ΓL ΓT]◦ r) [Definition of |]
= head ′(∞�/ • [[[t1]]ΓL ΓT ,

∞�/ • ([[t2]]ΓL ΓT)∗ • ([[t1]]ΓL ΓT)]◦ r)
[Definition of ;]

= head ′(∞�/[[[t1]]ΓL ΓT r ,
∞�/ • ([[t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r]) [Definition of ◦]

[Functional Composition]
= head ′(([[t1]]ΓL ΓT) r

∞� (
∞�/ • ([[t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT r)) [Definition of

∞�/]
= head ′([[t1]]ΓL ΓT r) [Lemma D.6.6]
= [[!t1]]ΓL ΓT r [Definition of !]

119

Law 16. !(t1 | t2 | t1) =!(t1 | t2)

[[!(t1 | t2 | t1)]]ΓL ΓT r
= head ′([[(t1 | t2 | t1)]]ΓL ΓT) r [Definition of !]
= head ′(∞�/ • [[[t1 | t2]]ΓL ΓT , [[t1]]ΓL ΓT]◦ r) [Definition of |]
= head ′(∞�/[(

∞�/ • [[[t1]]ΓL ΓT , [[t2]]ΓL ΓT]◦), ([[t1]]ΓL ΓT)]◦ r)
[Definition of |]

= head ′(∞�/[(
∞�/[([[t1]]ΓL ΓT), ([[t2]]ΓL ΓT)]◦) r , [[t1]]ΓL ΓT r])

[Definition of ◦]
= head ′(∞�/[(

∞�/ • [[[t1]]ΓL ΓT r , [[t2]]ΓL ΓT r]), [[t1]]ΓL ΓT r])
[Definition of ◦]

= head ′(∞�/ • [[[t1]]ΓL ΓT r
∞� [[t2]]ΓL ΓT r , [[t1]]ΓL ΓT r]) [Definition of

∞�/]
= head ′([[t1]]ΓL ΓT r

∞� [[t2]]ΓL ΓT r
∞� [[t1]]ΓL ΓT r) [Definition of

∞�/]
= head ′(∞�/[[[t1]]ΓL ΓT r , [[t2]]ΓL ΓT r]) [Lemma D.6.7]
= head ′(∞�/[[[t1]]ΓL ΓT , [[t2]]ΓL ΓT]◦ r) [Definition of ◦]
= head ′([[t1 | t2]]ΓL ΓT r) [Definition of |]
= [[!(t1 | t2)]]ΓL ΓT r [Definition of !]

Law 17. !(skip | t) = skip

[[!(skip | t)]]ΓL ΓT r
= head ′([[(skip | t)]]ΓL ΓT r) [Definition of !]
= head ′(∞�/ • [[[skip]]ΓL ΓT , [[t]]ΓL ΓT]◦ r) [Definition of |]
= head ′(∞�/[[[skip]]ΓL ΓT r , [[t]]ΓL ΓT r]) [Definition of ◦]

[Functional Composition]
= head ′(∞�/[[r], [[t]]ΓL ΓT r]) [Definition of skip]
= head ′([r]

∞� [[t]]ΓL ΓT r) [Definition of
∞�/]

= [head([r]
∞� [[t]]ΓL ΓT r])] [Definition of head ′]

= [r] [Definition of head]
= [[skip]]ΓL ΓT r [Definition of skip]

Law 18. !(t | t) =!t

[[!(t | t)]]ΓL ΓT r
= head ′([[(t | t)]]ΓL ΓT r) [Definition of !]
= head ′(∞�/ • [[[t]]ΓL ΓT , [[t]]ΓL ΓT]◦ r) [Definition of |]
= head ′(∞�/[[[t]]ΓL ΓT r , [[t]]ΓL ΓT r]) [Definition of ◦]
= head ′([[t]]ΓL ΓT r

∞� [[t]]ΓL ΓT r) [Definition of
∞�/]

120

= [head([[t]]ΓL ΓT r
∞� [[t]]ΓL ΓT r)] [Definition of head ′]

= [head([[t]]ΓL ΓT r)] [Property of head]
= head ′([[t]]ΓL ΓT r) [Definition of head ′]
= [[!t]]ΓL ΓT r [Definition of !]

Law 19. !!t =!t

!!t r =!t r
= head’(head’(t r)) [Definition of !]
= head’(t r) [Lemma D.6.15]
= !t r [Definition of !]

D.3 Laws involving succs and fails

In this section we use the notation

t1 � condition � t2 = if condition then t1 else t2

Law 20. succs t ; t = t

succs t ; t r
=

∞� • t ∗ • succs t r [Definition of ;]

Case t r = ⊥
=

∞�/ • t ∗ ⊥ [Definition of succs]
= ⊥ [Definition of fail]
= t r [Assumption]

Case t r = []
=

∞�/ • t ∗ • fail r [Definition of succs]
=

∞�/ • t ∗ [] [Definition of fail]
=

∞�/ [] [Definition of ∗]
= [] [Definition of

∞�/]
= t r [Assumption]

Case t r �= []
=

∞�/ • t ∗ • skip r [Definition of succs]

121

=
∞�/ • t ∗ [r] [Definition of skip]

=
∞�/[t r] [Definition of ∗]

= t r [Definition of
∞�/]

Law 21. ∗ fails t ; t = fail

fails t ; t r
=

∞�/ • t ∗ • fails t r [Definition of ;]

Case t r =<>
=

∞�/ • t ∗ • skip r [Definition of succs]
=

∞�/ • t ∗ [r] [Definition of skip]
=

∞�/ • [t r] [Definition of ∗]
= t r [Definition of

∞�/]
= [] [Assumption]
= fail r [Definition of fail]

Case t r �= []
=

∞�/ • t ∗ • fail r [Definition of fails]
=

∞�/[] [Definition of ∗]
= fail r [Definition of

∞�/]

Law 22. fails t = fails !t =! fails t

1. fails t = fails !t
fails t r

Case t r = []
= skip r [Definition of fails]
= fails(head ′(t r)) [Definition of fails]

[Definition of head ′]
[Assumption]

= fails(!t r) [Definition of !]

Case t r �= []
= fail r [Definition of fails]

122

= fails(head ′(t r)) [Definition of fails]
[Definition of head ′]
[Assumption]

= fails(!t r) [Definition of !]

Case t r = ⊥
= ⊥ [Definition of fails]
= fails(!t r) [Definition of !, head ′]

[Definition of fails′]

2. fails !t =! fails t r
fails !t

Case t r = []
= (skip�!t r = [] � fail) r [Definition of fails]
= (skip � head ′(t r) = [] � fail) r [Definition of !]
= (skip � head ′([]) = [] � fail) r [Assumption]
= skip r [Definition of head’]
= !skip r [Law 8]
= !(fails t r) [Definition of fails]

[Assumption]

Case t r = lst �= []
= (skip�!t r = [] � fail) r [Definition of fails]
= (skip � head ′(lst) = [] � fail) r [Definition of !]

[Assumption]
= fail r [Definition of � �]
= !fail r [Law 9]
= !(fails t r) [Definition of fails]

[Assumption]

Case t r = ⊥
= ⊥ [Definition of fails]

[Definition of succs]
= !(fails t r) [Definition of fails,!]

[Definition of head ′]

123

Law 23. fails(succs t) = fails t

fails(succs t) r

Case t r = []
fails(succs t) r
= (skip � succs t r = [] � fail) r [Definition of fails]
= (skip � fail r = [] � fail) r [Definition of succs]

[Assumption]
= (skip � [] = [] � fail) r [Definition of fail]
= skip r [Definition of � �]
= fails t r [Definition of fails]

[Assumption]

Case t r �= [] = (skip � succs t r = [] � fail) r [Definition of fails]
= (skip � skip r = [] � fail) r [Definition of succs]

[Assumption]
= (skip � [r] = [] � fail) r [Definition of skip]
= fail r [Definition of � �]
= fails t r [Definition of fails]

[Assumption]
Case t r = ⊥
Case t r = ⊥
= ⊥ [Definition of fails

[Definition of succs]
= fails t [Assumption]

[Definition of fails]

Law 24∗. fails t1; fails t2 = fails t2; fails t1

fails t1; fails t2 r
Case t1 r = [] and t2 r = []
=

∞�/ • (fails t2)∗ • fails t1 r [Definition of ;]
=

∞�/ • (fails t2)∗ • skip r [Definition of fails]
=

∞�/ • (fails t2) ∗ [r] [Definition of skip]
=

∞�/[fails t2 r] [Definition of ∗]
= fails t2 r [Definition of

∞�/]
= skip r [Definition of fails]
= fails t1 r [Definition of fails]
=

∞�/[fails t1 r] [Definition of
∞�/]

124

=
∞�/(fails t1) ∗ [r] [Definition of ∗]

=
∞�/(fails t1)∗ • skip r [Definition of skip]

=
∞�/(fails t1)∗ • fails t2 r [Definition of fails]

= fails t2; fails t1 r [Definition of ;]

Case t1 r = [] and t2 r �= []
=

∞�/ • (fails t2)∗ • fails t1 r [Definition of ;]
=

∞�/ • (fails t2)∗ • skip r [Definition of fails]
=

∞�/ • (fails t2) ∗ [r] [Definition of skip]
=

∞�/[fails t2 r] [Definition of ∗]
= fails t2 r [Definition of

∞�/]
= fail r [Definition of fails]
= [] [Definition of fail]
=

∞�/[] [Definition of
∞�/]

=
∞�/(fails t1) ∗ [] [Definition of ∗]

=
∞�/(fails t1)∗ • fail r [Definition of fail]

=
∞�/(fails t1)∗ • fails t2 r [Definition of fails]

= fails t2; fails t1 r [Definition of ;]

Case t1 r �= [] and t2 r = []
=

∞�/ • (fails t2)∗ • fails t1 r [Definition of ;]
=

∞�/ • (fails t2)∗ • fail r [Definition of fails]
=

∞�/ • (fails t2) ∗ [] [Definition of fail]
=

∞�/[] [Definition of ∗]
=

∞�/[[]] [Definition of
∞�/]

=
∞�/[fail r] [Definition of fail]

=
∞�/[fails t1 r] [Definition of fails]

=
∞�/(fails t1) ∗ [r] [Definition of ∗]

=
∞�/(fails t1)∗ • skip r [Definition of skip]

=
∞�/(fails t1)∗ • fails t2 r [Definition of fails]

= fails t2; fails t1 r [Definition of ;]

Case t1 r �= [] and t2 r �= []
=

∞�/ • (fails t2)∗ • fails t1 r [Definition of ;]
=

∞�/ • (fails t2)∗ • fail r [Definition of fails]
=

∞�/ • (fails t2) ∗ [] [Definition of fail]
=

∞�/[] [Definition of ∗]
= [] [Definition of

∞�/]
=

∞�/(fails t1) ∗ [] [Definition of ∗,∞�/]
=

∞�/(fails t1)∗ • fail r [Definition of fail]
=

∞�/(fails t1)∗ • fails t2 r [Definition of fails]

125

= fails t2; fails t1 r [Definition of ;]

Law 25. !(t1 | t2) =!t1 | (fails t1; !t2)

!(t1 | t2) r
= head ′ • ∞�/ • [t1, t2]

◦ r [Definition of !, |]
= head ′ • ∞�/ • [t1 r , t2 r] [Definition of ◦]
= head ′ • ∞�/[t1 r , t2 r] [Definition of ◦]
= head ′(t1 r

∞� t2 r) [Definition of
∞�/]

Case t1 r = []
= head ′(t2 r) [Property of head ′]
=

∞�/[[], head ′(t2 r)] [Definition of
∞�/]

=
∞�/[head ′(t1 r),

∞�/ • (head ′ t2) ∗ [r]] [Definition of head ′]
[Definition of

∞�/, ∗]
=

∞�/[head ′(t1 r),
∞�/ • (head ′ t2) ∗ skip r] [Definition of skip]

=
∞�/[head ′(t1 r),

∞�/ • (head ′ t2) ∗ fails t1 r] [Definition of fails]
=

∞�/ • [!t1, fails t1; !t2]
◦ r [Definition of ◦, ; , !]

= !t1 | (fails t1; !t2) r [Definition of |]

Case t1 r �= [] = head ′(t1 r
∞� []) [Assumption]

=
∞�/[head ′(t1 r), []] [Definition of

∞�/]
=

∞�/[head ′(t1 r),
∞�/ • (head ′ t2) ∗ [])] [Definition of

∞�/, ∗]
=

∞�/[head ′(t1 r),
∞�/ • (head ′ t2)∗ • fails t1 r)] [Definition of fails, fail]

=
∞�/ • [!t1, fails t1; !t2)]

◦ r [Definition of !, ; ,◦]
= !t1 | (fails t1; !t2) r [Definition of |]
Case t1 r = ⊥
= ⊥ [Definition of

∞�,head ′]
=

∞�/[⊥, head ′(t2 r)] [Definition of
∞�/]

=
∞�/[head ′(⊥), head ′(t2 r)] [Definition of head ′]

=
∞�/[head ′(t1 r), head ′(t2 r)] [Assumption]

=
∞�/[head ′(t1 r),

∞�/ • (head ′ t2) ∗ [r]] [Definition of head ′]
[Definition of

∞�/, ∗]
=

∞�/[head ′(t1 r),
∞�/ • (head ′ t2) ∗ skip r] [Definition of skip]

=
∞�/[head ′(t1 r),

∞�/ • (head ′ t2) ∗ fails t1 r] [Definition of fails]
=

∞�/ • [!t1, fails t1; !t2]
◦ r [Definition of ◦, ; , !]

= !t1 | (fails t1; !t2) r [Definition of |]

126

Law 26. !(t1; t2) =!(t1; succs t2); !t2
This Law is proved by induction as seen below

!(t1; t2) r
= head ′ • ∞�/ • t2∗ • t1 r [Definition of !,;]

Base Case t1 r = []
= head ′ • ∞�/ • t2 ∗ [] [Assumption]
= head ′ [] [Definition of ∗,

∞�/]
= [] [Definition of head ′]
=

∞�/ • (head ′ t2) ∗ [] [Definition of ∗,
∞�/]

=
∞�/ • (head ′ t2)∗ • head ′ [] [Definition of head ′]

=
∞�/ • (head ′ t2)∗ • head ′(∞�/ • (succs t2) ∗ []) [Definition of ∗,

∞�/]
=

∞�/ • (head ′ t2)∗ • head ′(∞�/ • (succs t2)∗ • t1 r) [Assumption]
= !(t1; succs t2); !t2 r [Definition of ; ,!]

Base Case t1 r = ⊥
= ⊥ [Definition of ∗,

∞�/]
[Definition of head ′]

=
∞�/ • (head ′ t2)∗ • head ′ ⊥ [Definition of ∗,

∞�/]
[Definition of head ′]

=
∞�/ • (head ′ t2)∗ • head ′(∞�/ • (succs t2) ∗ ⊥) [Definition of ∗,

∞�/]
=

∞�/ • (head ′ t2)∗ • head ′(∞�/ • (succs t2)∗ • t1 r) [Assumption]
= !(t1; succs t2); !t2 r [Definition of ; ,!]

Inductive Step on t1 r :
Suppose
head ′ • ∞�/ • t2 ∗ xs =

∞�/ • (head ′ t2)∗ • head ′(∞�/ • (succs t2) ∗ xs)
Prove that
head ′ • ∞�/ • t2 ∗ [x]

∞� xs =
∞�/ • (head ′ t2)∗ • head ′(∞�/ • (succs t2) ∗ [x]

∞� xs)

head ′ • ∞�/ • t2 ∗ [x]
∞� xs

= head ′ • ∞�/ • [t2 x]
∞� t2 ∗ xs [Definition of ∗]

= head ′(t2 x
∞� ∞�/ t2 ∗ xs) [Definition of

∞�/]

Case t2 x �= [] and t2 x �= ⊥
= head ′(t2 x) [Property of head ′]
=

∞�/ • head ′(t2 x) [Definition of
∞�/]

=
∞�/ • (head ′ t2)∗ • [x] [Definition of ∗]

=
∞�/ • (head ′ t2)∗ • head ′([x]) [Definition of head ′]

=
∞�/ • (head ′ t2)∗ • head ′(skip x) [Definition of skip]

127

=
∞�/ • (head ′ t2)∗ • head ′(∞�/ • (succs t2) ∗ [x]

∞� xs) [Definition of
∞�/]

[Definition of succs, ∗]
= !(t1; succs t2); !t2 r [Definition of ; ,!]

Case t2 x = []
= head ′ • ∞�/ • t2 ∗ xs [Functional Composition]
=

∞�/ • (head ′ t2)∗ • head ′(∞�/ • (succs t2) ∗ xs) [Assumption]
= !(t1; succs t2); !t2 r [Definition of ; ,!]

Case t2 x = ⊥
= ⊥ [Definition of

∞�,head ′]
=

∞�/ • head ′(⊥) [Definition of
∞�/,head ′]

=
∞�/ • (head ′ t2) ∗ ⊥ [Definition of ∗]

=
∞�/ • (head ′ t2)∗ • head ′(⊥) [Definition of head ′]

=
∞�/ • (head ′ t2)∗ • head ′(∞�/ • (succs t2) ∗ [x]

∞� xs) [Assumption]
= !(t1; succs t2); !t2 r [Definition of ; ,!]

Law 27. succs(t1 | t2) =!(succs t1 | succs t2)

succs(t1 | t2) r

Case t1 r = [] and t2 r = []
= fail r [Definition of succs]
= [] [Definition of fail]
= head ′([]) [Definition of head ′]
= head ′(∞�/ []) [Definition of

∞�/]
= head ′(∞�/ [[], []]) [Definition of

∞�/]
= head ′(∞�/ [fail r , fail r]) [Definition of fail]
= head ′(∞�/ [(fail � t1 r = [] � skip) r ,

(fail � t2 r = [] � skip) r]) [Definition of � �]
[Assumption]

= head ′(∞�/ • [(fail � t1 = [] � skip),
(fail � t2 = [] � skip) r]◦ r [Definition of ◦]

= !(succs t1 | succs t2) [Definition of succs]
[Definition of |, head ′]

Case t1 r = ⊥ or t2 r = ⊥
= ⊥ [Definition of succs]
= head ′(⊥) [Definition of head ′]

128

= !(succs t1 | succs t2) r [Assumption]
[Definition of |,succs]

Other Cases
= skip r [Definition of succs]
= [r] [Definition of skip]
= head ′([r]) [Definition of head ′]

Case t1 r �= [] and t2 r = []
= head ′(∞�/[[r], []]) [Definition of

∞�/]
= head ′(∞�/[skip r , fail r]) [Definition of fail, skip]

Case t1 r = [] and t2 r �= []
= head ′(∞�/[[], [r]]) [Definition of

∞�/]
= head ′(∞�/[fail r , skip r]) [Definition of fail, skip]

Case t1 r �= [] and t2 r �= []
= head ′(∞�/[[r], [r]]) [Definition of

∞�/]
= head ′(∞�/[skip r , skip r]) [Definition of fail, skip]

In the three cases above, we have that
= head ′(∞�/ [(fail � t1 r = [] � skip) r ,

(fail � t2 r = [] � skip) r]) [Definition of � �]
[Assumption]

= head ′(∞�/ • [(fail � t1 = [] � skip),
(fail � t2 = [] � skip) r]◦ r) [Definition of ◦]

= !(succs t1 | succs t2) [Definition of succs, |]
[Definition of head ′]

Law 28. fails(t1 | t2) = fails t1; fails t2

fails(t1 | t2) r

Case t1 r = [] and t2 r = []
= fail r [Assumption]
= [] [Definition of fail]
=

∞�/[] [Definition of
∞�/]

=
∞�/ • fail ∗ [] [Definition of ∗]

=
∞�/ • fail∗ • failr [Definition of fail]

129

=
∞�/ • (skip � t2 = [] � fail)∗ • (skip � t1 = [] � fail) r [Definition of � �]

= fails t1; fails t2 r [Definition of fails]

Case t1 r = ⊥ or t2 r = ⊥
= ⊥ [Definition of |,fails]
= fails t1; fails t2 r [Definition of fails,;]

Case t1 r �= [] and t2 r = []
= skip r [Assumption]
= [r] [Definition of skip]
=

∞�/[r] [Definition of
∞�/]

=
∞�/ • skip ∗ [] [Definition of ∗]

=
∞�/ • skip∗ • failr [Definition of fail]

=
∞�/ • (skip � t2 = [] � fail)∗ • (skip � t1 = [] � fail) r [Definition of � �]

= fails t1; fails t2 r [Definition of fails]

Case t1 r = [] and t2 r �= []
= fail r [Assumption]
= [] [Definition of fail]
=

∞�/[] [Definition of
∞�/]

=
∞�/ • fail ∗ [r] [Definition of ∗]

=
∞�/ • fail∗ • skipr [Definition of skip]

=
∞�/ • (skip � t2 = [] � fail)∗ • (skip � t1 = [] � fail) r [Definition of � �]

= fails t1; fails t2 r [Definition of fails]

Case t1 r �= [] and t2 r �= []
= skip r [Assumption]
= [r] [Definition of skip]
=

∞�/[r] [Definition of
∞�/]

=
∞�/ • skip ∗ [] [Definition of ∗]

=
∞�/ • skip∗ • skipr [Definition of skip]

=
∞�/ • (skip � t2 = [] � fail)∗ • (skip � t1 = [] � fail) r [Definition of � �]

= fails t1; fails t2 r [Definition of fails]

Law 29. succs s ; succs(s ; t) = succs(s ; t)

succs s ; succs (s ; t) r

=
∞�/ • (succs (s ; t))∗ • succs s [Definition of ∗]

130

Case s r = []
=

∞�/ • (succs (s ; t)) ∗ [] [Definition of succs]
[Definition of fail]

= [] [Definition of ∗,∞�/]
= fail r [Definition of fail]
= (fail � [] = [] � skip) r [Definition of � �]
= (fail � t ∗ [] = [] � skip) r [Definition of ∗]
= (fail � t ∗ • s r = [] � skip) r [Assumption]
= succs (s ; t) r [Definition of ;]

[Definition of succs]

Case s r �= []
=

∞�/ • (succs (s ; t)) ∗ [r] [Definition of succs]
[Definition of skip]

= succs (s ; t) [r] [Definition of
∞�/]

[Definition of ∗]

Case s r = ⊥
= ⊥ [Definition of succs]

[Definition of ;]
= succs (s ; t)r [Definition of ;]

[Definition of succs]

Law 30. fails s = fails s ; fails(s ; t)

fails s r

= (skip � s r = [] � fail) r [Definition of fail]

Case s r = []
= skip r [Definition of � �]
= [r] [Definition of skip]
=

∞�/ [r] [Definition of
∞�/]

=
∞�/ • skip r [Definition of skip]

=
∞�/ • skip ∗ [r] [Definition of ∗]

=
∞�/ • skip∗ • skip r [Definition of skip]

=
∞�/ • (skip � [] = [] � fail)∗ • (skip� <>=<> �fail) r [Definition of � �]

131

=
∞�/ • (skip � ∞�/ • t ∗ • s r = [] � fail)∗ •

(skip � s r = [] � fail) r [Definition of
∞�/, ∗]

[Assumption]
= fails s ; fails(s ; t) [Definition of fails, ;]
Case s r �= []
= fail r [Definition of � �]
= [] [Definition of <>]
=

∞�/ [] [Definition of
∞�/]

Let f = skip or f = fail
=

∞�/ • f ∗ [] > [Definition of skip]
=

∞�/ • f ∗ • fail r [Definition of fail]
=

∞�/ • (skip � ∞�/ • t ∗ • s r = [] � fail)∗ •
(skip � ∞�/ • s r = [] � fail) r [Definition of � �]

=
∞�/(fails (s ; t))∗ • fails s [Definition of ; , fail]

= fails s ; fails(s ; t) [Definition of ;]

Case s r = ⊥
= ⊥ [Definition of succs, ;]
= fails s ; fails(s ; t) r [Definition of ; ,fails]

Law 31. !s ; fails t = fails(!s ; t); !s

!s ; fails t r
= !s ; fails t r
=

∞�/ • (fails t)∗ • head ′(s r) [Definition of !, head ′]

Base Case s r = []
=

∞�/ • (fails t)∗ • head ′([]) [Assumption]
=

∞�/ • (fails t) ∗ [] [Definition of head ′]
=

∞�/[] [Definition of ∗]
=

∞�/ • head ′ [] [Definition of head ′]
=

∞�/ • head ′(s r) [Assumption]
=

∞�/ • (head ′ s) ∗ [r] [Definition of ∗]
=

∞�/ • (head ′ s)∗ • skip r [Definition of skip]
=

∞�/ • (head ′ s)∗ • (skip � [] = [] � fail) r [Definition of � �]
=

∞�/ • (head ′ s)∗ • (skip � ∞�/ • t ∗ • head ′(s r) = [] � fail) r [Definition of
∞�/,head ′]

= fails(!s ; t); !s r [Assumption]
[Definition of ; , !]

132

Base Case s r = ⊥
=

∞�/ • (fails t)∗ • head ′(⊥) [Assumption]
=

∞�/⊥ [Definition of ∗,head ′]
= ⊥ [Definition of

∞�/]
= fails(!s ; t); !s r [Definition of fails]
Inductive Step on s r :
Suppose∞�/ • (fails t)∗ • head ′(xs) =

∞�/ • (head ′ s)∗ • (skip � ∞�/ • t ∗ • head ′(xs) = [] � fail) r
Prove that∞�/ • (fails t)∗ • head ′([x]

∞� xs)
=

∞�/ • (head ′ s)∗ • (skip � ∞�/ • t ∗ • head ′([x]
∞� xs) = [] � fail) r

∞�/ • (fails t)∗ • head ′([x]
∞� xs)

=
∞�/ • (fails t) ∗ [x] [Definition of head ′]

=
∞�/(fails t x) [Definition of ∗]

Case t x = []
=

∞�/(fails t x) [Definition of ∗]
= [x] [Definition of fails,

∞�/]
=

∞�/ head ′([x]
∞� xs) [Definition of

∞�/,head ′]
=

∞�/ head ′(s r) [Assumption]
=

∞�/(head ′ s) ∗ [r] [Definition of ∗]
=

∞�/ • (head ′ s)∗ • skip [r] [Definition of skip]
=

∞�/ • (head ′ s)∗ • (skip � ∞�/ • [] = [] � fail) r [Definition of � �]

=
∞�/ • (head ′ s)∗ • (skip � ∞�/ • t ∗ • head ′([x]

∞� xs) = [] � fail) r
[Definition of head ′,∗]

=
∞�/ • (head ′ s)∗ • (skip � ∞�/ • t ∗ • head ′([x]

∞� xs) = [] � fail) r
[Definition of

∞�/,head ′]

Case t x = ⊥
= ⊥ [Definition of fails,

∞�/]
=

∞�/ head ′(⊥) [Definition of
∞�/,head ′]

=
∞�/(head ′ s) ∗ ⊥ [Definition of ∗]

= fails(!s ; t); !s r [Assumption]
,Definition ; , !]

Case t x = ys
=

∞�/(fails t x) [Definition of ∗]
= [] [Definition of fails,

∞�/]
=

∞�/ head ′([]) [Definition of
∞�/,head ′]

=
∞�/ head ′(s r) [Assumption]

133

=
∞�/(head ′ s) ∗ [] [Definition of ∗]

=
∞�/ • (head ′ s)∗ • fail [r] [Definition of skip]

=
∞�/ • (head ′ s)∗ • (skip � ∞�/ • ys = [] � fail) r

[Definition of � �]
=

∞�/ • (head ′ s)∗ • (skip � ∞�/ • t ∗ • head ′([x]
∞� xs) = [] � fail) r

[Assumption]
[Definition of head ′,∗]

Law 32. fails(fails(s ; t)) = succs s | (fails s ; fails t)

fails(fails(s ; t))r

= (abort � fails(fails(s ; t)) r = ⊥� (skip � fails s ; t r = [] � fail)) r
[Definition of fails]

= (abort � fails(fails(s ; t)) r = ⊥� (skip � (t ∗ • (skip � s r = [] � fail) r = [] � fail))) r
[Definition of fails]

Case s r = ⊥
= ⊥ [Definition of � �]
= succs s | (fails s ; fails t) r [Definition of fails]

[Definition of succs, |]

Case s r = []
= (skip � t ∗ [r] = [] � fail) r [Definition of � �]
= (skip � t r = [] � fail) r [Definition of ∗]
= fails t r [Definition of fails]
=

∞�/[[], fails t r] [Definition of
∞�/]

=
∞�/[succs s r , fails t r] [Assumption]

=
∞�/[succs s r ,

∞�/ • (fails t)∗ • fails s r] [Definition of ∗]
[Assumption]

=
∞�/[succs s ,

∞�/ • (fails t)∗ • fails s]◦ [Definition of ◦]
= succs s | (fails s ; fails t) r [Definition of |]

Case s r �= []
= (skip � t ∗ • fails r = [] � fail) r [Definition of � �]
= skip r [Definition of fail, ∗,� �]
= [r] [Definition of skip]
=

∞�/[[r], []] [Definition of
∞�/]

=
∞�/[skip r ,

∞�/ • (fails t) ∗ []] [Definition of skip, ∗]

134

=
∞�/[fail � s r = [] � skip) r ,

∞�/ • (fails t)∗ •
(skip � s r = [] � fail) r] [Definition of � �]

[Assumption]
=

∞�/[succs s r ,
∞�/ • (fails t)∗ • fails s r] [Definition of fails]

[Definition of succs]
=

∞�/[succs s r , fails s ; fails t r] [Definition of ;]
=

∞�/[succs s , fails s ; fails t]◦ [Definition of ◦]
= succs s | (fails s ; fails t) r [Definition of |]

Law 33. fails(s ; fails t) = fails s | succs(s ; t)

fails(s ; fails t) r

= (abort � fails(s ; fails t) r = ⊥ � (skip � s ; fails t r = [] � fail)) r
[Definition of fails]

= (abort � fails(s ; fails t) r = ⊥ � (skip � ∞�/ • (fails t)∗ • s r = [] � fail)) r
[Definition of ;]

Case s r = ⊥
= ⊥ [Definition of � �]
= fails s | succs(s ; t) r [Definition of fails,|,;]

[Definition of succs]

Case s r = []
= (skip � [] = [] � fail) r [Definition of ∗,∞�/]
= skip r [Definition of � �]
= [r] [Definition of skip]
=

∞�/[[r], []] [Definition of
∞�/]

=
∞�/[fails s r , succs s r] [Definition of fails]

[Definition of succs]
=

∞�/[fails s r , (fail � s r = [] � skip) r] [Definition of succs]
=

∞�/[fails s r , (fail � ∞�/ • t ∗ • s r = [] � skip) r] [Definition of ∗,∞�/]
=

∞�/[fails s r , succs (
∞�/ • t ∗ • s) r] [Definition of succs]

=
∞�/[fails s r , succs (s ; t) r] [Definition of ;]

=
∞�/[fails s , succs (s ; t) >◦ [Definition of ◦]

= fails s | succs(s ; t) r [Definition of |]

Case s r �= []
= (skip � ∞�/ • (fails t)∗ • s r = [] � fail) r

135

We have that
= (fail � ∞�/ • t ∗ • s r = [] � skip) r
=

∞� • [[], (fail � ∞�/ • t ∗ • s r = [] � skip) r] [Definition of
∞�/]

=
∞� • [fails s r , succs (s ; t) r] [Definition of ;]

[Definition of succs]
=

∞�/[fails s , succs (s ; t)]◦ [Definition of ◦]
= fails s | succs(s ; t) r [Definition of |]

Law 34∗. fails s ; succs(s ; t) = fail

fails s ; succs(s ; t) r

=
∞�/ • (succs(s ; t))∗ • fails s r

Case s r = []
=

∞�/ • succs (s ; t) r [Definition of fail, skip, ∗]
=

∞�/ • succs (
∞�/ • t ∗ • s) r [Definition of ;]

= [] [Definition of succs]
[Assumption]

= fail r [Definition of fail]

Case s r �= []
=

∞�/ • (succs (s ; t)) ∗ [] [Definition of fails, fail]
= [] [Definition of ∗]
= fail r [Definition of fail]

Law 35. fails(t ; d) = fails(t ; succs d)

fails (t ; d) r

Case s r = ⊥
= ⊥ [Definition of fails]
= fails (t ; succs d) r [Definition of fails]

= (skip � ∞�/ • d ∗ • t r = [] � fail) r [Definition of fails]

136

Case s r = []
= (skip � [] = [] � fail) r [Definition of

∞�, ∗]
= (skip � ∞�/ • (succs d)∗ • t r = [] � fail) r [Definition of ∗]

[Assumption]
= fails (t ; succs d) r [Definition of fails]

Case s r �= []
= (skip � ∞�/ • (succs d)∗ • t r = [] � fail) r [Lemma D.6.16]
= fails (t ; succs d) r [Definition of fails]

Law 36. !s ; succs t = succs (!s ; t); !s

!s ; succs t r

=
∞�/ • (succs t)∗ • head ′(s r) [Definition of ;]

Base Case s r = []
= [] [Definition of head ′]

[Definition of ∗,∞�/]
=

∞�/ • (head ′ s) ∗ [] [Definition of head ′]
[Definition of ∗,∞�/]

=
∞�/ • (head ′ s)∗ • fail r [] [Definition of fail]

=
∞�/ • (head ′ s)∗ • (fail � [] = [] � skip) r [Definition of � �]

=
∞�/ • (head ′ s)∗ • (fail � ∞�/ • t ∗ • head ′(s r) = [] � skip) r

[Definition of head ′]
[Definition of ∗,∞�/]

= succs(!s ; t); !s [Definition of ; , !, succs]

Base Case s r = ⊥
= ⊥ [Definition of head ′]

[Definition of ∗,∞�/]
=

∞�/ • (head ′ s) ∗ ⊥ [Definition of head ′]
[Definition of ∗,∞�/]

= succs(!s ; t); !s [Definition of ; , !, succs]

Inductive step on s r :
Suppose∞�/ • (succs t)∗ • head ′(xs) =

∞�/ • (head ′ s)∗ • (fail � ∞�/ • t ∗ • head ′(xs) = [] � skip) r
Prove that

137

∞�/ • (succs t)∗ • head ′([x]
∞� xs)

=
∞�/ • (head ′ s)∗ • (fail � ∞�/ • t ∗ • head ′([x]

∞� xs) = [] � skip) r

∞�/ • (succs t)∗ • head ′([x]
∞� xs)

=
∞�/ • (succs t) ∗ [x] [Definition of head ′]

=
∞�/ • succs t x [Definition of ∗]

Case t x = ⊥
= ⊥ [Definition of succs]

[Definition of skip,
∞�/]

=
∞�/ • (head ′ s) ∗ ⊥ [Definition of ∗]

=
∞�/ • (head ′ s)∗ • (abort � ∞�/ • t ∗ • head ′([x]

∞� xs) r = ⊥�
(fail � ∞�/ • t ∗ • head ′([x]

∞� xs) = [] � skip)) r
[Definition of head ′,∗]

= succs(!s ; t); !s [Definition of ; , !, succs]

Case t x = []
= [] [Definition of succs]

[Definition of skip,
∞�/]

=
∞�/ • (head ′ s) ∗ [] [Definition of ∗]

=
∞�/ • (head ′ s)∗ • (fail � [] = [] � skip) r [Definition of � �]

=
∞�/ • (head ′ s)∗ • (fail � ∞�/ • t x = [] � skip) r [Assumption]

=
∞�/ • (head ′ s)∗ • (fail � ∞�/ • t ∗ • head ′([x]

∞� xs) = [] � skip) r
[Definition of head ′,∗]

Case t x = ys
= [x] [Definition of succs]

[Definition of skip,
∞�/]

=
∞�/ • (head ′ s) ∗ [r] [Definition of ∗,head ′]

=
∞�/ • (head ′ s)∗ • skip r [Definition of skip]

=
∞�/ • (head ′ s)∗ • (fail � ys = [] � skip) r [Definition of � �]

=
∞�/ • (head ′ s)∗ • (fail � ∞�/ • t x = [] � skip) r [Assumption]

=
∞�/ • (head ′ s)∗ • (fail � ∞�/ • t ∗ • head ′([x]

∞� xs) = [] � skip) r
[Definition of head ′,∗]

Law 37. fails(fails t) = succs t

fails(fails t) r

138

Case t r = ⊥
= ⊥ [Definition of fails]
= succs t r [Definition of succs]

Otherwise
= (skip � fails t r = [] � fail) r [Definition of fails]
= (skip � (skip t r = [] � fail) r = [] � fail) r [Definition of fails]

Case t r = []
= (skip � [r] r = [] � fail) r [Definition of � �, skip]
= fail r [Definition of � �]
= (fail � t r = [] > �skip) r [Definition of � �]

[Assumption]
= succs t r [Definition of succs]

Case t r �= []
= (skip � [] r = [] � fail) r [Definition of � �, fail]
= skip r [Definition of � �]
= (fail � t r = [] > �skip) r [Definition of � �]

[Assumption]
= succs t r [Definition of succs]

Law 38∗. fails t1; succs t2 = succs t2; fails t1

fails t1; succs t2 r

=
∞�/ • (succs t2)∗ • fails t1 r

Case t1 r = [] and t2 r = []
=

∞�/ • (succs t2) ∗ [r] [Definition of fails]
[Definition of skip]

=
∞�/ • [succs t2 r] [Definition of ∗]

=
∞�/[[]] [Definition of succs]

[Definition of fails]
= [] [Definition of

∞�/]
=

∞�/[] [Definition of
∞�/]

=
∞�/ • (fails t1) ∗ [] [Definition of ∗]

=
∞�/ • (fails t1)∗ • succs t2 r [Definition of fails]

[Definition of succs]
= succs t2; fails t1 r [Definition of ;]

139

Case t1 r = [] and t2 r �= []
=

∞�/ • (succs t2) ∗ [r] [Definition of fails]
[Definition of skip]

=
∞�/ • [succs t2 r] [Definition of ∗]

=
∞�/[[r]] [Definition of succs]

[Definition of skip]
=

∞�/[fails t1 r] [Definition of fails]
[Definition of skip]

=
∞�/ • (fails t1) ∗ [r] [Definition of ∗]

=
∞�/ • (fails t1)∗ • succs t2 r [Definition of succs]

[Definition of skip]
= succs t2; fails t1 r [Definition of ;]

Case t1 r �= [] and t2 r = []
=

∞�/ • (succs t2) ∗ [] [Definition of fails]
[Definition of fail]

= [] [Definition of ∗,∞�/]
=

∞�/ • (fails t1) ∗ [] [Definition of ∗,∞�/]
=

∞�/ • (fails t1)∗ • succs t2 r [Definition of succs]
[Definition of fail]

= succs t2; fails t1 r [Definition of ;]

Case t1 r �= [] and t2 r �= []
=

∞�/ • (succs t2) ∗ [] [Definition of fails]
[Definition of fail]

= [] [Definition of ∗,∞�/]
=

∞�/[fails t1 r] [Definition of fails]
[Definition of fail,

∞�/]
=

∞�/ • (fails t1)∗ • succs t2 r [Definition of succs]
[Definition of skip]

= succs t2; fails t1 r [Definition of ;]

Law 39∗. succs t1; succs t2 = succs t2; succs t1

succs t1; succs t2 r

=
∞�/ • (succs t2)∗ • succs t1 r

Case t1 r = [] and t2 r = []

140

=
∞�/ • (succs t2) ∗ [] [Definition of succs]

[Definition of fail]
= [] [Definition of ∗,∞�/]
=

∞�/ • (succs t1) ∗ [] [Definition of ∗,∞�/]
=

∞�/ • (succs t1)∗ • succs t2 r [Definition of succs]
[Definition of fail]

= succs t2; succs t1 r [Definition of ;]

Case t1 r = [] and t2 r �= []
=

∞�/ • (succs t2) ∗ [] [Definition of succs]
[Definition of fail]

= [] [Definition of ∗,∞�/]
=

∞�/(succs t1 r) [Definition of
∞�/]

[Definition of succs]
=

∞�/ • (succs t1) ∗ [r] [Definition of ∗]
=

∞�/ • (succs t1)∗ • succs t2 r [Definition of succs]
[Definition of skip]

= succs t2; succs t1 r [Definition of ;]

Case t1 r �= [] and t2 r = []
=

∞�/ • (succs t2) ∗ [r] [Definition of succs]
[Definition of skip]

=
∞�/ [succs t2 r] [Definition of ∗]

=
∞�/ [[]] [Definition of succs]

[Definition of fail]
= [] [Definition of

∞�/]
=

∞�/ [] [Definition of
∞�/]

=
∞�/ • (succs t1) ∗ [] [Definition of ∗]

=
∞�/ • (succs t1)∗ • succs t2 r [Definition of succs]

[Definition of fail]
= succs t2; succs t1 r [Definition of ;]

Case t1 r �= [] and t2 r �= []
=

∞�/ • (succs t2) ∗ [r] [Definition of succs]
[Definition of skip]

=
∞�/ [succs t2 r] [Definition of ∗]

=
∞�/ [[r]] [Definition of succs]

[Definition of skip]
=

∞�/ [succs t1 r] [Definition of succs]
[Definition of skip]

=
∞�/ • (succs t1) ∗ [r] [Definition of ∗]

141

=
∞�/ • (succs t1)∗ • succs t2 r [Definition of succs]

[Definition of skip]
= succs t2; succs t1 r [Definition of ;]

Law 40. succs(succs t) = succs t

succs(succs t) r
Case t r = ⊥
= ⊥ [Definition of succs]
= succs t r [Definition of succs]

Case t r = []
= (fail � succs t r = [] � skip) r [Definition of succs]
= fail r [Definition of succs]

[Definition of � �]
= succs t r [Definition of succs]

[Assumption]

Case t1 r �= []
= (fail � succs t r = [] � skip) r [Definition of succs]
= skip r [Definition of succs]

[Definition of � �]
= succs t r [Definition of succs]

[Assumption]

Law 41. succs(fails t) = fails t

succs(fails t) r
Case t r = ⊥
= ⊥ [Definition of succs]

[Definition of fails]
= fails t r [Definition of fails]

Otherwise
= (fail � fails t r = [] � skip) r [Definition of succs]

Case t r = []

142

= skip r [Definition of fails]
[Definition of � �]

= fails t r [Definition of fails]

Case t1 r �= []
= fail r [Definition of fails]

[Definition of � �]
= fails t r [Definition of fails]

Law 42. succs(t ; d) = succs(t ; succs d)

succs(t ; d) r
Case t r = ⊥
= ⊥ [Definition of succs]
= succs(t ; succs d) r [Definition of ; ,succs]

Otherwise
= (fail � ∞�/ • d ∗ • t r = [] � skip) r [Definition of succs, ;]

Case t r = []
= (fail � ∞�/ • d ∗ • t r = [] � skip) r
We can say that this is the same as
= (fail � ∞�/ • (succs d)∗ • t r = [] � skip) r

Since the existence of a rn in t r such that d rn = [] implies that, in the same
way, succs d rn = []

= (fail � t ; succs d r = [] � skip) r [Definition of ;]
= succs (t ; succs d) r [Definition of succs]

Case t1 r �= []
= (fail � ∞�/ • d ∗ • t r = [] � skip) r
We can say that this is the same as
= (fail � ∞�/ • (succs d)∗ • t r �= [] � skip) r

Since the existence of a rn in t r such that d rn �= [] implies that, in the same
way, succs d rn �= []

= (fail � t ; succs d r = [] � skip) r [Definition of ;]
= succs (t ; succs d) r [Definition of succs]

143

Law 43. succs t = succs !t =! succs t
First, let us prove that succs t = succs !t . We know that t r = [] ⇔ head ′(t r) = [],

this is !t = []. In the same way t r �= [] ⇔ head ′(t r) �= [], this os !t �= []. Also,
if t r = ⊥ we have that !t r = ⊥. This finishes this part of the proof.

Now let us prove that succs !t =! succs t

succs !t r
Case t r = []
= [] [Definition of !, succs]

[Definition of fail]
= head ′ [] [Definition of head ′]
= head ′(succs t r) [Definition of succs]

[Definition of fail]
= ! succs t r [Definition of !]

Case t r = ⊥
= ⊥ [Definition of !, succs]

[Definition of fail]
= head ′ ⊥ [Definition of head ′]
= head ′(succs t r) [Definition of succs]
= ! succs t r [Definition of !]

Case t r �= []
= < r > [Definition of !, succs]

[Definition of skip]
= head ′ [r] [Definition of head ′]
= head ′(succs t r) [Definition of succs]

[Definition of skip]
= ! succs t r [Definition of !]

Law 44. succs skip = skip

succs skip r
= (fail � skip r = [] � skip) r [Definition of succs]
= (fail � [r] = [] � skip) r [Definition of skip]
= skip [Definition of � �]

144

Law 45. succs fail = fail

succs fail r
= (fail � fail r = [] � skip) r [Definition of succs]
= (fail � [] = [] � skip) r [Definition of fail]
= fail [Definition of � �]

Law 46. fails skip = fail

fails skip r
= (skip � skip r = [] � fail) r [Definition of fails]
= (skip � [r] = [] � fail) r [Definition of skip]
= fail [Definition of � �]

Law 47. fails fail = skip

fails fail r
= (skip � fail r = [] � fail) r [Definition of fails]
= (skip � [] = [] � fail) r [Definition of fail]
= skip [Definition of � �]

Law 48. fails t ; fails t = fails t

fails t ; fails t r
=

∞�/ • (fails t)∗ • fails t r

Case t r = ⊥
=

∞�/ • (fails t) ∗ ⊥ [Definition of fails]
=

∞�/⊥ [Definition of ∗]
= ⊥ [Definition of

∞�/]
= fails t r [Definition of fails]

Case t r = []
=

∞�/ • (fails t) ∗ [r] [Definition of fails]
[Definition of skip]

=
∞�/[fails t r] [Definition of ∗]

145

= [r] [Definition of fails]
[Definition of skip,

∞�/]
= fails t r [Definition of

∞�/]

Case t r �= []
=

∞�/ • (fails t) ∗ [] [Definition of fails]
[Definition of fail]

= [] [Definition of ∗,∞�/]
= fails t r [Definition of fails]

[Definition of fail]

Law 49. succs t ; succs t = succs t

succs t ; succs t r
=

∞�/ • (succs t)∗ • succs t r
Case t r = ⊥
=

∞�/ • (succs t) ∗ ⊥ [Definition of succs]
= ⊥ [Definition of ∗,∞�/]
= succs t r [Definition of succs]

Case t r = []
=

∞�/ • (succs t) ∗ [] [Definition of succs]
[Definition of fail]

= [] [Definition of ∗,∞�/]
= succs t r [Definition of succs]

[Definition of fail]

Case t r �= []
=

∞�/ • (fails t) ∗ [r] [Definition of succs]
[Definition of skip]

=
∞�/ • [succ t r] [Definition of ∗]

= [r] [Definition of succs]
[Definition of skip,

∞�/]
= succs t r [Definition of skip]

[Definition of succs]

146

Law 50∗. succs t ; fails t = fails t ; succs t = fail

succs t ; fails t r
=

∞�/ • (fails t)∗ • succs t r [Definition of ;]

Case t r = []
=

∞�/ • (fails t) ∗ [] [Definition of succs]
[Definition of fail]

= [] [Definition of ∗,∞�/]
= fail r [Definition of fail]
= []
=

∞�/ • [[]] [Definition of
∞�/]

=
∞�/ • [succs t r] [Definition of succs]

[Definition of fail]
=

∞�/ • (succs t) ∗ [r] [Definition of ∗]
=

∞�/ • (succs t)∗ • fails t r [Definition of fails]
[Definition of skip]

= fails t ; succs t r [Definition of ;]

Case t r �= []
=

∞�/ • (fails t) ∗ [r] [Definition of succs]
[Definition of skip]

=
∞�/[fails t r] [Definition of ∗]

=
∞�/[[]] [Definition of fails]

[Definition of fail]
= [] [Definition of ∗,∞�/]
= fail r [Definition of fail]
= []
=

∞�/ • (succs t) ∗ [] [Definition of
∞�/, ∗]

=
∞�/ • (succs t)∗ • fails t r [Definition of fails]

[Definition of fail]
= fails t ; succs t r [Definition of ;]

Law 51∗. fails t | succs t = succs t | fails t = skip

fails t | succs t r
=

∞�/ •< fails t r , succs t r > [Definition of |,◦]

147

Case t r = []
=

∞�/[[r], []] [Definition of fails]
[Definition of succs]
[Definition of skip]
[Definition of fail]

=
∞�/[[], [r]] [Definition of

∞�/]
= [r] [Definition of

∞�/]
= skip r [Definition of skip]
= [r] [Definition of skip]
=

∞�/[[], [r]] [Definition of
∞�/]

=
∞�/[succs t r , fails t r] [Definition of succs]

[Definition of fails]
[Definition of skip]
[Definition of fail]

= succs t | fails t r [Definition of ◦,∞�/]

Case t r �= []
=

∞�/[[], [r]] [Definition of fails]
[Definition of succs]
[Definition of skip]
[Definition of fail]

=
∞�/[[r], []] [Definition of

∞�/]
= [r] [Definition of

∞�/]
= skip r [Definition of skip]
= [r] [Definition of skip]
=

∞�/[[r], []] [Definition of
∞�/]

=
∞�/[succs t r , fails t r] [Definition of succs]

[Definition of fails]
[Definition of skip]
[Definition of fail]

= succs t | fails t r [Definition of ◦,∞�/]

Law 52. succs(t | u) = succs t | (fails t ; succs u)

succs(t | u) r

Case t r = ⊥ or u r = ⊥
= ⊥ [Definition of |,◦,∞�/]

[Definition of succs]

148

= succs t | (fails t ; succs u) r [Definition of |,◦,∞�/]
[Definition of succs]
[Definition of fails]

Otherwise
= (fail � ∞�/ •< t , u >◦ r =<> �skip) r [Definition of succs, |]
= (fail � ∞�/ • t r

∞� u r =<> �skip) r [Definition of ◦,∞�/]

Case t r = [], u r = []
= <> [Definition of � �]

[Definition of fail]
=

∞�/[[], []] [Definition of
∞�/]

=
∞�/[succs t r ,

∞�/[[]]] [Definition of succs]
[Definition of fail,

∞�/]
=

∞�/[succs t r ,
∞�/ < succs u r]] [Definition of succs]

[Definition of fail]
=

∞�/[succs t r ,
∞�/ • (succs u) ∗ [r]] [Definition of ∗]

=
∞�/[succs t r ,

∞�/ • (succs u)∗ • fails t r] [Definition of fails]
[Definition of skip]

= succs t | (fails t ; succs u) r [Definition of ◦, |]

Case t r = [], u r �= []
= [r] [Definition of � �]

[Definition of skip]
=

∞�/[[], [r]] [Definition of
∞�/]

=
∞�/[succs t r ,

∞�/[[r]]] [Definition of succs]
[Definition of fail,

∞�/]
=

∞�/[succs t r ,
∞�/[succs u r]] [Definition of succs]

[Definition of skip]
=

∞�/[succs t r ,
∞�/ • (succs u) ∗ [r]] [Definition of ∗]

=
∞�/[succs t r ,

∞�/ • (succs u)∗ • fails t r] [Definition of fails]
[Definition of skip]

= succs t | (fails t ; succs u) r [Definition of ◦, |]

Case t r �= []
= [r] [Definition of � �]

[Definition of skip]
=

∞�/[[r], []] [Definition of
∞�/]

=
∞�/[succs t r ,

∞�/ • (succs u) ∗ []] [Definition of succs]
[Definition of skip, ∗,∞�/]

149

=
∞�/[succs t r ,

∞�/ • (succs u)∗ • fails t r] [Definition of fails]
[Definition of fail]

= succs t | (fails t ; succs u) r [Definition of ◦, |]

Law 53. succs(fails s ; t)) = fails s ; succs t

succs(fails s ; t)) r

Case s r = ⊥ or t r = ⊥
= ⊥ [Definition of fails,;]

[Definition of succs]
= fails s ; succs t r [Definition of ; ,succs]

[Definition of fails]

Case s r = [], t r = []
= (fail � ∞�/ • t ∗ [r] = [] � skip) r [Definition of fails]

[Definition of skip]
= (fail � t r = [] � skip) r [Definition of ∗,∞�/]
= [] [Definition of � �]

[Definition of fail]
=

∞�/[[]] [Definition of
∞�/]

=
∞�/[succs t r] [Definition of succs]

[Definition of fail]
=

∞�/(succs t) ∗ [r] [Definition of ∗]
=

∞�/(succs t)∗ • fails s r [Definition of fails]
[Definition of skip]

= fails s ; succs t r [Definition of ;]

Case s r = [], t r �= []
= (fail � ∞�/ • t ∗ [r] = [] � skip) r [Definition of fails]

[Definition of skip]
= (fail � t r = [] � skip) r [Definition of ∗,∞�/]
= [r] [Definition of � �]

[Definition of skip]
=

∞�/[[r]] [Definition of
∞�/]

=
∞�/[succs t r] [Definition of succs]

[Definition of skip]
=

∞�/(succs t) ∗ [r] [Definition of ∗]

150

=
∞�/(succs t)∗ • fails s r [Definition of fails]

[Definition of skip]
= fails s ; succs t r [Definition of ;]

Case s r �= []
= (fail � ∞�/ • t ∗ [] = [] � skip) r [Definition of fails]

[Definition of fail]
= [] [Definition of ∗,∞�/]

[Definition of fail]
=

∞�/(succs t) ∗ [] [Definition of ∗]
=

∞�/(succs t)∗ • fails s r [Definition of fails]
[Definition of fail]

= fails s ; succs t r [Definition of ;]

Law 54. succs(succs s ; t) = succs s ; succs t

succs(succs s ; t)) r

Case s r = ⊥ or t r = ⊥
= ⊥ [Definition of succs,;]
= succs s ; succs t r [Definition of succs,;]

Otherwise
= (fail � succs s ; t r = [] � skip) r [Definition of succs]
= (fail � ∞�/ • t ∗ • succs s r = [] � skip) r [Definition of ;]

Case s r = []
= (fail � ∞�/ • t ∗ [] = [] � skip) r [Definition of succs]

[Definition of fail]
= [] [Definition of ∗,∞�/]

[Definition of � �, fail]
=

∞�/(succs t) ∗ [] [Definition of ∗]
=

∞�/(succs t)∗ • succs s r [Definition of succs]
[Definition of fail]

= succs s ; succs t r [Definition of ;]

Case s r �= [], t r = []
= (fail � ∞�/ • t ∗ [r] = [] � skip) r [Definition of succs]

[Definition of skip]

151

= (fail � t r = [] � skip) r [Definition of ∗,∞�/]
= [] [Definition of � �]

[Definition of fail]
=

∞�/[[]] [Definition of
∞�/]

=
∞�/[succs t r] [Definition of succs]

[Definition of fail]
=

∞�/(succs t) ∗ [r] [Definition of ∗]
=

∞�/(succs t)∗ • succs s r [Definition of succs]
[Definition of skip]

= succs s ; succs t r [Definition of ;]

Case s r �= [], t r �= []
= (fail � ∞�/ • t ∗ [r] = [] � skip) r [Definition of succs]

[Definition of skip]
= (fail � t r = [] � skip) r [Definition of ∗,∞�/]
= [r] [Definition of � �]

[Definition of skip]
=

∞�/[[r]] [Definition of
∞�/]

=
∞�/[succs t r] [Definition of succs]

[Definition of skip]
=

∞�/(succs t) ∗ [r] [Definition of ∗]
=

∞�/(succs t)∗ • succs s r [Definition of succs]
[Definition of skip]

= succs s ; succs t r [Definition of ;]

Law 55. succs(s ; fails t) = succs s ; fails(s ; t)

succs(s ; fails t) r

Case s r = ⊥ or t r = ⊥
= ⊥ [Definition of succs,;]
= succs s ; fails(s ; t) r [Definition of succs,;]

Otherwise
= (fail � ∞�/ • (fails t)∗ • s r =<> �skip) r [Definition of succs, ;]

Case s r =<>
= (fail� <>=<> �skip) r [Definition of ∗,∞�/]

152

= <> [Definition of � �]
[Definition of fail]

=
∞�/ • (fails (s ; t))∗ <> [Definition of

∞�/, ∗]
=

∞�/ • (fails (s ; t))∗ • succs s r [Definition of succs]
[Definition of fail]

= succs s ; fails(s ; t) r [Definition of ;]

Case s r �=<>
= (skip � ∞�/ • (succs t)∗ • s r =<> �fail) r
= (skip � ∞�/ • t ∗ • s r =<> �fail) r [Law 42]
= fails (s ; t) r [Definition of ;]
=

∞�/ • (fails (s ; t))∗ < r > [Definition of ∗]
=

∞�/ • (fails (s ; t))∗ • succs s r [Definition of succs]
[Definition of skip]

= succs s ; fails(s ; t) r [Definition of ;]

Law 56. succs(s ; succs t) = succs s ; succs (s ; t)

succs(s ; succs t)
= succs (s ; t) [Law 42]
= succs s ; succs (s ; t) [Law 29]

Law 57. fails (succs s ; t) = fails s | (succs s ; fails t)

fails (succs s ; t) r
Case s r = ⊥ ot t r = ⊥
= ⊥ [Definition of ; ,succs]

[Definition of fails]
= fails s | (succs s ; fails t) r [Definition of |,; ,fails]

[Definition of succs]

Otherwise
= fails (succs (succs s); succs t) r [Law 35]
= fails (succs s ; succs t) r [Law 40]
= (skip � ∞�/ • (succs t)∗ • succs s r = [] � fail) r [Definition of succs, ;]

153

Case s r = []
= (skip � ∞�/ • (succs t) ∗ [] = [] � fail) r [Definition of succs]

[Definition of fail]
= [r] [Definition of ∗,∞�/]

[Definition of � �, skip]
=

∞�/[[r], []] [Definition of
∞�/]

=
∞�/[fails s r ,

∞�/ • (fails t) ∗ []] [Definition of fails]
[Definition of skip,

∞�/, ∗]
=

∞�/[fails s r ,
∞�/ • (fails t)∗ • succs s r] [Definition of succs]

[Definition of fail]
= fails s | (succs s ; fails t) r [Definition of ; ◦, |]

Case s r �= [], t r = []
= (skip � ∞�/ • (succs t) ∗ [r] = [] � fail) r [Definition of succs]

[Definition of skip]
= (skip � succs t r = [] � fail) r [Definition of ∗,∞�/]
= [r] [Definition of succs]

[Definition of fail]
[Definition of skip]

=
∞�/[[], [r]] [Definition of

∞�/]
=

∞�/[fails s r ,
∞�/[fails t r]] [Definition of fails]

[Definition of fail]
[Definition of skip]

=
∞�/[fails s r ,

∞�/ • (fails t) ∗ [r]] [Definition of ∗]
=

∞�/[fails s r ,
∞�/ • (fails t)∗ • succs s r] [Definition of succs]

[Definition of skip]
= fails s | (succs s ; fails t) r [Definition of ; ◦, |]

Case s r �= [], t r �= []
= (skip � ∞�/ • (succs t) ∗ [r] = [] � fail) r [Definition of succs]

[Definition of skip]
= (skip � succs t r = [] � fail) r [Definition of ∗,∞�/]
= [] [Definition of succs]

[Definition of skip]
[Definition of � �]
[Definition of fail]

=
∞�/[[], []] [Definition of

∞�/]
=

∞�/[fails s r ,
∞�/[fails t r] [Definition of

∞�/, fails]
[Definition of fail]

=
∞�/[fails s r ,

∞�/ • (fails t) ∗ [r]] [Definition of ∗]

154

=
∞�/[fails s r ,

∞�/ • (fails t)∗ • succs s r] [Definition of succs]
[Definition of skip]

= fails s | (succs s ; fails t) r [Definition of ; ◦, |]

Law 58. fails(s ; succs t) = fails s | (succs s ; fails (s ; t))
This law is proved by induction, as follows:

fails(s ; succs t) r

Base Case: s r = ⊥
= ⊥ [Definition of fails]
=

∞�/⊥ [Definition of
∞�/]

=
∞�/[⊥,

∞�/ • (fails (s ; t)) ∗ []] [Definition of
∞�/]

=
∞�/[fails s r ,

∞�/ • (fails (s ; t))∗ • succs s r > [Definition of succs]
[Definition of fails]

= fails s | (succs s ; fails (s ; t)) r [Definition of ; ,◦ , |]

Base Case: s r = []
= (skip � ∞�/ • (succs t)∗ • s r = [] � fail) r [Definition of fails, ;]
= (skip � [] = [] � fail) r [Definition of ∗,∞�/]
= [r] [Definition of � �]

[Definition of skip]
=

∞�/[[r], []] [Definition of
∞�/]

=
∞�/[fails s r ,

∞�/ • (fails (s ; t)) ∗ []] [Definition of fails]
[Definition of skip, ∗,∞�/]

=
∞�/[fails s r ,

∞�/ • (fails (s ; t))∗ • succs s r] [Definition of succs]
[Definition of fail]

= fails s | (succs s ; fails (s ; t)) r [Definition of ; ,◦ , |]

Inductive step on s r :
We suppose
(skip � ∞�/ • (succs t) ∗ xs =

[] � fail) r =
∞�/[fails s r ,

∞�/ • (fails (s ; t))∗ • succs s r]
We must prove that
(skip � ∞�/ • (succs t) ∗ [x]

∞� xs =
[] � fail) r =

∞�/[fails s r ,
∞�/ • (fails (s ; t))∗ • succs s r]

(skip � ∞�/ • (succs t) ∗ [x]
∞� xs = [] � fail) r

= (skip � ∞�/ • ((succs t x)
∞� (succs t) ∗ xs = [] � fail) r [Definition of ∗]

155

Case t x = []
= (skip � ∞�/ • ([]

∞� (succs t) ∗ xs = [] � fail) r [Assumption]
= (skip � ∞�/ • (succs t) ∗ xs = [] � fail) r [Definition of

∞�]
=

∞�/[fails s r ,
∞�/ • (fails (s ; t))∗ • succs s r] [Assumption]

Case t x = ⊥
= ⊥ [Definition of succs]

[Definition of fails]
=

∞�/[fails s r ,
∞�/ • (fails (s ; t))∗ • succs s r] [Definition succs]

[Definition of fails,
∞�/]

Case t x = xs
= (skip � ∞�/ • ([x]

∞� (succs t) ∗ xs = [] � fail) r [Assumption]
= (skip � [x]

∞� ∞�/ • (succs t) ∗ xs = [] � fail) r [Definition of
∞�/]

= [r] [Definition of � �]
=

∞�/[[], [r]] [Definition of
∞�/]

=
∞�/[fails s r ,

∞�/ • fails (
∞�/ • t ∗ • s) r] [Assumption]

=
∞�/[fails s r ,

∞�/ • (fails (
∞�/ • t ∗ • s)) ∗ [r]] [Definition ∗]

=
∞�/[fails s r ,

∞�/ • (fails (s ; t)) ∗ [r]] [Definition of ;]
=

∞�/[fails s r ,
∞�/ • (fails (s ; t))∗ • skip r] [Definition skip]

=
∞�/[fails s r ,

∞�/ • (fails (s ; t))∗ • succs s r] [Definition succs]

D.4 Laws involving Structural Combinators

Law 59. (t1 ; t2); (t3 ; t4) = (t1; t3) ; (t2; t4)

([[(t1 ; t2); (t3 ; t4)]]ΓL ΓT)(p1; p2, proofs)
=

∞�/ • ([[(t3 ; t4)]]ΓL ΓT)∗ • [[(t1 ; t2)]]ΓL ΓT (p1; p2, proofs) [Definition of ;]
=

∞�/ • ([[(t3 ; t4)]]ΓL ΓT)∗ •
Ω; ∗ (Π(< [[t1]]ΓL ΓT (p1, proofs), [[t2]]ΓL ΓT (p2, proofs) >)) [Definition of ;]

=
∞�/ • ([[(t3 ; t4)]]ΓL ΓT)∗ •

Ω; ∗ [(p ′
1, pr

′
1) : as | (p ′

1, pr
′
1) ← [[t1]]ΓL ΓT (p1, proofs),

as ← Π < [[t2]]ΓL ΓT (p2, proofs) >] [Definition of Π]
=

∞�/ • ([[(t3 ; t4)]]ΓL ΓT)∗ •
Ω; ∗ [(p ′

1, pr
′
1) : as | (p ′

1, pr
′
1) ← [[t1]]ΓL ΓT (p1, proofs),

as ← e2l ∗ < [[t2]]ΓL ΓT (p2, proofs)]] [Definition of Π]

156

=
∞�/ • ([[(t3 ; t4)]]ΓL ΓT)∗ •

Ω; ∗ [< (p ′
1, pr

′
1), (p ′

2, pr
′
2) >

| (p ′
1, pr

′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs)] [Lemma D.6.8]

=
∞�/ • ([[(t3 ; t4)]]ΓL ΓT)∗

[Ω; < (p ′
1, pr

′
1), (p ′

2, pr
′
2) >

| (p ′
1, pr

′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs)] [Definition of ∗]

=
∞�/ • ([[(t3 ; t4)]]ΓL ΓT)∗

[(p ′
1; p ′

2, pr
′
1 ∪ pr ′

2) | (p ′
1, pr

′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs)] [Definition of Ω;]

=
∞�/[[[t3 ; t4]]ΓL ΓT (p ′

1; p ′
2, pr

′
1 ∪ pr ′

2)
| (p ′

1, pr
′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs)] [Definition of ∗]

=
∞�/[Ω; ∗ (Π < [[t3]]ΓL ΓT (p ′

1, pr
′
1 ∪ pr ′

2), [[t4]]ΓL ΓT (p ′
2, pr

′
1 ∪ pr ′

2) >)
| (p ′

1, pr
′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs)] [Definition of ;]

=
∞�/[Ω; ∗ [(p ′

3, pr
′
3) : cs

| (p ′
1, pr

′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs),

(p ′
3, pr

′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1 ∪ pr ′

2),
cs ← Π < [[t4]]ΓL ΓT (p ′

2, pr
′
1 ∪ pr ′

2)]] [Definition of Π]
=

∞�/[Ω; ∗ [(p ′
3, pr

′
3) : cs

| (p ′
1, pr

′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs),

(p ′
3, pr

′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1 ∪ pr ′

2),
cs ← e2l ∗ [[t4]]ΓL ΓT (p ′

2, pr
′
1 ∪ pr ′

2)]] [Definition of Π]
=

∞�/[Ω; ∗ [< (p ′
3, pr

′
3), (p ′

4, pr
′
4) >

| (p ′
1, pr

′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs),

(p ′
3, pr

′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1 ∪ pr ′

2),
(p ′

4, pr
′
4) ← [[t4]]ΓL ΓT (p ′

2, pr
′
1 ∪ pr ′

2)]] [Lemma D.6.8]
=

∞�/[Ω; < (p ′
3, pr

′
3), (p ′

4, pr
′
4) >

| (p ′
1, pr

′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs),

(p ′
3, pr

′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1 ∪ pr ′

2),
(p ′

4, pr
′
4) ← [[t4]]ΓL ΓT (p ′

2, pr
′
1 ∪ pr ′

2)] [Definition of ∗]

157

=
∞�/[(p ′

3; p ′
4, pr

′
3 ∪ pr ′

4)
| (p ′

1, pr
′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs),

(p ′
3, pr

′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1 ∪ pr ′

2),
(p ′

4, pr
′
4) ← [[t4]]ΓL ΓT (p ′

2, pr
′
1 ∪ pr ′

2)] [Definition of Ω;]
= [(p ′

3; p ′
4, pr

′
3 ∪ pr ′

4)
| (p ′

1, pr
′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs),

(p ′
3, pr

′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1 ∪ pr ′

2),
(p ′

4, pr
′
4) ← [[t4]]ΓL ΓT (p ′

2, pr
′
1 ∪ pr ′

2)] [Definition of
∞�/]

= [(p ′
3; p ′

4, pr
′
3 ∪ pr ′

4)
| (p ′

1, pr
′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs),

(p ′
3, pr

′
3) ← (add pr ′

2) ∗ [[t3]]ΓL ΓT (p ′
1, pr

′
1),

(p ′
4, pr

′
4) ← (add pr ′

1) ∗ [[t4]]ΓL ΓT (p ′
2, pr

′
2)] [Definition of add]

= [(p ′
3; p ′

4, pr
′
3 ∪ pr ′

4)
| (p ′

1, pr
′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs),

(p ′
3, pr

′′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1),

(p ′
4, pr

′′
4) ← [[t4]]ΓL ΓT (p ′

2, pr
′
2),

pr ′
3 = pr ′′

3 ∪ pr ′
2, pr

′
4 = pr ′′

4 ∪ pr ′
1] [Property of add]

= [(p ′
3; p ′

4, pr
′′
3 ∪ pr ′′

4 ∪ pr ′
2 ∪ pr ′

1)
| (p ′

1, pr
′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs),

(p ′
3, pr

′′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1),

(p ′
4, pr

′′
4) ← [[t4]]ΓL ΓT (p ′

2, pr
′
2),

pr ′
3 = pr ′′

3 ∪ pr ′
2, pr

′
4 = pr ′′

4 ∪ pr ′
1] [Property of ∪]

= [(p ′
3; p ′

4, pr
′′
3 ∪ pr ′′

4)
| (p ′

1, pr
′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs)

(p ′
3, pr

′′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1),

(p ′
4, pr

′′
4) ← [[t4]]ΓL ΓT (p ′

2, pr
′
2)] [Lemma D.6.9]

= [Ω; < (p ′
3, pr

′′
3), (p ′

4, pr
′′
4) >

| (p ′
1, pr

′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs)

(p ′
3, pr

′′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1),

(p ′
4, pr

′′
4) ← [[t4]]ΓL ΓT (p ′

2, pr
′
2)] [Definition of Ω;]

158

= Ω; ∗ [< (p ′
3, pr

′′
3), (p ′

4, pr
′′
4) >

| (p ′
1, pr

′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs)

(p ′
3, pr

′′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1),

(p ′
4, pr

′′
4) ← [[t4]]ΓL ΓT (p ′

2, pr
′
2)] [Definition of ∗]

= Ω; ∗ (Π < [(p ′
3, pr

′′
3)

| (p ′
1, pr

′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
3, pr

′′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1)],

[(p ′
4, pr

′′
4)

| (p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs),

(p ′
4, pr

′′
4) ← [[t4]]ΓL ΓT (p ′

2, pr
′
2)] >) [Definition of Π]

= Ω; ∗ (Π <
∞�/[(p ′

3, pr
′′
3)

| (p ′
1, pr

′
1) ← [[t1]]ΓL ΓT (p1, proofs),

(p ′
3, pr

′′
3) ← [[t3]]ΓL ΓT (p ′

1, pr
′
1)],∞�/[(p ′

4, pr
′′
4)

| (p ′
2, pr

′
2) ← [[t2]]ΓL ΓT (p2, proofs),

(p ′
4, pr

′′
4) ← [[t4]]ΓL ΓT (p ′

2, pr
′
2)] >) [Definition of

∞�/]
= Ω; ∗ (Π[

∞�/ • [[t3]]ΓL ΓT ∗ < (p ′
1, pr

′
1) | (p ′

1, pr
′
1) ← [[t1]]ΓL ΓT (p1, proofs)],∞�/ • [[t4]]ΓL ΓT ∗ < (p ′

2, pr
′
2) | (p ′

2, pr
′
2) ← [[t1]]ΓL ΓT (p2, proofs)] >)

[Definition of [[]] and ∗]
= Ω; ∗ (Π <

∞�/ • [[t3]]ΓL ΓT ∗ • [[t3]]ΓL ΓT (p1, proofs),∞�/ • [[t4]]ΓL ΓT ∗ • [[t4]]ΓL ΓT (p2, proofs) >) [Definition of [[]]]
= Ω; ∗ (Π < [[t1; t3]]ΓL ΓT (p1, proofs),

[[t2; t4]]ΓL ΓT (p2, proofs) >) [Definition of ;]
= [[(t1; t3) ; (t2; t4)]]ΓL ΓT (p1; p2, proofs) [Definition of ;]

Law 60. t1 ; (t2 | t3) = (t1 ; t2) | (t1 ; t3)

[[t1 ; (t2 | t3)]]ΓL ΓT (p1; p2, proofs)
= Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs),

[[t2 | t3]]ΓL ΓT (p2, proofs) >) [Definition of ;]
= Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs),∞�/[[[t2]]ΓL ΓT , [[t3]]ΓL ΓT]◦ (p2, proofs) >) [Definition of |]
= Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs),

([[t2]]ΓL ΓT (p2, proofs))
∞� ([[t3]]ΓL ΓT (p2, proofs)) >) [Definition of ◦]

= Ω; ∗ ((Π < [[t1]]ΓL ΓT (p1, proofs), [[t2]]ΓL ΓT (p2, proofs) >)
∞�

(Π < [[t1]]ΓL ΓT (p1, proofs), [[t3]]ΓL ΓT (p2, proofs) >)) [Lemma D.6.10]
= Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs), [[t2]]ΓL ΓT (p2, proofs) >)

∞�
Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs), [[t3]]ΓL ΓT (p2, proofs) >) [Lemma D.6.12]

159

=
∞�/(Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs), [[t2]]ΓL ΓT (p2, proofs) >)

∞�
Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs), [[t3]]ΓL ΓT (p2, proofs) >)) [Property of

∞�/]
=

∞�/([[t1 ; t2]]ΓL ΓT (p1; p2, proofs)
∞�

[[t1 ; t3]]ΓL ΓT (p1; p2, proofs)) [Definition of ;]
=

∞�/[[[t1 ; t2]]ΓL ΓT , [[t1 ; t3]]ΓL ΓT]◦ (p1; p2, proofs)) [Definition of ◦]
= [[(t1 ; t2) | (t1 ; t3)]]ΓL ΓT (p1; p2, proofs)) [Definition of |]

Law 61. (t1 | t2) ; t3 = (t1 ; t3) | (t2 ; t3)

[[(t1 | t2) ; t3]]ΓL ΓT (p1; p2, proofs)
= Ω; ∗ (Π < [[t1 | t2]]ΓL ΓT (p1, proofs), [[t3]]ΓL ΓT (p2, proofs) >) [Definition of ;]
= Ω; ∗ (Π <

∞�/[[[t1]]ΓL ΓT , [[t2]]ΓL ΓT]◦ (p1, proofs),
[[t3]]ΓL ΓT (p2, proofs) >) [Definition of |]

= Ω; ∗ (Π <
∞�/([[t1]]ΓL ΓT (p1, proofs)∞�[[t2]]ΓL ΓT (p1, proofs)), [[t3]]ΓL ΓT (p2, proofs) >)[Definition of ◦]

= Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs)∞�[[t2]]ΓL ΓT (p1, proofs), [[t3]]ΓL ΓT (p2, proofs) >) [Definition of
∞�/]

= Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs), [[t3]]ΓL ΓT (p2, proofs) >
∞�

Π < [[t2]]ΓL ΓT (p1, proofs), [[t3]]ΓL ΓT (p2, proofs) >) [Lemma D.6.11]
= Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs), [[t3]]ΓL ΓT (p2, proofs) >)

∞�
Ω; ∗ (Π < [[t2]]ΓL ΓT (p1, proofs), [[t3]]ΓL ΓT (p2, proofs) >) [Lemma D.6.12]

=
∞�/(Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs), [[t3]]ΓL ΓT (p2, proofs) >)

∞�
Ω; ∗ (Π < [[t2]]ΓL ΓT (p1, proofs), [[t3]]ΓL ΓT (p2, proofs) >)) [Definition of

∞�/]
=

∞�/([[t1 ; t3]]ΓL ΓT (p1; p2, proofs)
∞� [[t2 ; t3]]ΓL ΓT (p1; p2, proofs)) [Definition of ;]

=
∞�/ • [[[t1 ; t3]]ΓL ΓT , [[t2 ; t3]]ΓL ΓT]◦ (p1; p2, proofs)) [Definition of ◦]

= [[(t1 ; t3) | (t2 ; t3)]]ΓL ΓT (p1; p2, proofs)) [Definition of |]

Law 62. !(t1 ; t2) =!t1 ; !t2)

[[!(t1 ; t2)]]ΓL ΓT (p1; p2, proofs)
= head ′(Ω; ∗ (Π < [[t1]]ΓL ΓT (p1, proofs), [[t2]]ΓL ΓT (p2, proofs) >)) [Definition of ! and ;]
= Ω; ∗ (head ′(Π < [[t1]]ΓL ΓT (p1, proofs), [[t2]]ΓL ΓT (p2, proofs) >)) [Lemma D.6.13]
= Ω; ∗ (Π < head ′([[t1]]ΓL ΓT (p1, proofs)),

head ′([[t2]]ΓL ΓT (p2, proofs)) >) [Lemma D.6.14]
= Ω; ∗ (Π < [[!t1]]ΓL ΓT (p1, proofs), [[!t2]]ΓL ΓT (p2, proofs) >) [Definition of !]
= [[!t1 ; !t2]]ΓL ΓT (p1; p2, proofs) [Definition of ;]

160

D.5 Laws on con

The side-conditions of these laws use the function φ which extracts the set of free-
variables of the tactic to which it is applied.

Law 63. (con v • t1; t2) = (con v • t1); t2 provided v /∈ φt2

([[con v • t1; t2]]ΓL ΓT)
= ([[(|v∈TERM (t1; t2)(v))]]ΓL ΓT) [Definition of con]
= ([[(|v∈TERM (t1(v); t2(v)))]]ΓL ΓT) [Distribution of ;]
= ([[(|v∈TERM t1(v); t2)]]ΓL ΓT)) [provided v /∈ φt2]
= ([[(|v∈TERM t1(v)); t2]]ΓL ΓT) [Law 6]
= ([[(con v • t1); t2]]ΓL ΓT) [Definition of con]

Law 64. (con v • t1; t2) = t1; (con v • t2) provided v /∈ φt1 and !t1 = t1

([[(con v • t1; t2)]]ΓL ΓT)
= ([[(|v∈TERM (t1; t2)(v))]]ΓL ΓT) [Definition of con]
= ([[(|v∈TERM (t1(v); t2(v)))]]ΓL ΓT) [Distribution of ;]
= ([[(|v∈TERM t1; t2(v))]]ΓL ΓT) [provided v /∈ φt2]
= ([[t1; (|v∈TERM t2(v))]]ΓL ΓT) [Law 7]
= ([[t1; (con v • t2)]]ΓL ΓT) [Definition of con]

Law 65. (con v • t) = t provided v /∈ φt

([[(con v • t)]]ΓL ΓT)
= ([[(|v∈TERM t(v))]]ΓL ΓT) [Definition of con]
= ([[(|v∈TERM t)]]ΓL ΓT) [Provided v /∈ φt]
= ([[t]]ΓL ΓT) [t | t = t]

Law 66. (con v • t) = (con u • t [v \ u]) provided u /∈ φt

([[(con v • t)]]ΓL ΓT)
= ([[(|v∈TERM t(v))]]ΓL ΓT) [Definition of con]
= ([[(|u∈TERM t(u))]]ΓL ΓT) [provided u /∈ φt]
= ([[(con u • t [v \ u])]]ΓL ΓT) [Definition of con]

161

D.6 Lemmas

D.6.1 Lemma 3

We prove this Lemma by structural induction, using definition 3 above.

Base cases :
skip =!skip [Law 8]

fail =!fail [Law 9]

law l =!(law l) [Law 10]

Inductive step : We assume that ti is sequential, this means ti =!ti

We must consider the following cases

a) !t

= !(t | fail) [Law 2]

= !(!t | fail) [Law 14]
= !(!t) [Law 2]

b) fails t =! fails t [Law 22]

c) succs t =! succs t [Law 43]

d) t1; t2
= !t1; !t2 [Inductive Hypothesis]
= !(!t1; !t2) [Law 12]
= !(t1; t2) [Inductive Hypothesis]

In the following proofs we use the notation listi to denote the ith-element of the list list .

e) if tactics fi (if GC fi, proofs)
= Ωif (proofs) (mkGC (extractG GC)

(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (extractP GC)))))
[Definition of if fi]

= Ωif (proofs) (mkGC (extractG GC)
(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i))

[Definition of apply and ∗]

162

= Ωif (proofs) (mkGC (extractG GC)
(Π([[!tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i))

[Assumption]
= Ωif (proofs) (mkGC (extractG GC)

(Π(head ′([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i)))
[Definition of !]

= Ωif (proofs) (mkGC (extractG GC)
head ′(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i))

[Lemma 18]
= (if (proofs)) ∗ (mkGC (extractG GC)

head ′(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i))
[Definition of Ωif]

= (if (proofs)) ∗ ((insertG (extractG GC))∗
head ′(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i))

[Definition of mkGC]
= (if (proofs)) ∗ (head ′((insertG (extractG GC))∗

(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i)))
[Lemma 17]

= (if (proofs)) ∗ (head ′(mkGC (extractG GC)
(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i)))

[Definition of mkGC]
= head ′((if (proofs)) ∗ (mkGC (extractG GC)

(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i)))
[Lemma 17]

= head ′(Ωif (proofs) (mkGC (extractG GC)
(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i)))

[Definition of Ωif and mkGC]
= head ′(Ωif (proofs) (mkGC (extractG GC)

(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (extractP GC))))))
[Definition of apply and ∗]

= ! if tactics fi (if GC fi, proofs)
[Definition of if fi and head ′]

f) do tactics od (do GC od, proofs)
= Ωdo (proofs) (mkGC (extractG GC)

(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (extractP GC)))))
[Definition of do od]

= Ωdo (proofs) (mkGC (extractG GC)
(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i))

[Definition of apply and ∗]

163

= Ωdo (proofs) (mkGC (extractG GC)
(Π([[!tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i))

[Assumption]
= Ωdo (proofs) (mkGC (extractG GC)

(Π(head ′([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i)))
[Definition of !]

= Ωdo (proofs) (mkGC (extractG GC)
head ′(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i))

[Lemma 18]
= (do (proofs)) ∗ (mkGC (extractG GC)

head ′(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i))
[Definition of Ωdo]

= (do (proofs)) ∗ ((insertG (extractG GC))∗
head ′(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i))

[Definition of mkGC]
= (do (proofs)) ∗ (head ′((insertG (extractG GC))∗

(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i)))
[Lemma 17]

= (do (proofs)) ∗ (head ′(mkGC (extractG GC)
(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i)))

[Definition of mkGC]
= head ′((do (proofs)) ∗ (mkGC (extractG GC)

(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i)))
[Lemma 17]

= head ′(Ωdo (proofs) (mkGC (extractG GC)
(Π([[tacticsi]]ΓL ΓT) (Φr ∗ extractP GC)i)))

[Definition of Ωdo and mkGC]
= head ′(Ωdo (proofs) (mkGC (extractG GC)

(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (extractP GC))))))
[Definition of apply and ∗]

= !do tactics od (do GC od, proofs)
[Definition of do od and head ′]

g) var t1]] (p, pobs)

= (var d) ∗ ([[t]]ΓLΓT (p, pobs)) [Definition of var]]]
= (var d) ∗ ([[!t]]ΓLΓT (p, pobs)) [Assumption]
= (var d) ∗ (head ′([[t]]ΓLΓT (p, pobs))) [Definition of !]
= head ′((var d) ∗ ([[t]]ΓLΓT (p, pobs))) [Lemma 17]
= !var t1]] (p, pobs) [Definition of ! and var]]]

h) con t1]] (p, pobs)

164

= (cons d) ∗ ([[t]]ΓLΓT (p, pobs)) [Definition of con]]]
= (cons d) ∗ ([[!t]]ΓLΓT (p, pobs)) [Assumption]
= (cons d) ∗ (head ′([[t]]ΓLΓT (p, pobs))) [Definition of !]
= head ′((cons d) ∗ ([[t]]ΓLΓT (p, pobs))) [Lemma 17]
= !con t1]] (p, pobs) [Definition of ! and con]]]

i) pmain t1]] (p, pobs)

= (procm n p) ∗ ([[t]]ΓLΓT (p, pobs)) [Definition of pmain]]]
= (procm n p) ∗ ([[!t]]ΓLΓT (p, pobs)) [Assumption]
= (procm n p) ∗ (head ′([[t]]ΓLΓT (p, pobs))) [Definition of !]
= head ′((procm n p) ∗ ([[t]]ΓLΓT (p, pobs))) [Lemma 17]
= !pmain t1]] (p, pobs) [Definition of ! and pmain]]]

j) pmainvariant t1]] (p, pobs)

= (variant n b v e) ∗ ([[t]]ΓLΓT (p, pobs)) [Definition of pmainvariant]]]
= (variant n b v e) ∗ ([[!t]]ΓLΓT (p, pobs)) [Assumption]
= (variant n b v e) ∗ (head ′([[t]]ΓLΓT (p, pobs))) [Definition of !]
= head ′((variant n b v e) ∗ ([[t]]ΓLΓT (p, pobs))) [Lemma 17]
= !pmainvariant t1]] (p, pobs) [Definition of !]

[Definition of pmainvariant]]]

k) pbody t1]] (p, pobs)

= (procb n p) ∗ ([[t]]ΓLΓT (p, pobs)) [Definition of pbody]]]
= (procb n p) ∗ ([[!t]]ΓLΓT (p, pobs)) [Assumption]
= (procb n p) ∗ (head ′([[t]]ΓLΓT (p, pobs))) [Definition of !]
= head ′((procb n p) ∗ ([[t]]ΓLΓT (p, pobs))) [Lemma 17]
= !pbody t1]] (p, pobs) [Definition of ! and pbody]]]

l) pbodyvariant t1]] (p, pobs)

= (variantb n b v e) ∗ ([[t]]ΓLΓT (p, pobs)) [Definition of pbodyvariant]]]
= (variantb n b v e) ∗ ([[!t]]ΓLΓT (p, pobs)) [Assumption]
= (variantb n b v e) ∗ (head ′([[t]]ΓLΓT (p, pobs))) [Definition of !]
= head ′((variantb n b v e) ∗ ([[t]]ΓLΓT (p, pobs))) [Lemma 17]
= !pbodyvariant t1]] (p, pobs) [Definition of !]

[Definition of pbodyvariant]]]

m) pbodymain tb tm]] (p, pobs)

= pbody tb]] ; pmain tm]] (p, pobs) [Definition of pbodymain]]]

= !pbody tb]] ; !pmain tm]] (p, pobs) [Items (i) and (k)]

= !(!pbody tb]] ; !pmain tm]]) (p, pobs) [Law 12]

165

= !(pbody tb]] ; pmain tm]]) (p, pobs) [Items (i) and (k)]

= !pbodymain tb tm]] (p, pobs) [Definition of pbodymain]]]

n) pmainvariantbody t1]] (p, pobs)

= pbodyvariant tb]] ; pmainvariant tm]] (p, pobs)

[Definition of pmainvariantbody]]]

= !pbodyvariant tb]] ; !pmainvariant tm]] (p, pobs)
[Items (j) and (l)]

= !(!pbodyvariant tb]] ; !pmainvariant tm]]) (p, pobs)
[Law 12]

= !(pbodyvariant tb]] ; pmainvariant tm]]) (p, pobs)
[Items (j) and (l)]

= !pmainvariantbody t1]] (p, pobs) [Definition of pmainvariant]]]

o) val t1]] (p, pobs)

= (val v t a) ∗ ([[t]]ΓLΓT (p, pobs)) [Definition of val]]]
= (val v t a) ∗ ([[!t]]ΓLΓT (p, pobs)) [Assumption]
= (val v t a) ∗ (head ′([[t]]ΓLΓT (p, pobs))) [Definition of !]
= head ′((val v t a) ∗ ([[t]]ΓLΓT (p, pobs))) [Lemma 17]
= !val t1]] (p, pobs) [Definition of ! and val]]]

p) res t1]] (p, pobs)

= (res v t a) ∗ ([[t]]ΓLΓT (p, pobs)) [Definition of res]]]
= (res v t a) ∗ ([[!t]]ΓLΓT (p, pobs)) [Assumption]
= (res v t a) ∗ (head ′([[t]]ΓLΓT (p, pobs))) [Definition of !]
= head ′((res v t a) ∗ ([[t]]ΓLΓT (p, pobs))) [Lemma 17]
= !res t1]] (p, pobs) [Definition of ! and res]]]

q) val-res t1]] (p, pobs)

= (valres v t a) ∗ ([[t]]ΓLΓT (p, pobs)) [Definition of val-res]]]
= (valres v t a) ∗ ([[!t]]ΓLΓT (p, pobs)) [Assumption]
= (valres v t a) ∗ (head ′([[t]]ΓLΓT (p, pobs))) [Definition of !]
= head ′((valres v t a) ∗ ([[t]]ΓLΓT (p, pobs))) [Lemma 17]
= !val-res t1]] (p, pobs) [Definition of ! and val-res]]]

r) parcommand t1]] (p, post)

= (parcommand d) ∗ ([[t]]ΓLΓT (p, post)) [Definition of parcommand]]]
= (parcommand d) ∗ ([[!t]]ΓLΓT (p, post)) [Assumption]
= (parcommand d) ∗ (head ′([[t]]ΓLΓT (p, post))) [Definition of !]
= head ′((valres d) ∗ ([[t]]ΓLΓT (p, post))) [Lemma 17]

166

= !parcommand t1]] (p, post) [Definition of !]

[Definition of parcommand]]]

D.6.2 Lemma 7

f ∗ • ∞�/ =
∞�/ • f ∗ ∗

This Lemma can be proved by induction as follows:

Base Case : lst = []
f ∗ • ∞�/[]
= f ∗ ∞�/[] [Functional Composition]
= f ∗ [] [Definition of

∞�/]
= [] [Definition of ∗]
=

∞�/[] [Definition of
∞�/]

=
∞�/ f ∗ ∗ [] [Definition of ∗]

Base Case : lst = ⊥
f ∗ • ∞�/[]
= f ∗ ⊥ [Definition of

∞�/]
= ⊥ [Definition of ∗]
=

∞�/⊥ [Definition of
∞�/]

=
∞�/ f ∗ ∗ ⊥ [Definition of ∗]

Base Case : lst = [[x]]
f ∗ • ∞�/[[x]]
= f ∗ [x] [Definition of

∞�/]
= [f x] [Definition of ∗]
=

∞�/[[f x]] [Definition of
∞�/]

=
∞�/ f ∗ ∗ [[x]]t [Definition of ∗]

Inductive step:
fs : finseq(pfiseq X)
fs : pfiseq(pfiseq X)

We assume that
f ∗ • ∞�/ fs =

∞�/ • f ∗ ∗ fs .
f ∗ • ∞�/ is =

∞�/ • f ∗ ∗ is .

We must prove that f ∗ • ∞�/ fs
∞� is =

∞�/ • f ∗ ∗ fs
∞� is .

167

f ∗ • ∞�/ fs
∞� is

= (f ∗ • ∞�/ fs)
∞� (f ∗ • ∞�/ is) [Lemma D.6.21]

= (
∞�/ • f ∗ ∗ fs)

∞� (
∞�/ • f ∗ ∗ is) [Assumption]

=
∞�/((f ∗ ∗ fs)

∞� (f ∗ ∗ is)) [Lemma D.6.5]
=

∞�/ • f ∗ ∗(fs
∞� is) [Lemma D.6.12]

D.6.3 Lemma 8
∞�/ • ∞�/ =

∞�/ • ∞�/ ∗
This lemma is also proved by induction as seen below:

∞�/ • ∞�/ =
∞�/ • ∞�/ ∗

Base Case: lst = []∞�/ • ∞�/[]
=

∞�/ • ∞�/ ∗ [] [Definition of ∗]

Base Case: lst = ⊥∞�/ • ∞�/[]
= ⊥ [Definition of

∞�/]
=

∞�/ • ∞�/ ∗ ⊥ [Definition of
∞�/,∗]

Base Case: lst = [[[x]]]∞�/ • ∞�/[[[x]]]
= [x] [Definition of ∗]
=

∞�/[[x]] [Definition of ∗]
=

∞�/ • ∞�/ ∗ [[[x]]] [Definition of ∗]

Inductive step:
fs : finseq(pfiseq X)
fs : pfiseq(pfiseq X)

We assume that∞�/ • ∞�/ fs =
∞�/ • ∞�/ ∗ fs∞�/ • ∞�/ is =
∞�/ • ∞�/ ∗ is

We must prove that
∞�/ • ∞�/ fs

∞� is =
∞�/ • ∞�/ ∗ fs

∞� is

168

∞�/ • ∞�/ fs
∞� is

=
∞�/(

∞�/ fs
∞� ∞�/ is) [Lemma D.6.5]

= (
∞�/ • ∞�/ fs)

∞� (
∞�/ • ∞�/ is) [Lemma D.6.5]

= (
∞�/ • ∞�/ ∗ fs)

∞� (
∞�/ • ∞�/ ∗ is) [Assumption]

=
∞�/((

∞�/ ∗ fs)
∞� (

∞�/ ∗ is)) [Lemma D.6.5]
=

∞�/ • ∞�/ ∗(fs
∞� is) [Lemma D.6.12]

D.6.4 Lemma 9

head ′ l = l if l = [] or #l = 1

See Lemma D.6.20.

D.6.5 Lemma 10
∞�/(a

∞� b) =
∞�/ a

∞� ∞�/ b

This lemma is proved by induction as follows:

∞�/(a
∞� b) =

∞�/ a
∞� ∞�/ b

Base Case: a = []∞�/(a
∞� b)

=
∞�/([]

∞� b)
=

∞�/ b [Definition of
∞�]

= []
∞� ∞�/ b [Definition of

∞�]
=

∞�/[]
∞� ∞�/ b [Definition of

∞�/]

Base Case: a = ⊥∞�/(a
∞� b)

= ⊥ [Definition of
∞�,

∞�/]
= ⊥∞� ∞�/ b [Definition of

∞�]
=

∞�/⊥∞� ∞�/ b [Definition of
∞�/]

Base Case: a = [e]∞�/(a
∞� b)

=
∞�/([e]

∞� b)

=
⊔

∞{c : [e]
∞� b • ∧ c} [Definition of

∞�/]

=
⊔

∞{c : {x : [e]; y : b • x ∧ y} • ∧ c} [Definition of
∞�]

= {c : {x : [e]; y : b • x ∧ y} • ∧ c} [Definition of
⊔

∞]

169

We need to make induction also on the list b.
Base Case: b = []
= {c : {x : [e]; y : [] • x ∧ y} • ∧ c}
= {c : {x : [e] • x} • ∧ c} [Definition of ∧]
= {c : [e] • ∧ c} [Set theory]
= {x : {c : [e] • ∧c}; y : {c : [] • ∧c} • x ∧ y} [Set theory]
= {x : {c : [e] • ∧c}; y : {c : b • ∧c} • x ∧ y} [Set theory]
= {x :

∞�/ c; y :
∞�/ b • x ∧ y} [Definition of

∞�/]
=

∞�/[e]
∞� ∞�/ b [Definition of

∞�]

Base Case: b = ⊥
= {c : {x : [e]; y : ⊥ • x ∧ y} • ∧ c}
= ⊥ [Definition of ∧]
= {x : {c : [e] • ∧c}; y : ⊥ • x ∧ y} [Definition of ∧]
= {x : {c : [e] • ∧c}; y : {c : ⊥ • ∧c} • x ∧ y} [Set theory]
= {x : {c : [e] • ∧c}; y : {c : b • ∧c} • x ∧ y} [Set theory]
= {x :

∞�/ c; y :
∞�/ b • x ∧ y} [Definition of

∞�/]
=

∞�/[e]
∞� ∞�/ b [Definition of

∞�]

Base Case: b = [v]
= {c : {x : [e]; y : [v] • x ∧ y} • ∧ c}
= {c : e ∧ v • ∧ c} [Set theory]
= {x : {c : [e] • ∧c}; y : {c : [v] • ∧c} • x ∧ y} [Set theory]
= {x : {c : [e] • ∧c}; y : {c : b • ∧c} • x ∧ y} [Set theory]
= {x :

∞�/ c; y :
∞�/ b • x ∧ y} [Definition of

∞�/]
=

∞�/[e]
∞� ∞�/ b [Definition of

∞�]

Inductive Step on b:
hs : finseq X
is : pfiseq X
We assume that
{c : {x : [e]; y : hs • x ∧ y} • ∧ c} = {x : {c : [e] • ∧c}; y : {c : hs • ∧c} • x ∧ y}
{c : {x : [e]; y : is • x ∧ y} • ∧ c} = {x : {c : [e] • ∧c}; y : {c : is • ∧c} • x ∧ y}

We must prove that
{c : {x : [e]; y : hs

∞� is • x ∧ y} • ∧ c} = {x : {c : [e] • ∧c}; y : {c : hs
∞� is • ∧c} • x ∧ y}

{c : {x : [e]; y : hs
∞� is • x ∧ y} • ∧ c}

= {c : {x : [e]; y : hs • x ∧ y} ∪ {x : [e]; y : is • x ∧ y} • ∧ c} [Set Comprehension]

170

= {c : {x : [e]; y : hs • x ∧ y} • ∧c} ∪ {c : {x : [e]; y : hs • x ∧ y} • ∧c}
[Set Comprehension]

= {x : {c : [e] • ∧c}; y : {c : hs • ∧c} • x ∧ y} ∪ {x : {c : [e] • ∧c}; y : {c : is • ∧c} • x ∧ y}
[Assumption]

= {x : {c : [e] • ∧c}; y : {c : hs
∞� is • ∧c} • x ∧ y} [Set theory]

Inductive Step on a:
fs : finseq X
gs : pfiseq X
We assume that
{c : {x : fs ; y : b • x ∧ y} • ∧ c} = {x : {c : fs • ∧c}; y : b • x ∧ y}
{c : {x : gs ; y : b • x ∧ y} • ∧ c} = {x : {c : gs • ∧c}; y : b • x ∧ y}

We must prove that
{c : {x : fs

∞� gs ; y : b • x ∧ y} • ∧ c} = {x : {c : fs
∞� gs • ∧c}; y : b • x ∧ y}

{c : {x : fs
∞� gs ; y : b • x ∧ y} • ∧ c}

= {c : {x : fs ; y : b • x ∧ y} ∪ {x : gs ; y : b • x ∧ y} • ∧ c} [Set Comprehension]
= {c : {x : fs ; y : b • x ∧ y} • ∧c} ∪ {c : {x : gs ; y : b • x ∧ y} • ∧ c}

[Set Comprehension]
= {x : {c : fs • ∧c}; y : b • x ∧ y} ∪ {x : {c : gs • ∧c}; y : b • x ∧ y}

[Assumption]
= {x : {c : fs

∞� gs • ∧c}; y : b • x ∧ y} [Set Comprehension]

D.6.6 Lemma 11

head ′(l ∞� ((
∞�/ • f ∗) l)) = head ′ l

This lemma is also proved by induction as seen below:

head ′(l ∞� ((
∞�/ • f ∗) l)) = head ′ l

Base Case: l = []
head ′([]

∞� ((
∞�/ • f ∗) []))

= head ′([]
∞� (

∞�/[]) [Definition of ∗]
= head ′([]

∞� []) [Definition of
∞�/]

= head ′([]) [Definition of
∞�]

Base Case: l = ⊥
head ′(⊥∞� ((

∞�/ • f ∗) ⊥))

171

= head ′(⊥) [Definition of
∞�]

Base Case: l = [x]
head ′([x]

∞� ((
∞�/ • f ∗) [x]))

= head ′([x]
∞� (

∞�/[x]) [Definition of ∗]
= head ′([x]

∞� [x]) [Definition of
∞�/]

= head ′([x]) [Definition of
∞�]

Inductive Step on a:
fs : finseq X
is : pfiseq X
Inductive step:
We assume that
head ′(fs ∞� ((

∞�/ • f ∗) fs)) = head ′ fs
head ′(is ∞� ((

∞�/ • f ∗) is)) = head ′ is

We must prove that
head ′((fs ∞� is)

∞� ((
∞�/ • f ∗) (fs

∞� is))) = head ′ (fs
∞� is)

head ′((fs ∞� is)
∞� ((

∞�/ • f ∗) (fs
∞� is)))

= head ′ (fs
∞� is) [Definition of head ′]

D.6.7 Lemma 12

head ′(l1
∞� l2

∞� l1) = head ′(∞�/[l1, l2])

This lemma is proved by induction as follows:

head ′(l1
∞� l2

∞� l1) = head ′(∞�/[l1, l2])

Base Case:
l1 = []
head ′([]

∞� l2
∞� []) = head ′(l2) [Definition of

∞�]
= head ′(∞�/[[], l2]) [Definition of

∞�/]

l1 = ⊥
head ′(⊥∞� l2

∞� ⊥) = head ′(⊥) [Definition of
∞�]

= head ′(∞�/[⊥, l2]) [Definition of
∞�/]

Inductive step:

172

fs : finseq X
is : pfiseq X

We assume that
head ′(fs ∞� l2

∞� fs) = head ′(∞�/[fs , l2])
head ′(is ∞� l2

∞� is) = head ′(∞�/[is , l2])

We must prove that
head ′((fs ∞� is)

∞� l2
∞� (fs

∞� is)) = head ′(∞�/[(fs
∞� is), l2])

head ′((fs ∞� is)
∞� l2

∞� (fs
∞� is))

= head ′(fs ∞� is) [Definition of head ′]
= head ′((fs ∞� is)

∞� l2) [Definition of
∞�]

= head ′(∞�/[(fs
∞� is), l2]) [Definition of

∞�/]

D.6.8 Lemma 13

[a : as | a ← A, as ← B]and ∀ l : B • #l = 1
= [< a, b >| a ← A, b ← B]

This lemma is proved by induction as follows:

Base Case:
B = []
[a : as | a ← A, as ← B] = [a : as | a ← A, as ←>
= [] [List Comprehension]
= [< a, b >| a ← A, b ←] [List Comprehension]
= [< a, b >| a ← A, b ← B]

Inductive step: We assume that
[a : as | a ← A, as ← B] ∧ ∀ l : B • #l = 1 =<< a, b >| a ← A, b ← B >

We must prove that
[a : as | a ← A,

as ← {< x >} ∪ B >∧ ∀ l : {< x >} ∪ B
• #l = 1 =<< a, b >| a ← A, b ← {< x >} ∪ B]

[a : as | a ← A, as ← {< x >} ∪ B]
= [a : as | a ← A, as ← {< x >}]∞�[a : as | a ← A, as ← B] [Property of

∞�]

173

= [< a, x >| a ← A]
∞� [a : as | a ← A, as ← B] [List Comprehension]

= [< a, b >| a ← A, b ← {< x >}]
∞� [< a, b >| a ← A, b ← B] [List Comprehension]

[Assumption]
= [< a, b >| a ← A, b ← {< x >} ∪ B] [Property of

∞�]

D.6.9 Lemma 14

∀ t : Tactic,∀(p, pr) ∈ [[t]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

This lemma is proved by induction as seen below:

Base Cases:
t =law lname(args)

[[law l (args)]]ΓL ΓT (p ′, pr ′)

This is defined as

if lname ∈ dom ΓL ∧ args ∈ dom ΓL lname ∧ p ′ ∈ dom ΓL lname args then
let (newp, proofs) = ΓL lname args p ′ ∈
[(newp, pr ′ ∪ nproofs)]

else
[]

As pr ′ ⊆ pr ′ ∪ proofs we can conclude that
∀(p, pr) ∈ [[law l (args)]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

t = skip

[[skip]]ΓL ΓT (p ′, pr ′) = [(p’,pr’)]
So ∀(p, pr) ∈ [[skip]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

t = fail

[[fail]]ΓL ΓT (p ′, pr ′) = []
So ∀(p, pr) ∈ [[fail]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

t = abort

[[abort]]ΓL ΓT (p ′, pr ′) = ⊥
So ∀(p, pr) ∈ [[abort]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

174

Inductive step: We assume that
∀ t1, t2 : Tactic and
∀(p, pr) ∈ [[t1]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr and
∀(p, pr) ∈ [[t2]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr
We must prove that

∀(p, pr) ∈ [[t1; t2]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

[[t1; t2]]ΓL ΓT (p ′, pr ′) =
∞�/ • ([[t2]]ΓL ΓT)∗ • [[t1]]ΓL ΓT (p ′, pr ′)[Definition of ;]

let [[t1]]ΓL ΓT (p ′, pr ′) = listA
By Assumption we have that
∀(p ′′, pr ′′) ∈ listA • pr ′ ⊆ pr ′′

Now, let
∞�/ • ([[t2]]ΓL ΓT) ∗ listA = listB

We have by Assumption and transitivity (pr ′ ⊆ pr ′′ ∧ pr ′′ ⊆ pr ′′′ ⇒ pr ′ ⊆ pr ′′′)
that ∀(p ′′′, pr ′′′) ∈ listB • pr ′ ⊆ pr ′′′

We must also prove that

∀(p, pr) ∈ [[t1 | t2]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

[[t1 | t2]]ΓL ΓT (p ′, pr ′)
=

∞�/[[[t1]]ΓL ΓT , [[t1]]ΓL ΓT]◦(p ′, pr ′) [Definition of |]
= ([[t1]]ΓL ΓT (p ′, pr ′)) ∞� ([[t2]]ΓL ΓT (p ′, pr ′)) [Definition of ◦ and

∞�/]
If, by assumption,
∀(p, pr) ∈ [[t1]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr and
∀(p, pr) ∈ [[t2]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr
so we can say that
∀(p, pr) ∈ [[t1]]ΓL ΓT (p ′, pr ′) ∞� [[t1]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

We must also prove that

∀(p, pr) ∈ [[!t1]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

[[!t1]]ΓL ΓT (p ′, pr ′)
= head ′([[t1]]ΓL ΓT (p ′, pr ′)) [Definition of !]
= [head([[t1]]ΓL ΓT (p ′, pr ′)] [Definition of head ′]
If, by assumption, we have that
∀(p, pr) ∈ [[t1]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr and
we also can say that
∀(p, pr) ∈ [head([[t1]]ΓL ΓT (p ′, pr ′)] • pr ′ ⊆ pr and

175

We must also prove that

∀(p, pr) ∈ [[t1 ; t2]]ΓL ΓT (p ′
1; p ′

2, pr
′) • pr ′ ⊆ pr

This structural combinator is defined as below

[[t1 ; t2]]ΓL ΓT (p ′
1; p ′

2, proofs) =
Ωsc ∗ (Π(< ([[t1]]ΓL ΓT)(p ′

1, proofs),
([[t2]]ΓL ΓT)(p ′

2, proofs) >))

We know that
Π < [[t1]]ΓL ΓT (p ′

1, proofs), [[t2]]ΓL ΓT (p ′
2, proofs) >

= [< (p1, pr1), (p2, pr2) >
| (p1, pr1) ← [[t1]]ΓL ΓT (p ′

1, proofs),
(p2, pr2) ← [[t1]]ΓL ΓT (p ′

2, proofs)] [Definition of Π]
= listP
and that
Ωsc ∗ listP
= < (p1; p2, pr1

∞� pr2)
| (p1, pr1) ← [[t1]]ΓL ΓT (p ′

1, proofs),
(p2, pr2) ← [[t1]]ΓL ΓT (p ′

2, proofs) > [Definition of Ωsc and ∗]
= listΩ
By assumption we have that
∀(p1, pr1) ∈ [[t1]]ΓL ΓT (p ′

1, pr
′) • pr ′ ⊆ pr1 and

∀(p2, pr2) ∈ [[t2]]ΓL ΓT (p ′
2, pr

′) • pr ′ ⊆ pr2

So we can say that ∀(p1; p2, pr1
∞� pr2) ∈ listΩ • pr ′ ⊆ pr1

∞� pr2

We must also prove that
∀(p, pr) ∈ [[if tactics fi]]ΓL ΓT (if GC fi, pr ′) • pr ′ ⊆ pr

= [[if tactics fi]]ΓL ΓT (if GC fi, pr ′)
= Ωif (pr ′)

(mkGC (brG GC)
(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (brP GC))))) [Definition of if fi]

= (if pr ′)∗
(mkGC (brG GC)

(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (brP GC))))) [Definition of Ωif]
= [(if gc fi, pr ′ ∪ nps)

| (gc, nps) ← mkGC (brG GC)
(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (brP GC))))]

[Definition of if]

176

We can see that
∀(p, pr) ∈ [(if gc fi, pr ′ ∪ nps)

| (gc, nps) ← mkGC (brG GC)
(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (brP GC))))]

• pr ′ ⊆ pr ′ ∪ nps

We must also prove that
∀(p, pr) ∈ [[do tactics od]]ΓL ΓT (do GC od, pr ′) • pr ′ ⊆ pr

= [[do tactics od]]ΓL ΓT (do GC od, pr ′)
= Ωdo (pr ′)

(mkGC (brG GC)
(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (brP GC)))))

[Definition of do od]
= (do pr ′)∗

(mkGC (brG GC)
(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (brP GC)))))

[Definition of Ωdo]
= [(do gc od, pr ′ ∪ nps)

| (gc, nps) ← mkGC (brG GC)
(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (brP GC))))]

[Definition of do]

We can see that
∀(p, pr) ∈ [(do gc od, pr ′ ∪ nps)

| (gc, nps) ← mkGC (brG GC)
(Π(apply (([[]]ΓL ΓT) ∗ tactics) (Φr ∗ (brP GC))))]

• pr ′ ⊆ pr ′ ∪ nps

We must also prove that
∀(p, pr) ∈ [[var t1]]]]ΓL ΓT ([[var d • p ′]], pr ′) • pr ′ ⊆ pr

[[var t1]]]]ΓL ΓT ([[var d • p ′]], pr ′)
= (var d) ∗ ([[t1]]ΓL ΓT (p ′, pr ′)) [Definition of var]]]
= [([[var d • p]], pr) | (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] [Definition of var]

So, we can say that
∀(p, pr) ∈ [([[var d • p]], pr)

| (p, pr) ← ([[t]]ΓL ΓT (p ′, pr ′))] • pr ′ ⊆ pr [Assumption]

We must also prove that

177

∀(p, pr) ∈ [[con t1]]]]ΓL ΓT ([[con d • p ′]], pr ′) • pr ′ ⊆ pr

[[con t1]]]]ΓL ΓT ([[con d • p ′]], pr ′)
= (cons d) ∗ ([[t1]]ΓL ΓT (p ′, pr ′)) [Definition of con]]]
= [([[con d • p]], pr) | (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] [Definition of cons]

So, we can say that
∀(p, pr) ∈ [([[con d • p]], pr)

| (p, pr) ← ([[t]]ΓL ΓT (p ′, pr ′))] • pr ′ ⊆ pr [Assumption]

We must also prove that
∀(p, pr) ∈ [[pmain t1]]]]ΓL ΓT ([[proc pname = body • p ′]], pr ′) • pr ′ ⊆ pr

[[pmain t1]]]]ΓL ΓT ([[proc pname = body • p ′]], pr ′)
= (procm pname body) ∗ ([[t1]]ΓL ΓT (p ′, pr ′)) [Definition of pmain]]]
= [([[proc pname = body • p]], pr)

| (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] [Definition of procm]

So, we can say that
∀(p, pr) ∈ [([[proc pname = body • p]], pr)

| (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] • pr ′ ⊆ pr[Assumption]

We must also prove that
∀(p, pr) ∈ [[pmainvariant t1]]]]ΓL ΓT ([[proc pname = body variant v is e • p ′]], pr ′)

• pr ′ ⊆ pr

[[pmainvariant t1]]]]ΓL ΓT ([[proc pname = body variant v is e • p ′]], pr ′)
= (variant pname body v e) ∗ ([[t1]]ΓL ΓT (p ′, pr ′)) [Definition of pmainvariant]]]
= [([[proc pname = body variant v is e • p]], pr)

| (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] [Definition of variant]

So, we can say that
∀(p, pr) ∈ [([[proc pname = body variant v is e • p]], pr)

| (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))]
• pr ′ ⊆ pr [Assumption]

We must also prove that
∀(p, pr) ∈ [[pbody t1]]]]ΓL ΓT ([[proc pname = body • p ′]], pr ′) • pr ′ ⊆ pr

[[pbody t1]]]]ΓL ΓT ([[proc pname = body • p ′]], pr ′)
= (procb pname p ′) ∗ ([[t1]]ΓL ΓT (body , pr ′)) [Definition of pbody]]]

178

= [([[proc pname = body ′ • p ′]], pr)
| (body ′, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] [Definition of procb]

So, we can say that
∀(p, pr) ∈ [([[proc pname = body ′ • p ′]], pr)

| (body ′, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] • pr ′ ⊆ pr[Assumption]

We must also prove that
∀(p, pr) ∈ [[pbodyvariant t1]]]]ΓL ΓT ([[proc pname = body variant v is e

• p ′]], pr ′) • pr ′ ⊆ pr

[[pbodyvariant t1]]]]ΓL ΓT ([[proc pname = body variant v is e • p ′]], pr ′)
= (variantb pname v e p ′) ∗ ([[t1]]ΓL ΓT (body , pr ′)) [Definition of pbodyvariant]]]
= [([[proc pname = body ′ variant v is e • p ′]], pr)

| (body ′, pr) ← ([[t1]]ΓL ΓT (body , pr ′))] [Definition of variantb]

So, we can say that
∀(p, pr) ∈ [([[proc pname = body ′ variant v is e • p ′]], pr)

| (body ′, pr) ← ([[t1]]ΓL ΓT (body , pr ′))]
• pr ′ ⊆ pr [Assumption]

We must also prove that
∀(p, pr) ∈ [[pbodymain tb tm]]]]ΓL ΓT ([[proc pname = body • p ′]], pr ′) • pr ′ ⊆ pr

[[pbodymain tb tm]]]]ΓL ΓT ([[proc pname = body • p ′]], pr ′)
= pbody tb]] ; pmain tm]] [Definition of pbodymain]]]

So, as we have already proved for sequential composition and for both structural
combinators, we have proved already for this structural combinator.

We must also prove that
∀(p, pr) ∈ [[pmainvariantbody t1]]]]ΓL ΓT ([[proc pname = body variant v is e

• p ′]], pr ′) • pr ′ ⊆ pr

[[pmainvariantbody t1]]]]ΓL ΓT ([[proc pname = body variant v is e • p ′]], pr ′)
= pbodyvariant tb]] ; pmainvariant tm]] [Definition of pmainvariantbody]]]

So, as we have already proved for sequential composition and for both structural
combinators, we have proved already for this structural combinator.

We must also prove that
∀(p, pr) ∈ [[val t1]]ΓL ΓT ((val v : t • p ′)(pars), pr ′) • pr ′ ⊆ pr

179

[[val t1]]ΓL ΓT ((val v : t • p ′)(pars), pr ′)
= (val v t pars) ∗ ([[t1]]ΓL ΓT (p ′, pr ′)) [Definition of val]]]
= [((val v : t • p)(pars), pr) | (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] [Definition of val]

So, we can say that
∀(p, pr) ∈ [((val v : t • p), pr)

| (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] • pr ′ ⊆ pr [Assumption]

We must also prove that
∀(p, pr) ∈ [[res t1]]ΓL ΓT ((res v : t • p ′)(pars), pr ′) • pr ′ ⊆ pr

[[res t1]]ΓL ΓT ((res v : t • p ′)(pars), pr ′)
= (res v t pars) ∗ ([[t1]]ΓL ΓT (p ′, pr ′)) [Definition of res]]]
= [((res v : t • p)(pars), pr) | (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] [Definition of res]

So, we can say that
∀(p, pr) ∈ [((res v : t • p)(pars), pr)

| (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] • pr ′ ⊆ pr [Assumption]

We must also prove that
∀(p, pr) ∈ [[val-res t1]]ΓL ΓT ((val-res v : t • p ′)(pars), pr ′) • pr ′ ⊆ pr

[[val-res t1]]ΓL ΓT ((val-res v : t • p ′)(pars), pr ′)
= (valres v t pars) ∗ ([[t1]]ΓL ΓT (p ′, pr ′)) [Definition of val-res]]]
= [((val-res v : t • p)(pars), pr)

| (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] [Definition of valres]

So, we can say that
∀(p, pr) ∈ [((val-res v : t • p)(pars), pr)

| (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] • pr ′ ⊆ pr [Assumption]

We must also prove that
∀(p, pr) ∈ [[parcommand t1]]ΓL ΓT ((pars • p ′), pr ′) • pr ′ ⊆ pr

[[parcommand t1]]ΓL ΓT ((pars • p ′), pr ′)
= (parcommand pars) ∗ ([[t1]]ΓL ΓT (p ′, pr ′)) [Definition of parcommand]]]
= [((pars • p), pr)

| (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] [Definition of parcommand]

So, we can say that

180

∀(p, pr) ∈ [((pars • p), pr)
| (p, pr) ← ([[t1]]ΓL ΓT (p ′, pr ′))] • pr ′ ⊆ pr[Assumption]

We must also prove that
∀(p, pr) ∈ [[tactic name({argument}∗)]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

[[tactic name(args)]]ΓL ΓT (p ′, pr ′) =
if name ∈ dom ΓT ∧ args ∈ dom ΓT tname then

ΓT tname args (p ′, pr ′)
else

[]

We know that ΓT : name → {argument}∗ → Tactic.
So, let ΓT name arguments = t1
We have then
= [[t1]]ΓL ΓT (p ′, pr ′) We can say that
∀(p, pr) ∈ [[t1]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr [Assumption]

We must also prove that
∀(p, pr) ∈ µ variable • tactic (p ′, pr ′) • pr ′ ⊆ pr

We know, by definition that this is defined as the least upper bound of a set
of tactics, and the least upper bound of a set of tactics is a tactic. Let t1 be this
tactic. So, by assumption, we finish this proof.

We must also prove that
∀(p, pr) ∈ [[applies to program do t2]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

[[applies to program do t2]]ΓL ΓT (p ′, pr ′)
= [[con program • equals (program, pr ′)t2]]ΓL ΓT (p ′, pr ′)

[Definition of applies to do]
= [[|v∈TERM (equals (program, pr ′); t2)(v)]] ΓL ΓT]]ΓL ΓT (p ′, pr ′)

[Definition os con]
We can say that
∀(p, pr) ∈ [[t1]]ΓL ΓT (p ′, pr ′) • pr ′ ⊆ pr

[Assumption]

181

D.6.10 Lemma 15a

Π < lsta , lstb >
∞� Π < lsta , lstc >= Π < lsta , lstb

∞� lstc >

Π < lsta , lstb >
∞� Π < lsta , lstc >

= < (a : as) | a ← lsta , as ← e2l ∗ lstb >∞� < (a : as) | a ← lsta , as ← e2l ∗ lstc > [Definition of Π]
= < (a : as) | a ← lsta , as ← (e2l ∗ lstb)

∞� (e2l ∗ lstc) > [Property of
∞�]

= < (a : as) | a ← lsta , as ← e2l ∗ (lstb
∞� lstc) > [Property of ∗]

= Π < lsta , lstb
∞� lstc > [Definition of Π]

D.6.11 Lemma 15b

Π < lsta , lstc >
∞� Π < lstb , lstc >= Π < lsta

∞� lstb , lstc >

Π < lsta , lstc >
∞� Π < lstb , lstc >

= < (a : as) | a ← lsta , as ← e2l ∗ lstc >∞� < (a : as) | a ← lstb , as ← e2l ∗ lstc > [Definition of Π]
= < (a : as) | a ← lsta

∞� lstb , as ← e2l ∗ lstc > [Property of
∞�]

= Π < lsta
∞� lstb , lstc > [Definition of Π]

D.6.12 Lemma 16

f ∗ a
∞� f ∗ b = f ∗ (a

∞� b)

This lemma is proved by induction as follows:

Base Case: a = []
f ∗ []

∞� f ∗ b
= f ∗ b [Definition of ∗,

∞�]
= f ∗ ([]

∞� b) [Definition of
∞�]

Base Case: a = ⊥
f ∗ ⊥∞� f ∗ b
= ⊥∞� f ∗ b [Definition of ∗]
= ⊥ [Definition of

∞�]
= f ∗ (⊥) [Definition of ∗]
= f ∗ (⊥∞� b) [Definition of

∞�]
Base Case: a = [x]
f ∗ [x]

∞� f ∗ b

182

= (f x)
∞� f ∗ b [Definition of ∗]

= f ∗ ([x]
∞� b) [Definition of ∗]

Inductive step:
fs : finseq X
is : pfiseq X

We assume that
f ∗ fs

∞� f ∗ b = f ∗ (a
∞� b)

f ∗ is
∞� f ∗ b = f ∗ (a

∞� b)

We must prove that
f ∗ (fs

∞� is)
∞� f ∗ b = f ∗ ((fs

∞� is)
∞� b)

f ∗ (fs
∞� is)

∞� f ∗ b = {x : f ∗ (fs
∞� is); y : f ∗ b • x ∧ y} [Definition of

∞�]
= {x : f ∗ {u : fs ; v : is • u ∧ v}; y : f ∗ b • x ∧ y} [Definition of

∞�]
= {x : f ∗ fs ; y : f ∗ b • x ∧ y} ∪ {x : f ∗ is ; y : f ∗ b • x ∧ y} [Set Comprehension]
= f ∗ {x : fs ; y : b • x ∧ y} ∪ f ∗ {x : is ; y : b • x ∧ y} [Assumption]
= f ∗ {x : {u : fs ; v : is • u ∧ v}; y : b • x ∧ y} [Set Comprehension]
= f ∗ {x : fs

∞� is ; y : b • x ∧ y} [Definition of
∞�]

= f ∗ ((fs
∞� is)

∞� b) [Definition of
∞�]

D.6.13 Lemma 17

head ′(f ∗ lst) = f ∗ (head ′ lst)

This lemma is proved by induction as seen below:

head ′(f ∗ lst) = f ∗ (head ′ lst)

Base Case: lst = []
head ′(f ∗ [])
= head ′([]) [Definition of ∗]
= [] [Definition of head ′]
= f ∗ [] [Definition of ∗]
= f ∗ (head ′([])) [Definition of head ′]

Base Case: lst = ⊥
head ′(f ∗ ⊥)
= head ′(⊥) [Definition of ∗]
= ⊥ [Definition of head ′]

183

= f ∗ ⊥ [Definition of ∗]
= f ∗ (head ′(⊥)) [Definition of head ′]

Base Case: lst = [x]
head ′(f ∗ [x])
= head ′([f x]) [Definition of ∗]
= [f x] [Definition of head ′]
= f ∗ [x] [Definition of ∗]
= f ∗ (head ′([x])) [Definition of head ′]

Inductive step:
fs : finseq X
is : pfiseq X

We assume that
head ′(f ∗ fs) = f ∗ (head ′ fs)
head ′(f ∗ is) = f ∗ (head ′ is)

We must prove that
head ′(f ∗ (fs

∞� is)) = f ∗ (head ′ (fs
∞� is))

head ′(f ∗ (fs
∞� is))

= head ′(f ∗ fs
∞� f ∗ is) [Lemma D.6.6]

= head ′(f ∗ fs) [Property of head ′]
= [head(f ∗ fs)] [Definition of head ′]
= [f head(fs)] [Property of ∗,head]
= f ∗ [head(fs)] [Definition of ∗]
= f ∗ head ′(fs) [Definition of head ′]
= f ∗ (head ′ (fs

∞� is)) [Property of head ′]

D.6.14 Lemma 18

head ′(Π(llst)) = Π(head ′ ◦ llst)

This lemma is also proved by induction as follows:

Base Case:
llst =<>
head ′(Π(llst))

184

= head ′(Π(<>))
= head ′([]) [Definition of Π]
= [] [Definition of head ′]
= Π(<>) [Definition of Π]
= Π(head ′◦ <>) [Definition of ∗]

Inductive step: We assume that head ′(Π(ls)) = Π(head ′ ∗ ls)
We must prove that head ′(Π(l : ls)) = Π(head ′ ∗ (l : ls))

head ′(Π(l : ls)) = head ′([a : as | a ← l , as ← Π ls]) [Definition of Π]
= [a : as | a ← head ′ l , as ← Π head ′ ◦ ls]) [Property of List Comprehension]
= Π(head ′ l : head ′ ◦ ls) [Definition of Π]
= Π(head ′ ◦ l : ls) [Definition of ◦]

D.6.15 Lemma 19

head ′(head ′(lst)) = head ′(lst)

Case: lst = []
head ′(head ′ [])
= head ′([]) [Definition of head ′]

Case: lst = ⊥
head ′(head ′ ⊥)
= head ′(⊥) [Definition of head ′]

Case: lst = [x]
∞� xs

head ′(head ′ ([x]
∞� xs))

= head ′([x]) [Definition of head ′]

185

D.6.16 Lemma 20
∞�/ • t ∗ lst �= [] ⇒ ∞�/ • (succs t) ∗ lst �= []

∞�/ • t ∗ lst �= []
⇒ ∃ r : RMCell • ∃ i : N • lst [i] = r ∧ t r �= []
⇒ ∃ p : pfiseq(RMCell) • ∃ r : RMCell • ∃ i : N • snd(p)[i] = r ∧ t r �= []
⇒ succs t r �= []
⇒ ∞�/ • (succs t) ∗ lst �= []

D.6.17 Lemma 21

∀ f , g : X → pfiseq X∞�/[f , g]◦ r = f r
∞� g r

∞�/[f , g]◦ r
=

∞�/[f r , g r] [Definition of ◦]
=

⊔
∞{c : [f r , g r] • ∧ c} [Definition of

∞�/]

=
⊔

∞{∧(f , < f r , g r >)} [Set theory]

=
⊔

∞{(∧(f , < f r >))
∞� (∧(f , < g r >))} [Definition of ∧]

=
⊔

∞{f r
∞� g r} [Definition of ∧]

=
⋃{f r

∞� g r} [Definition of
⊔

∞]

= f r
∞� g r [Definition of

⋃
]

D.6.18 Lemma 22

∀ a, b, c : pfseq X • a ∧ (b ∧ c) = (a ∧ b) ∧ c

a ∧ (b ∧ c)

Case a = (f , x),b = (f , y),c = (f , z)
= (f , x) ∧ ((f , y) ∧ (f , z))
= (f , x) ∧ (f , y cat z) [Definition of ∧]
= (f , x cat (y cat z)) [Definition of ∧]
= (f , (x cat y) cat z) [Property of

∞�]
= (f , x

∞� y) ∧ (f , z) [Definition of ∧]

186

= ((f , x) ∧ (f , y)) ∧ (f , z) [Definition of ∧]

Case a = (f , x),b = (f , y),c = (p, z)
= (f , x) ∧ ((f , y) ∧ (p, z))
= (f , x) ∧ (p, y cat z) [Definition of ∧]
= (p, x cat (y cat z)) [Definition of ∧]
= (p, (x cat y) cat z) [Property of

∞�]
= (f , x

∞� y) ∧ (p, z) [Definition of ∧]

= ((f , x) ∧ (f , y)) ∧ (p, z) [Definition of ∧]

Case a = (f , x),b = (p, y),c = (x : {f , p}, z)
= (f , x) ∧ ((p, y) ∧ c)
= (f , x) ∧ (p, y) [Definition of ∧]
= (p, x cat y) [Definition of ∧]
= (p, x cat y) catpf c [Property of

∞�]
= (f , x

∞� y) ∧ (p, z) [Definition of ∧]

= ((f , x) ∧ (p, y)) ∧ c [Definition of ∧]

Case a = (p, x),b = (x : {f , p}, y),c = (y : {f , p}, z)
= (p, x) ∧ (b ∧ c)
= (p, x) [Definition of ∧]
= (p, x) ∧ b [Definition of ∧]
= ((p, x) ∧ b) ∧ c [Definition of ∧]

D.6.19 Lemma 23

∀ e1, e2 : pfiseq X • ∞�/ • f ∗ • ∞�/[e1, e2] = (
∞�/ • f ∗ e1)

∞� (
∞�/ • f ∗ e2)

∞�/ • f ∗ • ∞�/[e1, e2]

=
∞�/ • f ∗ ⊔

∞{c : [e1, e2] • ∧c} [Definition of
∞�/]

=
∞�/ • f ∗ ⊔

∞{∧(f , < e1, e2 >)} [Set Theory]

=
∞�/ • f ∗ ⊔

∞{e1
∞� e2} [Definition of ∧]

=
∞�/ • f ∗ (e1

∞� e2)} [Definition of
⊔

∞,
⋃

]

=
∞�/{x : e1

∞� e2 • pfmap f x} [Definition of ∗]

187

=
∞�/{x : {a : e1; b : e2 • a ∧ b} • pfmap f x} [Definition of

∞�]
=

∞�/{x : {a : e1 • pfmap f a}; y : {b : e2 • pfmap f b} • x
∞� y}

[Set Comprehension]
= {x :

∞�/{a : e1 • pfmap f a}; y :
∞�/{b : e2 • pfmap f b} • x ∧ y}

[Property of
∞�/,

∞�,∧]
= {x :

∞�/ • f ∗ e1; y :
∞�/ • f ∗ e2 • x ∧ y} [Definition of ∗]

= (
∞�/ • f ∗ e1)

∞� (
∞�/ • f ∗ e2) [Definition of

∞�]

D.6.20 Lemma 24

take 1 l = l if l = [] or (size l = 1 ∧ ∀ x ∈ L • size (snd x) = 1)

Case l = []
take 1 [] = [] [Definition of take]

Case l = [e]
take 1 [e] = [e] [Definition of take]

D.6.21 Lemma 25

(f ∗ • ∞�/ a)
∞� (f ∗ • ∞�/ b) = f ∗ • ∞�/(a

∞� b)

(f ∗ • ∞�/ a)
∞� (f ∗ • ∞�/ b)

= (
∞�/ • f ∗ ∗ a)

∞� (
∞�/ • f ∗ ∗ b) [Lemma D.6.2]

=
∞�/(f ∗ ∗ a

∞� f ∗ ∗ b) [Lemma D.6.5]
=

∞�/ • f ∗ ∗(a
∞� b) [Lemma D.6.12]

= f ∗ • ∞�/(a
∞� b) [Lemma D.6.2]

D.6.22 Lemma 26

head(x
∞� y) = head([head x]

∞� y), x �= []

This lemma is proved by induction as follows

188

Base Case: x = ⊥
head(⊥∞� y)
= head([head ⊥]

∞� y) [Definitiof of head]

Base Case: x = [e]
head([e]

∞� y)
= head([e]) [Property of head]
= head([head [e]]) [Definition of head]
= head([head [e]]

∞� y) [Property of head]

Inductive step:
fs : finseq X
is : pfiseq X

We assume that
head(fs

∞� y) = head([head fs]
∞� y), fs �= []

head(is
∞� y) = head([head is]

∞� y), is �= []

We must prove that
head(fs

∞� is
∞� y) = head([head fs

∞� is]
∞� y), fs

∞� is �= []

head(fs
∞� is

∞� y) = head(fs) [Property of head]
= head([head fs]) [Lemma D.6.15]
= head([head fs

∞� is]) [Property of head]
= head([head fs

∞� is]
∞� y) [Property of head]

D.6.23 Lemma 27

head(x
∞� y) = head(x

∞� [heady]), y �= []

This lemma is proved by induction as follows

Base Case: y = ⊥
head(x

∞� ⊥)
= head(x

∞� [head ⊥]) [Definitiof of head]
Base Case: y = [e]
head(x

∞� [e])

Case x = []
= head([e]) [Property of head]

189

= head([head [e]]) [Definition of head]
= head(x

∞� [head [e]]) [Property of head]
Case x = ⊥
= head(⊥) [Property of head]
= head(⊥∞� [head [e]]) [Property of head]
Inductive step on x :
fs : finseq X
is : pfiseq X

We assume that
head(fs

∞� y) = head(fs
∞� [head y]), y �= []

head(is
∞� y) = head(is

∞� [head y]), y �= []

We must prove that
head((fs

∞� is)
∞� y) = head((fs

∞� is)
∞� [head y]), y �= [] [Property of head]

Inductive step on y :
gs : finseq X
hs : pfiseq X

We assume that
head(x

∞� gs) = head(x
∞� [head gs]), gs �= []

head(x
∞� hs) = head(x

∞� [head hs]), hs �= []

We must prove that
head(x

∞� (gs
∞� hs)) = head(x

∞� [head(gs
∞� hs)]), gs �= []

Case x = []
= head((gs

∞� hs)) [Property of head]
= head([]

∞� [head (gs
∞� hs)]) [Property of head]

Case x = ⊥
= head(⊥) [Definition of

∞�/]
= head(⊥∞� [head (gs

∞� hs)]) [Definition of
∞�/]

Inductive step on x :
fs : finseq X
is : pfiseq X

We assume that
head(fs

∞� (gs
∞� hs)) = head(fs

∞� [head(gs
∞� hs)]), (gs

∞� hs) �= []
head(is

∞� (gs
∞� hs)) = head(is

∞� [head(gs
∞� hs)]), (gs

∞� hs) �= []

190

We must prove that
head((fs

∞� is)
∞� (gs

∞� hs)) = head((fs
∞� is)

∞� [head(gs
∞� hs)]), (gs

∞� hs) �= []
[Property of head]

D.6.24 Lemma 28

l1
∞� (l2

∞� l3) = (l1
∞� l2)

∞� l3

l1
∞� (l2

∞� l3)
= {x : l1; y : l2

∞� l3 • x ∧ y} [Definition of
∞�]

= {x : l1; y : {w : l2; z : l3 • w ∧ z} • x ∧ y} [Definition of
∞�]

= {x : l1; w : l2; z : l3 • x ∧ (w ∧ z)} [Set Comprehension]
= {x : l1; w : l2; z : l3 • (x ∧ w) ∧ z} [Lemma D.6.18]
= {v : {x : l1; w : l2 • (x ∧ w)}; z : l3 • v ∧ z} [Set Comprehension]
= {v : l1

∞� l2; z : l3 • v ∧ z} [Definition of
∞�]

= (l1
∞� l2)

∞� l3 [Definition of
∞�]

191

Appendix E

Gabriel’s Architecture

We present now some diagrams that describes Gabriel’s architecture. The whole
document can be found in [26].

192

E.1 Class Diagrams

E.1.1 Integration Gabriel – Refine

This class diagram presents the main classes of Gabriel and Refine, and their inte-
gration.

Figure E.1: Integration Gabriel – Refine

193

E.1.2 Tactic’s Hierarchy

This class diagram presents Gabriel’s tactics hierarchy .

Figure E.2: Tactic’s Hierarchy

194

E.2 Sequence Diagrams

E.2.1 Tactic Generation

This sequence diagram describes the tactic generation in Gabriel.

Figure E.3: Tactic Generation

195

E.2.2 Tactic Application

This sequence diagram describes the tactic application in Gabriel.

Figure E.4: Tactic Application

196

Appendix F

Constructs of Gabriel

We present now the constructs of Gabriel for ArcAngel.

197

F.1 ASCII ArcAngel

Table F.1 presents the constructs os ArcAngel written in a ASCII representation.

ArcAngel Gabriel

law law
tactic tactic
skip skip
fail fail

abort abort
; ;
| |
! !

succs succs
fails fails

; |; |
if fi | if | | fi |

do od | do | | od |
var]] | var | |] ||
con]] | con | |] ||

pmain]] | pmain | |] ||
pmainvariant]] | pmainvariant | |] ||

pbody]] | pbody | |] ||
pbodyvariant]] | pbodyvariant | |] ||
pbodymain]] | pbodymain | |] ||

pmainvariantbody]] | pmainvariantbody | |] ||
parcommand]] | parcommand | |] ||
applies to do applies to do

Table F.1: ArcAngel’s constructs in Gabriel

198

F.2 Laws Names and Templates

Tables F.2 and F.3 present the law names and their usage templates in Gabriel. The
usage template defines the name of the laws and their arguments.

Morgan’s Refinement Calculus Gabriel

Law 1.1 strPost(PRED(newPost))
Law 1.2 weakPre(PRED(newPre))
Law 1.3 assign(IDS (lstVar),EXPS (lstVal))
Law 1.7 simpleEspec()
Law 1.8 absAssump()
Law 3.2 skipIntro()
Law 3.3 seqComp(PRED(mid))
Law 3.4 skipComp()
Law 3.5 fassign(IDS (lstVar),EXPS (lstVal))
Law 4.1 alt(PREDS (guards))
Law 4.3 altGuards(PREDS (guards))
Law 5.1 strPostIV (PRED(newPost))
Law 5.2 assigIV (IDS (lstVar),EXPS (lstVal))
Law 5.3 skipIntroIV ()
Law 5.4 contractFrame(IDS (vars))
Law 5.5 iter(PREDS (guard),EXP(variant))
Law 6.1 varInt(DECS (newV : T))
Law 6.2 conInt(DECS (newC),PRED(pred))
Law 6.3 fixInitValue(DECS (newC),EXPS (exps))
Law 6.4 removeCon(IDS (cons))
Law 8.3 expandFrame(IDS (newVars))
Law 8.4 seqCompCon(PRED(mid),DECS (conDecs),

IDS (lstVar))
Law B.2 seqCompIV (PRED(mid), IDS (lstVar))

Table F.2: Gabriel’s Laws Names

199

Morgan’s Refinement Calculus Gabriel

Law 11.1 procNoArgsIntro(EXP(name),PROG(body))
Law 11.2 procNoArgsCall()
Law 11.3 procArgsIntro(EXP(name),PROG(body),

PARAMS (resx : Z))
Law 11.4 procArgsCall()
Law 11.5 callByValue()
Law 11.6 callByValueIV ()
Law 11.7 callByResult(DECS (newVar), IDS (subsVar))
Law 11.8 multiArgs()
Law 11.9 callByValueResult()
Law 13.1 variantIntro(EXP(name),PROG(body),

IDS (varName),EXP(varExp),
PARAMS (resx : Z))

Law 13.2 procVariantBlockCall()
Law 13.3 recursiveCall()
Law 13.4 variantNoArgsIntro(EXP(name),PROG(body),

IDS (varName),EXP(varExp))
Law 13.5 procVariantBlockCallNoArgs()
Law 13.6 recursiveCallNoArgs()
Law 17.1 coercion()
Law 17.2 absCoercion()
Law 17.3 intCoercion(PRED(post))

Table F.3: Continuation of Gabriel’s Laws Names

200

F.3 Argument Types

Table F.4 presents argument types in Gabriel.

Type Description Gabriel’s Representation Example

Predicate PRED(pred) PRED(x > 0)
Expression EXP(exp) EXP(x + 1)
Program PROG(prog) PROG(x : [x >= 0, x = x + 1])

List of Declarations DECS (dec1; ...; decn) DECS (x : T ; y : S)
List of Predicates PREDS (pred1, ..., predn) PREDS (x > 0, x <= 0)

List of Expressions EXPS (exp1, ..., expn) EXPS (x + 1, x − 1)
List of Identifiers IDS (var1, ..., varn) IDS (x , y , z)

List of Parameters PARAMS (par1; ...; parn) PARAMS (res a; val b)

Table F.4: Argument’s Types in Gabriel

201

Bibliography

[1] K. R. Apt and M. H. van Emden. Contributions to the theory of logic pro-
gramming. Journal of the ACM, 29:841–862, 1982.

[2] R. J. R. Back. Procedural Abstraction in the Refinement Calculus. Technical
report, Department of Computer Science, Åbo - Finland, 1987. Ser. A No. 55.

[3] R. J. R. Back and J. von Wright. Refinement Calculus, Part I: Sequential Non-
deterministic Programs. In J. W. de Bakker, W. P. de Roever, and G. Rozen-
berg, editors, Stepwise Refinement of Distributed Systems: Models, Formalism,
Correctness, volume 430 of Lecture Notes in Computer Science, pages 42 – 66,
Mook, The Netherlands, 1989. Springer-Verlag.

[4] R. J. R. Back and J. von Wright. Refinement Concepts Formalised in Higher
Order Logic. Formal Aspects of Computing, 2:247–274, 1990.

[5] Holger Becht, Anthony Bloesch, Ray Nickson, and Mark Utting. Ergo 4.1
reference manual.

[6] D. Carrington, I. Hayes, R. Nickson, G. Watson, and J. Welsh. A program
refinement tool. Formal Aspects of Computing, 10(2):97–124, 1998.

[7] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag,
1981.

[8] S. L. Coutinho, T. P. C. Reis, and A. L. C. Cavalcanti. Uma Ferramenta
Educacional de Refinamentos. In XIII Simpósio Brasileiro de Engenharia de
Software, pages 61 – 64, Florianópolis - SC, 1999. Sessão de Ferramentas.

[9] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990.

[10] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[11] L. Groves, R. Nickson, and M. Utting. A Tactic Driven Refinement Tool. In
C. B. Jones, R. C. Shaw, and T. Denvir, editors, 5th Refinement Workshop,
Workshops in Computing, pages 272 – 297. Springer-Verlag, 1992.

202

[12] Lindsay Groves. Adapting formal derivations. Technical Report 1995.CS-TR-
95-9, 1995.

[13] Lindsay Groves. Deriving programs by combining and adapting refinement
scripts. Technical Report 1995.CS-TR-95-13, 1995.

[14] J. Grundy. A Window Inference Tool for Refinement. In C. B. Jones, R. C.
Shaw, and T. Denvir, editors, 5th Refinement Workshop, Workshops in Com-
puting, pages 230 – 254. Springer-Verlag, 1992.

[15] C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W.
Sanders, I. H. Sorensen, J. M. Spivey, and B. A. Sufrin. Laws of programming.
Communications of the ACM, 30(8):672–686, 1987.

[16] Inc. John Wiley & Sons, editor. The Elements of User Interface Design.
Springer Verlag, 1997.

[17] A. Kaldewaij. Programming: The Derivation of Algorithms. Prentice-Hall,
1990.

[18] J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, 2nd edition,
1987.

[19] A. Martin. Infinite Lists for Specifying Functional Programs in Z. Technical
report, University of Queensland, Queensland - Australia, March 1995.

[20] A. P. Martin. Machine-Assisted Theorem Proving for Software Engineering.
PhD thesis, Oxford University Computing Laboratory, Oxford, UK, 1996.
Technical Monograph TM-PRG-121.

[21] A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A Tactical Calculus.
Formal Aspects of Computing, 8(4):479–489, 1996.

[22] A. J. R. G. Milner. Is Computing an Experimental Science? Technical Report
ECS-LFCS-86-1, University of Edinburgh, Department of Computer Science,
Edinburgh - UK, August 1986.

[23] Carroll Morgan. Programming from Specifications. Prentice-Hall, 2nd edition,
1994.

[24] M. V. M. Oliveira. Teste de Usabilidade de REFINE e T - REFINE. Technical
report, Centro de Informática - Universidade Federal de Pernambuco, Pernam-
buco - Brazil, December 2001. At http://www.cin.ufpe.br/˜mvmo/gabriel/.

203

[25] M. V. M. Oliveira. ArcAngel: Tactics Examples and Their Usage. Technical
report, Centro de Informática - Universidade Federal de Pernambuco, Pernam-
buco - Brazil, December 2002. At http://www.cin.ufpe.br/˜mvmo/gabriel/.

[26] M. V. M. Oliveira. Gabriel’s Rose Model. Rose model, Centro de Informática
- Universidade Federal de Pernambuco, Pernambuco - Brazil, December 2002.
At http://www.cin.ufpe.br/˜mvmo/gabriel/.

[27] M. V. M. Oliveira. Refine-Gabriel Project Page - Documents and Downloads,
2002. At http://www.cin.ufpe.br/˜mvmo/gabriel/.

[28] M. V. M. Oliveira and A. L. C. Cavalcanti. Tactics of refinement. In 14th
Brazilian Symposium on Software Engineering, pages 117 – 132, 2000.

[29] Peter J. Robinson and John Staples. Formalizing the Hierarchical Structure
of Practical Mathematical Reasoning. Journal of Logic and Computation,
3(1):47–61, 1993.

[30] A. W. Roscoe and C. A. R. Hoare. The laws of occam programming. Technical
Report Programming Research Group Technical Monograph PRG-53, 1986.

[31] Jan L. A. van de Snepscheut. Proxac: An editor for program transformation.
Technical Report 1993.cs-tr-93-33, 1993.

[32] Jan L. A. van de Snepscheut. Mechanised support for stepwise refinement. In
Jürg Gutknecht, editor, Programming Languages and System Archtectures, vol-
ume 782 of Lecture Notes in Computer Science, pages 35–48. Springer, March
1994. Zurich, Switzerland.

[33] T. Vickers. An Overview of a Refinement Editor. In 5th Australian Software
Engineering Conference, pages 39–44, Sydney - Australia, May 1990.

[34] T. Vickers. A language of refinements. Technical Report TR-CS-94-05, Com-
puter Science Department, Australian National University, 1994.

[35] J. von Wright. Program Refinement by Theorem Prover. In D. Till, editor, 6th
Refinement Workshop, Workshops in Computing, pages 121 – 150, London -
UK, 1994. Springer-Verlag.

[36] J. von Wright, J. Hekanaho, P. Luostarinen, and T. L̊angbacka. Mechanizing
Some Advanced Refinement Concepts. Formal Methods in System Design,
3:49–81, 1993.

204

