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Abstract

Large scale approaches, namely proteomics and transcriptomics, will play the most
important role of the so-called post-genomics. These approaches allow experiments
to measure the expression of thousands of genes from a cell in distinct time points.
The analysis of this data can allow the the understanding of gene function and gene
regulatory networks (Eisen et al., 1998).

There has been a great deal of work on the computational analysis of gene expres-
sion time series, in which distinct data sets of gene expression, clustering techniques
and proximity indices are used. However, the focus of most of these works are on
biological results. Cluster validation has been applied in few works, but emphasis
was given on the evaluation of the proposed validation methodologies (Azuaje, 2002;
Lubovac et al., 2001; Yeung et al., 2001; Zhu & Zhang, 2000). As a result, there are
few guidelines obtained by validity studies on which clustering methods or proximity
indices are more suitable for the analysis of data from gene expression time series.

Thus, this work performs a data driven comparative study of clustering methods
and proximity indices used in the analysis of gene expression time series (or time
courses). Five clustering methods encountered in the literature of gene expression
analysis are compared: agglomerative hierarchical clustering, CLICK, dynamical clus-
tering, k -means and self-organizing maps. In terms of proximity indices, versions of
three indices are analysed: Euclidean distance, angular separation and Pearson corre-
lation. In order to evaluate the methods, a k-fold cross-validation procedure adapted
to unsupervised methods is applied. The accuracy of the results is assessed by the
comparison of the partitions obtained in these experiments with gene annotation,
such as protein function and series classification.
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Resumo

Abordagens de larga escala, entre as quais estão a proteômica e a transcritômica,
fornecerão os desafios mais importantes na chamada “era pós-genômica”. Estas abor-
dagens permitem a medição da expressão de milhares de genes de uma determinada
célula durante um número de intervalos de tempo. A análise deste tipo de dados
permite a descoberta da função de genes e de redes reguladoras (Eisen et al., 1998).

Vários trabalhos já foram realizados na análise computacional de series temporais
de expressão gênica, cada qual usando diferentes conjuntos de dados, métodos de
agrupamentos e ı́ndices de proximidade. Entretanto, o foco da maioria destes tra-
balhos está nos resultados biológicos. Validação de agrupamento foi empregado em
alguns poucos trabalhos, porém ênfase foi dada na avaliação dos métodos de validação
sugeridos (Azuaje, 2002; Lubovac et al., 2001; Yeung et al., 2001; Zhu & Zhang, 2000).
Como conseqüência, existem poucas diretrizes fornecidas por estudos de validação de
qual método de agrupamento ou ı́ndice de proximidade são mais apropriados para a
análise de séries temporais de expressão gênica.

Este trabalho propõe a realização de um estudo comparativo de métodos de agru-
pamento e ı́ndices de proximidade para a análise de séries temporais de expressão
gênica. Cinco métodos de agrupamento encontrados na literatura de análise de
expressão gênica são comparados: agrupamento hierárquico aglomerativo, CLICK,
agrupamento dinâmico, k-médias e mapas auto-organizáveis. Em termos dos ı́ndices
de proximidade, versões de três ı́ndices são analisadas: distancia Euclidiana, separação
angular e correlação de Pearson. Para avaliar os métodos, um procedimento de val-
idação cruzada “k-fold” adaptado para métodos não-supervisionados é empregado.
A acurácia dos resultados é medida através da comparação das partições obtidas
nestes experimentos com dados de anotação de genes, como função de protéınas e
classificação de series temporais.

xii



Chapter 1

Introduction

Now that the sequences of genomes from several species have been or are about to

be completed, researchers are looking towards the next step: the understanding of

gene function and gene regulatory networks. Of the roughly 30,000-40,000 genes in

the human genome sequence, the function of an estimated two thirds is likely to

be unknown (Abbot, 1999). In terms of regulatory mechanisms, the knowledge is

even scarcer. Large scale approaches, namely proteomics and transcriptomics, will

play the most important role of the so-called post-genomics. These approaches allow

experiments to measure the expression of thousands of genes from a cell in distinct

time points, or in distinct conditions (such as a treated and a non-treated cell),

providing to biologists the information about what gene is turned on, and in what

condition (Abbot, 1999).

While proteins may yield the most important clues to cellular function, proteins

are also the most difficult of the cell’s components to detect on a large scale. This

is not the case of ribonucleic acid (RNA), which is measured by transcriptomics

approaches (D’Haeseleer et al., 1999). When a gene is expressed in a cell, its code is

first transcribed to an intermediary messenger RNA (mRNA), which is then translated

1
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into a protein. The mRNA levels give a snapshot of the genome’s plans for protein

synthesis under the cellular conditions at that moment. Transcriptomics has the

advantage over proteomics for the technology is simple and lends itself readily to

automation and high throughput (D’Haeseleer et al., 1999). But transcriptomics has

the disadvantage that, although the expression levels it provides reflects the genome’s

plans for protein synthesis, it does not directly represents the final protein levels

(D’Haeseleer et al., 1999).

The post-genomic approaches represents a paradigm shift on the traditional biology

experiments, where only a few genes were studied at a time (D’Haeseleer et al., 1999).

The analysis of the amount of data generated by large scale approaches makes the

use of advanced statistical and computational methods, such as Machine Learning,

necessary. Such methods can be used to discover trends and patterns in the underlying

gene expression data (Bertone & Gerstein, 2001). The computational challenges

in the analysis of gene expression are vast, and still open for further developments

(Quackenbush, 2001).

Among these challenges, this work will attain to the problem of identification of

meaningful subsets of genes by the use of clustering methods with the objective of

finding co-expressed genes (Eisen et al., 1998). This is accomplished by the analysis

of data from gene expression time series (or time courses). In time series experiments,

the expression of a certain cell is measured in some time points during a particular

biological process. By knowing groups of genes that are expressed in a similar fashion

through a biological process, it is possible to infer the function of these genes. Since

these data sets consist of expression profiles of thousand of genes, this analysis cannot

be carried out manually, making necessary the application of clustering methods.

One main aspect in finding co-expressed genes is the proximity (similarity or dis-

similarity) index used in the clustering method. In this context, the index should give
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emphasis on capturing relative magnitude proximity. There is a biological reason for

this, as the absolute expression values of two genes can differ, but provided that the

genes have a similar pattern of change through time (or similar series shape), they

are considered co-expressed genes (Heyer et al., 1999).

1.1 Problem Overview

In fact, there has been a great deal of work on gene expression analysis, each using

distinct data sets of gene expression, clustering techniques and proximity indices.

However, the majority of these works has given emphasis on the biological results, with

no critical evaluation of the suitability of the proximity indices or clustering methods

used. In the few works in which cluster validation was applied with gene expression

data, the focus was on the evaluation of the proposed validation methodology (Azuaje,

2002; Lubovac et al., 2001; Yeung et al., 2001; Zhu & Zhang, 2000). As a consequence,

so far, with the exception of (Costa et al., 2002b; Datta & Datta, 2003), there is no

validity study on which proximity indices or clustering methods are more suitable for

the analysis of data from gene expression time series.

Based on this, a data driven comparative study of proximity indices and clus-

tering methods used in the literature of gene expression analysis is accomplished

in this dissertation. More specifically, versions of three proximity indices with sup-

port to missing values are compared (Gordon, 1999): Euclidean distance, Pearson

correlation and angular separation. In terms of clustering methods, five algorithms

are analysed in the experiments: agglomerative hierarchical clustering (Eisen et al.,

1998), CLICK (Sharan & Shamir, 2002), dynamical clustering (Costa et al., 2002a),

k -means (Tavazoie et al., 1999) and self-organizing maps (Tamayo et al., 1999). With

the exception of dynamical clustering, all other methods are popular in the literature
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of gene expression analysis.

All the experiments are performed with data sets of gene expression time series

of the yeast Saccharomyces cerevisiae. This organism was chosen because there is a

wide availability of public data, as well as the availability of an extensive functional

classification of its genes. The functional classification will serve as an external data

for the validation of the clustering results.

In order to evaluate the clustering methods and proximity indices, this disserta-

tion proposes a validation methodology. The methodology is based on an adaptation

of the k -fold cross-validation procedure to unsupervised methods. The accuracy of

the results obtained in the k-fold cross-validation are assessed by an external index,

which measures the agreement between the clustering results and an a priori clas-

sification data, such as gene functional classification or series classification (Jain &

Dubes, 1988). Finally, in order to detect statistically significant differences in the

results obtained by the distinct proximity indices or clustering methods, a bootstrap

hypothesis test for equal means is applied (Efron & Tibshirani, 1993).

1.2 Dissertation Structure

The remainder of this dissertation is divided into five chapters. In Chapter 2, issues

related to gene expression analysis are described. The aim of this chapter is to in-

troduce the problem approached in this dissertation, as well as to put this work in

perspective. In order to do so, basic biological concepts, experiments and measure-

ments techniques of gene expression, as well as related work on gene expression are

presented. Next, in Chapter 3, questions regarding Cluster Analysis are discussed.

All proximity indices and clustering methods analysed in this work are described

briefly. Furthermore, aspects of cluster validation relevant to the proposed methodol-
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ogy are discussed. The validation methodology and the experimental design used in

this dissertation are presented in Chapter 4. Then, Chapter 5 describes and analyses

the results of the experiments. Finally, Chapter 6 brings the conclusions drawn from

the results, some final remarks and future works.



Chapter 2

Gene Expression Analysis

This chapter gives a description of the problem approached in this dissertation, the

computational analysis of gene expression data. Section 2.1 covers the basic concepts

of molecular biology necessary for understanding gene expression. Then, Section 2.2

describes experiments regarding gene expression and the technologies used to measure

the data. Section 2.3 overviews the computational challenges of gene expression

analysis, focusing the analysis of time series data and cluster validation. Then, a

discussion of related work in both analysis of time series data and cluster validation

applied to gene expression data is presented in Section 2.4.

2.1 Gene Expression

Gene expression is the process explained by the central dogma of molecular biology

on how the hereditary information contained in deoxy-ribonucleic acid (DNA) flows

inside a cell, resulting in the protein synthesis (Silva, 2001). This process can be

divided into two steps: the transcription where DNA molecules are used to build

ribonucleic acid (RNA) molecules, and the translation where the RNA molecules

6
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form proteins (see Figure 2.1). The final product of this process, the proteins, are

responsible for providing the structural components of the cell and for the catalysis

of biochemical reactions. Thus, it can be stated that the expression of the proteins

determine the functional state of the cell (Primer on Molecular Genetics, 1992).

Figure 2.1: Molecular biology central dogma.

The central dogma of biology have been modified in recent years, since some or-

ganisms, such as viruses, do not fit in the original dogma scheme (Gentrop, 1999).

But for the sake of simplicity, this section will attain to the original dogma, as it

contains the basics concepts necessary for the understanding of gene expression.

2.1.1 DNA

The DNA molecules are responsible for storing the genetic information of the orga-

nisms. These molecules have a double helix structure, formed by a sequence of bases

pairs. The particular order of bases in a determined sequence represents the genetic

information contained in the DNA. These bases can be one of the following: adenine

(A), cytosine (C), guanine (G), and thymine (T) (Gentrop, 1999). Some binding

rules define the possible base pairs, which can be either A=T, T=A, C≡G or G≡C

(each “-” symbolizes a hydrogen bond). As a consequence of these binding rules,

the two sequences of bases that forms a DNA molecules are complementary to one

another (Gentrop, 1999) (see Figure 2.2). Single stranded DNA molecules, which are

only encountered in special conditions, have the capacity to bind with complementary

sequences, in a process called hybridization. Such a process is used as a tool in most
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of the techniques of molecular biology.

Figure 2.2: Example of a double stranded DNA molecule.

The way DNA molecules are arranged in the cells is dependent of the type of

organism, which can be either a procaryote or a eukaryote. The procaryotes are the

organisms without cell nucleus, while the eukaryotes are the organisms with nucleus.

In the procaryotes, the DNA is arranged in a single circular DNA molecule. Whereas,

in the eukaryotes, several DNA molecules, called chromosomes, are present in the cell

nucleus. Each of these chromosomes is formed by billions of bases pairs.

Genes are the basic units responsible for possession and passing on a single char-

acteristic. In other words, genes are DNA regions of the chromosomes that codes one

or more proteins. In fact, only particular regions of the DNA sequences encountered

in organisms represent the genes. In the region before the gene sequence (also called

upstream region), regulatory regions are encountered. These regions influence the

ratio of transcription (or the quantity of RNA produced) of the gene (Shamir et al.,

2002).

2.1.2 RNA & Transcription

In the process called transcription, the region of the DNA representing a gene is copied

into a RNA molecule with the help of a enzyme called RNA polymerase (Gentrop,

1999). This enzyme binds into a upstream region called promoter sequence, which

indicates where the transcription should start. Then, the enzyme slides through the
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DNA sequences, building the RNA molecule base by base (see Figure 2.3). Although

very similar to DNA, the RNA molecules have some distinctions: (1) RNAs are only

single stranded; (2) instead of the thymine, RNAs have a uracil (U) base; and (3)

RNAs degrade after some short time. The main function of the RNA is the synthesis

of proteins in the cell. These molecules are divided into three groups according to their

task in protein synthesis: ribosomal RNAs (rRNA) that are responsible for forming

the ribosomes, transport RNAs (tRNA) that are responsible for carrying amino acids

to ribosomes, and messenger RNAs (mRNA) that are responsible for encoding the

genetic information contained in the genes (Gentrop, 1999).

Figure 2.3: Gene expression process (Primer on Molecular Genetics, 1992).

The transcription process in eukaryotes is more complex. First, the RNA molecule

is copied from a gene in the DNA, producing the primary transcript (RNA). Before

leaving the nucleus, certain sequences of this primary RNA, called introns (non-coding

regions), are removed by special enzymes, forming the mature RNA. In this process,

certain exons sequences (codifying sequences) can also be removed, changing the final

protein to be synthesised. This mechanism, called alternate splicing, plays a major

role in cell differentiation. The alternate splicing makes it possible for a single gene
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to codify more than one protein, all this in accordance to the cell context (Gentrop,

1999).

2.1.3 Proteins & Translation

Translation is the process of forming proteins from the information contained in the

RNA. Triples of RNA bases are translated into one of the twenty amino acids, which

are the building block of the proteins. The rules that map the base triplets to a amino

acid is called genetic code. The translation process is coordinated by the ribosome

that “reads”the mRNA molecule sequence three by three, adding the respective amino

acid in the end of the synthesised protein, with the help of tRNA molecules (see Figure

2.3).

Proteins, the final product of the gene expression, are vital to the cell functioning,

since they are responsible for providing the structural components of the cell and for

the catalysis of biochemical reactions (Primer on Molecular Genetics, 1992). In order

words, it is the presence of the proteins that dictates how the cell is working. In

conclusion, it can be stated that the functional state of a cell is determined by the

number of proteins available inside the cell in a certain instant (D’Haeseleer et al.,

1999).

2.2 Gene Expression Experiments

Traditional experiments of molecular biology were inherently local, examining one

or just a few genes. These experiments were based on a reductionist view, where

by explaining the parts, one could get a view of the whole. With the advent of

genomics, and consequently large scale gene expressions methods, it would be a huge
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effort to analise such a number of genes using the traditional approach. This amount

of data requires a holist analysis of these experiments, where the data is handled

in a global fashion, without the need to go down to low level details such as the

biochemical reactions. Nowadays, this global analysis have been carried out with the

aid of statistical and computational methods (D’Haeseleer et al., 1999).

There is a number of purposes for the analysis of experiment of large scale gene

expression, such as (Lubovac, 2001):

• Finding co-expressed genes, or genes that participate in the same biological

process, such as the mitotic division cycle (Eisen et al., 1998).

• Improving the diagnosis of diseases, such as cancer (Brown et al., 2000).

• Discovery of gene regulatory networks (D’Haeseleer et al., 1999).

• Analysis of cell response to drug treatment (Dopazo et al., 2001).

For each specific purpose, a distinct type of experiment design is necessary. Often,

there are two basic design types of experiments for gene expression. In one type,

the behavior of the expression levels is observed through time, in other words, gene

expression time series (or time courses) are obtained. This design is used for the

finding of co-expressed genes and also for the inference of regulatory networks. In

the other type of design, samples of gene expression of distinct tissues or individuals

are obtained (condition experiments) (Eisen et al., 1998). For example, when there

is interest in disease diagnosis, the gene expression of distinct individuals, be them

infected or not, are measured and compared (Brown et al., 2000). This arrangement

is also used for the discovery of regulatory networks, where one can be interested in

comparing a normal cell to a mutated one (D’Haeseleer et al., 1999). In the analysis

of drug response, a mix of both arrangements can be performed, as there is interest
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in comparing the time series expression of a treated individual, with the time series

of non treated individual (Dopazo et al., 2001).

These gene expression experiments were only possible with the development of

a number of techniques capable of measuring large scale gene expression. These

techniques differ in some aspects such as: the substance being measured (RNA or

proteins); the process of reading the results; the way of manufacturing the artifacts;

and the domain of the technology (public or private). Each of these techniques

have distinct characteristics in relation to accuracy, reproducibility and cost (be it

financial cost or time cost). Apart from these distinctions, most of them are based

on the same molecular biology principle called hybridization, in which nucleic acids

have the capacity of recognizing and combining with complementary sequences.

In the Sections 2.2.1 to 2.2.4 measurement technologies with widespread use and

related to this work are be described. This work will concentrate on RNA expression

based technologies, as the use of protein based techniques is not widespread, given

the lack of accuracy and reproducibility of these techniques (D’Haeseleer et al., 1999).

2.2.1 cDNA microarray

Complementary DNA (cDNA) microarrays, developed at the Stanford University,

consists of small glass slides, where cDNA are deposited with the aid of robotics

(Schena et al., 1995). The idea behind the functioning of cDNA microarrays is very

simple (Kain, 2001). For each gene to be measured, a sequence complementary to the

gene sequence is defined (these small sequences are called probes). The probes have

size ranging from 20 to 30 bases, in a way that there is a low probability of the probes

hybridizing with sequence others than the target sequence. The probes are replicated

a high number of times (around thousands). Then, a robot fixes the probes in a



CHAPTER 2. GENE EXPRESSION ANALYSIS 13

Figure 2.4: Schema of the cDNA microarray (Duggan et al., 1999)

certain spot of a glass slide. At the end, the small slide will have thousands of DNA

spots, placed side by side, each spot containing thousands of cDNA probes copies

designed to hybridize with RNA from a certain gene.

In the next step, the RNA of the cell is separated and transcribed to cDNA,

given that RNA molecules are unstable and would degrade before the experiment

is over. Afterwards, the cDNA molecules are marked with green fluorescent labels.

Additionally, the RNA of a control cell is also separated and transcribed, but theses

molecules are marked with red fluorescent labels. The cDNA of both cells are poured

in the slide. After some time, the slide is washed, removing the cDNA which has not

hybridized with the probes. Next, the slide is scanned, giving as a result a image

with all the spots intensities (the whole process is illustrated Figure 2.4). The digital

image of the slide is then processed using computational methods, for the purpose

of calculating the intensity obtained by each RNA. Figure 2.5 shows one segment of



CHAPTER 2. GENE EXPRESSION ANALYSIS 14

Figure 2.5: Segment of a image of a fluorescent cDNA microarray.

such images.

The advent of microarray technologies were only possible due to two main factors

(Kain, 2001). First, robotics permitted the manufacturing of the slides (also called

chips) with only a few centimeters, containing around 10.000 of probes spots, organ-

ised side by side as a matrix. The others factors were the sequencing of organism

and the discovery of its genes, as only with this data, it was possible to construct the

microarray probes (Brow & Bostein, 1999).

One problem of the cDNA microarrays is that distinct measurements with mate-

rial from the same cell can obtain distinct results. Certain steps in the process are

influenced by the environment and the way of execution, causing variability of the

final results. Not to mention about the image processing procedure, where the lack of

precision of the robots on the placement of the spots and limitations of the scanner

represent additional noise on the data. This can be observed in Figure 2.5, where not

all spots are uniformity placed and some neighbor spots signals are merged.

These variability problems are attacked in cDNA microarray by the use of the RNA

from a control cell, as described before. The idea is to use the RNA from a single
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control cell to all slides being measured in a certain experiment. The final expression

level of a gene is calculated by the log ratio of the measured (Cy5) and control cell

(Cy3) expression levels, as show in Equation 2.1.

e = log(Cy5/Cy3) (2.1)

Another variability factor very common in cDNA microarrays is called bleaching

(this problem can not be solved by the procedure just described). In the majority of

the scanners, the red and green signals are scanned separately. The problem is that

the final spot intensities are influenced by the order of scanning. As a result, special

procedures should be used in order to normalise the intensities of the red and green

signals (for more details see Schuchhardt et al. (2000) and Yang et al. (2001)).

The cDNA technique has as advantage, among others, the high number of genes

having the expression simultaneously measured, which can reach a 10.000 in a single

slide (D’Haeseleer et al., 1999). In fact, there is no limitation on the number of

genes, as more than one slide can be used to measure the RNA of a certain cell. For

some organisms, as the yeast Saccharomyces cerevisiae, it is possible to measure the

expression of the whole genome. The technique also permits a great flexibility on the

experiments design, as the probes used and consequently the genes measured can be

chosen among any gene with known sequences. The main problem is the financial

cost of the microarrays, which is still very high, limiting the number of conditions

and replications realised in gene expression experiments.
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2.2.2 Oligonucleotide array

The oligonucleotide array (or Gene Chip) is a private technology developed by Affy-

metrix (Lipshutz et al., 1999). Its functioning is very similar to the cDNA microarray,

although the technologies differs in two aspects, the manufacturing of the slides and

how the variability problem is treated. The Gene Chips are constructed via a optic

process, where the probes are synthesised base by base on the chip surface. The

design of a chip containing a new set of probes is very expensive, but once it is done,

the chip arrangement can be produced in large scale with a lower cost. In order to

reduce the effect of variability, probes with same sequence are placed in 20 to 40 spots

on the chips. This reduces the signal to noise ratio and improves the accuracy of the

RNA quantification. Additionally, a mismatch spot (MM), containing probes with

sequence with one distinct base of the original probe (PM), is placed next to each

PM spot, so as to reduce the effect of cross-hybridization and background noise. The

expression value of a certain gene is measured by the average of the differences of the

PM probe intensity and its neighbor MM probe.

The DNA chip also allows the measurements of a high number of genes (up to

50.000 genes per chip). On the other hand, oligonucleotide chips do not offer the

same flexibility as cDNA arrays, for there is a limited number of chip designs available

with a fixed set of probes. On the long run, this problems should be minimised,

as the number of probes packed in the chip tends to get higher, and genomes of

several organisms will be fully revealed. Other advantage of this technology is that

Affymetrix supply all the equipments, in contrast to cDNA microarray, where there

are a number of choices, from where to buy the probes, to the software used in the

image processing (Bowtell, 1999). As a consequence, experiments with DNA chips

are more standardised, making it easier to compare (and analyse) experiments carried

out by distinct laboratories, which is not the case of cDNA microarray.
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2.2.3 SAGE

The serial analysis of gene expression (SAGE) technology is very distinct from the

other methods described in this section, as SAGE uses sequencing technology to mea-

sure the expression (D’Haeseleer et al., 1999). Initially, the RNA is transcribed to

DNA. Then, sequences with ten bases, capable of uniquely identifying the source

RNA, are extracted from the DNA molecules. Next, these small sequences are joined

together in a single sequence, and then sequenced. The expression of the genes corre-

sponds to the quantity of repeated ten bases sequences encountered at the sequencing

results.

Some advantages of this method, among others, is its higher accuracy in relation

to the array technologies, and the fact that the sequence of the measured RNA does

not need to be known a priori. Additionally, the process uses sequencing technology

that is already available in most of the molecular biology laboratories. However, the

whole process consumes a lot o time. When a high number of genes are measured,

the process can become quite complex, as there is the need of a lot of sequencing. As

a result, experiments with this technology only measure the expression of hundreds

of genes.

2.2.4 Real Time PCR

The real time PCR, also known as kinetic PCR, is an automation of the reverse

transcribed polymerase reaction (RT-PCR) technique. In the RT-PCR, the RNA of

the desired genes are reverse transcribed (RT) to cDNA molecules (note that the RT

stands for reverse transcribed and not for real time). Then, the cDNA is replicated

using the polymerase chain reaction (PCR) (D’Haeseleer et al., 1999). This process

has to be repeated for each target gene. Finally, with the use of high resolution gels,
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the number of cDNA molecules are quantified. This process is not of a parallel nature,

what can make it very time consuming. Furthermore, if the whole process in not very

well controlled, there will be a high variability in the results (Bustin, 2002).

In the real time PCR, the amplification, detection and quantifications steps are

carried automatically by a special machinery. All this reduces the time and complexity

necessary to carry the experiments. Additionally, this automation leads to a higher

sensivity, specificty and reproducibility of the experiments. As a result, real time PCR

has a high precision in measuring the gene expression. However, the experiments are

still time consuming. As a consequence, only a small set of genes (hundreds of genes)

are measured in experiments using this technology (Bustin, 2000).

2.3 Computational Analysis

As stated before, the analysis of the amount of data generated by the approaches

with large scale gene expression can only be developed with the aid of statistical and

computational methods (D’Haeseleer et al., 1999). There is a number of computa-

tional challenges for the analysis of gene expression data. Among them, the following

should be point out (Sharan & Shamir, 2002):

• Clustering: identification of meaningful subsets of genes or conditions (Eisen et

al., 1998; Heyer et al., 1999; Tamayo et al., 1999).

• Classification: building classifiers based on the conditions or time series with

objective such as disease diagnosis (Golub et al., 1999) and gene function dis-

covery (Brown et al., 2000; Kuramochi & Karypis, 2001).

• Feature Selection: find a set of genes that are differentially expressed through

the distinct conditions (Bo & Jonassen, 2002; Golub et al., 1999; Heyer et al.,
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1999).

• Normalization: how should the results of distinct conditions or experiments be

normalised (Dopazo et al., 2001; Yang et al., 2001).

• Image processing: the analysis of the micrroarray images (Dougherty et al.,

1997; Yang et al., 2001).

The focus of this work will be on the use of clustering methods for the analysis

of time series data. In the next section, basic aspects of this type of analysis will

be discussed. The other concern of this work is the validation of the clustering

methods, therefore, validation issues for gene expression analysis will be covered in

the subsequent section.

2.3.1 Analysis of Gene Expression Time Series

In experiments of gene expression time series, a certain cell is induced to a particular

biological process. Then, the gene expression of the cell is measured in some particular

time points. The analysis of this data is focused on finding co-expressed genes, more

specifically, genes that have similar patterns of expression change through time. By

knowing groups of genes that are expressed in a similar fashion through a biological

process, biologists are able to infer gene function and gene regulation mechanisms

(Eisen et al., 1998).

Clustering is the main technique for the analysis of gene expression time series.

In such an approach, the major aspect in finding co-expressed genes is the proximity

(similarity or dissimilarity) index used (Sherlock, 2000).
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Proximity Indices

Proximity indices measure the degree of alikeness between two objects. In the context

of gene expression analysis, the proximity index should give emphasis on capturing

relative magnitude proximity between two gene series. There is a biological reason for

this, as the absolute expression values of two genes can differ, but provided that the

genes have a similar pattern of change through time (the series have similar shape),

they are considered co-expressed genes (Eisen et al., 1998).

Figure 2.6 shows the time series of three genes during six time points (0, 30, 50,

70, 100 and 120 minutes). Apparently, all the time series are very distinct, but the

genes represented by the blue and green lines can be stated to be co-expressed. Both

genes behave in a similar fashion, their expression level goes up until the 70-minute

time point, and than go down until the end of the process. Actually, the intensity

value of the gene in green is the double of the gene in blue in most of the time points.

On the other hand, these two series have a distinct behavior in relation to the gene

in red, which has it expression decreasing through the whole process.

Pre-processing

Another important issue on clustering gene expression time series is the removal of

uninformative time series. During a particular biological process only a few genes

will be active and changing the expression levels through time. The other genes

can either be housekeeping genes or not expressed during that particular process.

The former represents genes that are always active, independently of the particular

biological process going on. While the latter type of genes have low expression levels

in all time points. These two types of genes do not need to be analysed, given that

they are uninformative in relation to that particular process. In fact, the removal of
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Figure 2.6: Example of three gene expression time series.

these genes reduces the computing time of the clustering methods. Furthermore, the

removal can also enhance the accuracy of the results, as the presence of these genes

can disturb certain clustering methods.

There are two widespread methods for dealing with such uninformative genes. The

fold approach, used in Eisen et al. (1998) and Tamayo et al. (1999). In this procedure,

only time series where the absolute expression levels changes for at least n folds are

considered. The other approach, proposed by Heyer et al. (1999), genes were ranked

according to their mean and variance. Then, a percentage of the genes with the lowest

mean and variance values are removed (Heyer et al. (1999) removed the genes in the

lowest 25% of both ranks).
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2.3.2 Validation of Gene Expression Analysis

Most of the work on gene expression analysis relies only on ad-hoc observations to

evaluate the results. As an exception there are few studies where validation issues

are approached. However, these works are focused on the evaluation of the proposed

validation methodologies. They do not address the results obtained by the application

of the validation methodologies to compare the performance of distinct clustering

methods (with the exception of Costa et al. (2002b) and Datta & Datta (2003)). As

a consequence, so far, there are few guidelines obtained by validity studies on which

proximity indices or clustering methods are more suitable for the analysis of data

from gene expression time series.

One relevant issue in cluster validation, in the context of gene expression analysis, is

the use of external biological data to validate the results. Some validity methodologies

requires a labelling (or classification) of the elements. One common practice is to use

external sources of data related to the objective of study. In validity studies of gene

expression data, functional classification of the genes are largely applied as external

data (Gertein & Janssen, 2000; Lubovac, 2001; Yeung et al., 2001; Zhu & Zhang,

2000). One advantage of functional classifications is, among others, the availability

of functional classifications schemes covering thousand of genes, such as MYGED for

yeast (Mewes et al., 2002), GenProtEC for E. coli (Riley, 1998), the Gene Ontology

Project (The Gene Ontology Consortium, 2000), among others. There are also other

types of external data used in the literature, such as, regulatory regions (van Helden

et al., 2001; Zhu & Zhang, 2000), enzymatic classification (Lubovac et al., 2001),

metabolic pathways and protein structure (Gertein & Janssen, 2000).
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2.4 Related Work

2.4.1 Analysis of Gene Expression Time Series

Eisen et al. (1998) presented one of the first applications of clustering methods for

the analysis of gene expression time series. In their study, a hierarchical unweighed

pairwise average linkage method (UPGMA) was used with Pearson correlation to

cluster data from seven distinct time series experiments from yeast. The results

confirmed that genes with similar functions tend to cluster together. Additionally,

the study proposed a graphical representation of the results, which is now widely used

in the field. In this representation, the resulting dendrogram has its leaves reordered

by the mean expression levels of the series, in a way that gene with similar profiles

were close in the tree. In the side of the ordered tree, the expression levels of the

genes are represented in a colored table, where over expressed genes have green values

and under expressed genes red values (see Figure 2.7).

A number of other clustering methods have also been applied for the analysis

of gene expression time series, among them, k -means (Tavazoie et al., 1999), self-

organizing maps (Jonsson, 2001; Tamayo et al., 1999), dynamical clustering (Costa

et al., 2002a), graph theoretical approaches (Sharan & Shamir, 2002), principal com-

ponent analysis (PCA) (Raychaudhuri, 2001) and largest first cluster3ing algorithm

(Zhu & Zhang, 2000). Most of these works are often applications of distinct com-

putational methods to a similar set of gene expression data, not proposing any new

aspects in the analysis of gene expression. Thus, just some of then will be described

in details in this dissertation.

In terms of proximity indices, novel proposals have been presented for the analysis

of data from gene expression time series. The jackknife Pearson correlation, proposed
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Figure 2.7: Example of the graphical representation suggested by Eisen et al. (1998).

in Heyer et al. (1999), has as objective to handle time series with outliers time points.

The idea of this proximity index is to calculate the Pearson correlation between two

series, not taking into consideration the values of one time point. This is repeated

for all time points in the data set, excluding one distinct time point at a time. In

the end, the highest value obtained is then taken as result. The work developed an

analysis of the proposed proximity index. The results showed that the number of

false positives decreased with the use of the jackknife Pearson correlation in relation

to the original Pearson correlation.
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Costa et al. (2002a) proposed a symbolical description of gene expression time

series from multiple experiments, where each variable take as a value a time series,

in conjunction with a symbolic version of a proximity measure. As shown in the

beginning of this section, the proximity indices used in the analysis of gene expression

time series emphasize the capture of shape proximity. However, none of them will

suitably measure shape proximity with data containing gene expression time series

from multiple experiments, unless special data handling is made. In the symbolic

approach, the shape similarity of each time series is calculated independently, and

aggregated at the end. The symbolical description was evaluated with the yeast

data set (Eisen et al., 1998), obtaining significant better results in comparison to the

traditional approaches.

A different approach have been explored in Brown et al. (2000). They applied

supervised methods for classifying the gene function, given data of gene expression

time series. Only a subset of the expression series data used in Eisen et al. (1998) was

employed in that work. This subset consisted of the genes belonging to one of the five

functional classes, which clustered well using hierarchical clustering. The supervised

methods applied obtained high precision levels, particulary in the experiments using

support vector machines (SVM). Despite this, the number of false positives was high

for some classes.

2.4.2 Validation of Gene Expression Analysis

The works performed in Lubovac (2001) and Lubovac et al. (2001) evaluated the

use of internal criteria such as compactness and isolation of the clusters, as well as

the use of external criteria that compare the clustering results in relation to gene

annotation. More specifically, the gene annotations used were the enzymatic and

functional classifications of the proteins. The results indicated that internal criteria
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can be misleading as they did not show correspondence to gene annotation. The study

also proposed a relative entropy criterion. This criterion compares the distribution

of classes in a group with the background distribution (distribution of classes in the

complete data set). The more the group differs from the background distribution, the

more discriminated is the group.

A framework to find the ideal number of clusters was presented in Azuaje (2002). In

order to do so, the study applied Dunn’s validity index to the results of the clustering

methods. The work analysed the methodology with expression data from leukemia

(Golub et al., 1999), but the framework can also be applied to time series data.

Another validation methodology was proposed by Yeung et al. (2001). In proposed

approach, the data is clustered using all but one condition, which is used to access

the accuracy of the results. This is accomplished in a jackknife fashion, where for

each step, one of the conditions is hold out. This procedure is repeated for the total

number of conditions. The work compared some clustering methods using distinct

data sets, but the authors refrained to draw conclusions from the results, given that

only a small number of data sets were available.

Costa et al. (2002b) applied replication analysis for the purpose of evaluating

the cluster stability in the analysis of gene expression data. More specifically, the

work evaluated Self Organizing Maps (SOM), dynamical clustering and UPGMA

hierarchical clustering with data from yeast time series. The preliminary results

showed that both SOM and dynamical clustering obtained stable results.

So far, the most complete comparative analysis of clustering methods for gene

expression data was performed in Datta & Datta (2003). They proposed a validation

methodology based on the jackknife procedure, similar as the one in Yeung et al.

(2001), in conjunction to three novel relative validation indices. The work evaluated:
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UPGMA hierarchical clustering, k-means, Diana, Fanny, Model-based clustering and

hierarchical clustering with partial least squares. Only two data sets were used in this

evaluation, the sporulation data set (Chu et al., 1998) and a simulated data set. In

the results, Diana achieved the best performance, followed closely by the Model-based

and k-means methods. Both hierarchical methods obtained the poorest results.

Zhu & Zhang (2000) investigated the relation of gene expression clustering with

gene function and promoter regions. The study used the yeast time series from Eisen

et al. (1998) as the gene expression data set, and thirteen major classes from the

Munich Information Center for Protein Sequences Yeast Genome Database (MYGED)

(Mewes et al., 2002) as the functional classification. The results showed that genes

with similar expression levels do not necessarily share the same promoter regions

and functions, even though both gene function and promoter regions do help to gain

overview of the expression data.

A similar and broader study was performed in Gertein & Janssen (2000). In that

work, a set of yeast data sets were compared with the MYGED functional classifi-

cation. Only some functional classes had a strong relation to the gene expression

profiles. The reason for this could be, among others, the vague definitions of some

functions and the great overlap of the classification. The study suggested that other

types of data should be used, such as protein structure and regulatory sequences.

A feasibility study was also performed in the context of supervised methods for

the classification of gene function. Kuramochi & Karypis (2001) evaluated the classi-

fication precision of SVM for the fifty biggest MYGED classes, given the data of gene

expression from the yeast (Eisen et al., 1998). The results showed that only in eight

classes the classifiers obtained reasonable accuracy. Such a study concluded that the

number of gene expression data sets available is not enough to build classifiers for all

functional classes.
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Cluster Analysis

Relevant issues in cluster analysis are covered in this chapter. Initially, Section 3.1

describes characteristics and the basic functioning of all clustering methods analysed

in this dissertation, while Section 3.2 presents the proximity indices. Section 3.3 covers

issues on cluster validity relevant to this work. More specifically, validity indices and

related validation methodologies are described in details.

3.1 Clustering Methods

Five distinct clustering methods are analysed in this dissertation. These methods

are: agglomerative hierarchical clustering (Eisen et al., 1998), k -means (Tavazoie et

al., 1999), self-organizing maps (Tamayo et al., 1999), dynamical clustering (Costa

et al., 2002a) and CLICK (Sharan & Shamir, 2002). All of them, with the excep-

tion of dynamical clustering, have a widespread use in the gene expression analysis.

The dynamical clustering was included because it was utilized in previous work by

the author (Costa et al., 2002a). With the exception of the hierarchical clustering,

all the other methods yield partitions as results. In the following subsections the

28
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characteristics of these clustering methods are described.

3.1.1 CLICK

CLICK (Cluster Identification via Connective Kernels) (Sharan & Shamir, 2002) is

a recently developed method based on graph theory. Such a method is robust to

outliers and does not make assumptions on the number or structure of the clusters.

Although CLICK does not take the number of classes as an input, by the use of the

homogeneity parameter, one can force the generation of a larger number of clusters.

The method initially generates a fully connected weighted graph, with the objects

as vertices and the the similarity between the objects as the weights of the edges.

Then, CLICK recursively divides the graph in two, using minimum weight cut com-

putations, until a certain kernel condition is met. The minimum weight cut divides

the graph in two in a way that the sum of the weights of the discarted vertices is

minimum. If a partition with only one object is found, the object is put apart in a

singleton set.

The kernel condition tests if a cluster formed by a given graph is highly coupled,

and consequently, if it should not be further divided. In order to do so, CLICK uses

a statistical model, assuming that the similarities between objects (the weights of the

edges) are normally distributed. An EM (Expectation-Maximization) method is used

to build two similarity distributions, one containing similarity between mates edges

(objects that should be clustered together) and other for non-mates edges (objects

that should not be clustered together). The Kernel test consists in verifying if the

probability of containing only mate edges exceeds the probability of containing non-

mate edges in a given graph. If the test is true, them, the tested graph is taken as a

final cluster, otherwise, it will be divided in two (using minimum cut computations).
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More formally, let E be the objects data set; G be an fully connected graph, where

each vertice represents an object in E, and the weight of the edges are the similarity

between the two connected edges; minWeightCut(G) be the function that finds the

minimum weight cut, returning two fully connected graphs; and S be the singleton

set; the method is defined by the following recursive function (Sharan & Shamir,

2002):

function formKernel(G, S)
begin

if G = {v} then
S = S ∪ {v};

else
if G is a kernel then

output G;
else

(H, V ) = minWeightCut(G);
formKernel(H, S);
formKernel(V , S);

end;
end;

end;

3.1.2 Dynamical Clustering

Dynamical Clustering is a partitional iterative algorithm that optimises the best fit-

ting between classes and their representation, using a predefined number of classes

(Diday & Simon, 1980). Starting with prototypes values from random selected in-

dividuals, the method works on two alternates steps: an allocation step, where all

individuals are allocated to the class with the prototype with lower dissimilarity, fol-

lowed by a representation step, where a prototype is constructed for each class. A

major problem of this algorithm is its sensitivity to the selection of the initial par-

tition. As a consequence, the algorithm may converge to a local minimum (Jain &
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Dubes, 1988). In order to prevent the local minimum problem, a number of runs with

different initialisations are executed. Then, the best run, based on some cohesion

measure, is taken as the result (Jain & Dubes, 1988). Another characteristic of this

method is its robustness to noisy data. In addition, when particular proximity index

and prototype representations are used, the method guarantees optimisation of local

criterion (Diday & Simon, 1980). With respect to the proximity indices investigated

in this work, only the use of the Euclidean distance version with data containing no

missing data guarantees the minimisation of the squared error.

More formally, this method looks for a partition P of k classes from an object set

E and a vector L of k prototypes, where each prototype represents one class of P .

This search is done by minimising the criterion ∆ of fitting between L and P (Verde

et al., 2000):

∆(P ∗, L∗) = min {∆(P,L)|P ∈ Pk, L ∈ Lk} (3.1)

where Pk is the set of partitions of E in k classes and Lk is the set of prototypes

associated to the classes.

More specifically, let D be a given dissimilarity function; and ej be the jth object

in the set E, where j = 1, . . . , n; the method works as follows:
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1. Initialisation

P = (C1, . . . , Ci, . . . , Ck) is initialised by allocating one random
object from E to each class;
All individuals are allocated to the class with the closer
representative object;

2. Representation Step

for i = 1 to k do
prototype Gi is set to the centroid of objects from Ci;

end;

3. Allocation Step

test = 0;
for j = 1 to n do

find class Cm of ej;
find class Cl such that Cl mini=1, ..., k D(ej , Gi);
if m �= l then

test = 1;
Cl = Cl ∪ {ej} and Cm = Cm − {ej} ;

end;
end;

4. Termination Test

if test = 0 stop, else go to 2;

The criterion ∆(P,L) is defined as:

∆(P,L) =
k∑

i=1

∑
x∈Ci

D(x,Gi) (3.2)

3.1.3 k-means

k -means is another type of iterative relocation algorithm, which is widely used in

cluster analysis studies (Jain et al., 1999). This method is a special case of the

dynamical clustering (Jain et al., 1999). Thus, they share some characteristics, such
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as robustness to outliers, the use of a predefined number of classes and the sensitivity

to the initial partition. Furthermore, like the dynamical clustering method, k -means

also optimises the squared-error criterion when the Euclidean distance is used and

there is no missing data. The main distinctions from the dynamical clustering method

are that k -means only works with centroids representations of the classes (Jain et al.,

1999), and only one object is reallocated in each allocation step (dynamical clustering

reallocates all objects in each allocation step). As a result, a strategy on how the

objects are considered to reallocation has to be defined. One of such strategies is to

generate a random order of the input objects (Jain & Dubes, 1988).

More formally, this method looks for a partition P of k classes from an object set

E and a vector L of k prototypes, where each prototype represents one class of P .

Let D be a dissimilarity function; and O be a random ordering of the objects, where

Oj represents the jth object in O, for j = 1, . . . , n; the method works as described

below:
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1. Initialisation

P = (C1, . . . , Ci, . . . , Ck) is initialised by randomly allocating
each object in E to one class in P;
Generate a random order O of the objects in E;
for i = 1 to k do

prototype Gi is set to the centroid of objects from Ci;
end;

2. Allocation and Representation Step

test = 0;
for j = 1 to n do

find class Cm of 0j;
find class Cl such that Cl = mini=1, ..., k D(0j , Gi);
if m �= l then

test = 1;
Cl = Cl ∪ {x} and Cm = Cm − {x} ;
recalculate prototypes Gm and Gl;

end;
end;

3. Termination Test

if test = 0 stop, else go to 2;

3.1.4 Self-Organizing Map

The Self-Organizing Map (SOM) is a type of neural network suitable for unsupervised

learning (Kohonen, 1997). SOMs combine competitive learning with dimensionality

reduction by smoothing the clusters with respect to an a priori grid. One of the main

characteristics of these networks is the topological ordering property of the clusters

generated. Clusters objects are mapped in neighbour regions of the grid, delivering

an intuitive visual representation of the clustering. SOMs are reported to be robust

and accurate with noisy data (Mangiameli et al., 1996). On the other hand, SOM

suffers from the same problems such as those of dynamical clustering: sensibility to

the initial parameters settings and the possibility of getting trapped in local minimum
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solutions (Jain et al., 1999).

The SOM method works as follows. Initially, one has to choose the topology of

the map, for example a 3 x 3 grid as in Figure 3.1. All the nodes are linked to

the input nodes by weighted edges. The weights are first set at random, and then

iteratively adjusted. Each iteration involves randomly selecting an object x and

moving the closest node (and its neighbourhood) in the direction of x. The closest

node is obtained by measuring the Euclidean distance or the dot product between the

object x and the weights of all nodes in the map. The neighbourhood to be adjusted

is defined by a neighbourhood function, which decreases through time.

Figure 3.1: Example of a SOM with topology 3 x 3 and two input variables

Let E be the set of objects; F be the neighbourhood function; l be the learning

rate; D be a proximity index; k x o be the topology of the map; Nij be the node in

position i x j, for i = 1, . . . , k and j = 1, . . . , o; the method is defined as (Haykin,

1994):
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1. Initialisate randomly the weights of the edges between the input nodes
and the map;

2. Choose randomly an object x from E;

3. Find node Nlm such that Nlm = mini=1, ..., k; j=1, ..., o D(x, Nij);

4. Update the weights of the node Nlm and its neighbourhood towards the
object x by the function F in accordance to a learning rate l;

5. Go to Step 2 until the number of interactions is reached;

One problem with SOM is the high number of parameters to be selected, which

includes, the topology, the learning rate, the neighbourhood function, neighbourhood

radius, among others. The success of the map is dependent on selection of these

parameters (Kohonen, 1997). Although there is no analytical procedure to select the

parameters, there are some guidelines on how one should proceed in these selections.

In terms of the learning rate, one current practice is to decrease the value towards 0

in the final iterations. The form of variation is not critical, but one popular practice

is to divide the training in two phases. In the first phase, the ordering phase, a large

initial radius and learning rates are used. Then, in the convergence phase, smaller

initial radius and learning rate are selected (Haykin, 1994).

As stated before, one of the main characteristics of SOM is to create a visual

topological map of the clusters. Such maps should have a number of nodes well

above the number of real clusters in the data (Vesanto & Alhoniemi, 2000). By a

visual inspections of the map, one can select the neighbour nodes that represents each

cluster. However, this process is time consuming and open to subjectivity. In this

study, there is the need of an objective way to assign the nodes to the final clusters, as

a high number of experiments are necessary, and it is not a good practice to include

subjective procedures in the validation process.
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One way to overcome the problem just described is to cluster the nodes after

training the map, by the use of another clustering method (the weights of each node

represents the node input pattern). In this latter clustering, the number of cluster

should be equal to the number of clusters in the data. The resulting partition will

state what nodes are related to each cluster. In Vesanto & Alhoniemi (2000), k-

means and hierarchical clustering are employed for this task, all of them obtaining

good recovery accuracies. For the sake of simplicity, this study will only employ the

average linkage hierarchical clustering to the SOM nodes.

Another alternative is to use maps with a unidimensional layer, where the number

of nodes is equal to the number of clusters (Mangiameli et al., 1996). With this type

of topology, the SOM method becomes very similar to k-means. But as k-means is

already analysed in this study, there would be no use of analysing SOM with this

type of topology.

3.1.5 Agglomerative Hierarchical Clustering

Agglomerative hierarchical methods are procedures for transforming a distance matrix

into a dendrogram (Jain & Dubes, 1988). These algorithms start with each object rep-

resenting a cluster, then the methods gradually merge theses clusters into larger ones.

Among the different agglomerative methods, there are three broader used variations:

complete linkage, average linkage, and single linkage. These variations differ in the

way cluster representations are calculated (see Jain & Dubes (1988) for more details).

Depending on the variation used, the hierarchical algorithm is capable of finding non-

isotropic clusters, including well-separated, chain-like, and concentric clusters (Jain et

al., 1999). However, since such methods are deterministic, individuals can be grouped

based only on local decisions, which are not re-evaluated once decisions are made. As

a consequence, these methods are not robust to noisy data (Mangiameli et al., 1996).
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Due to the fact that the methodology applied in this work is only adequate for the

evaluation of partitions, the hierarchies are transformed into partitions before being

evaluated. One way to perform this, is to cut the dendrogram in a certain level, as

shown is Figure 3.2. Additionally, the hierarchical method are also used as initiali-

sation to other partitional methods. This practice improves the initial conditions of

the partitional method that receives the hierarchical results as input (Jain & Dubes,

1988).

1 2 3 4 5 6 7 8 9
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Figure 3.2: Example of two cuts in a dendrogram with nine objects. The two dashed
lines represent respectively cuts with three and four clusters.

This dissertation will focus on the average linkage hierarchical clustering method

or UPGMA (unweighed pair group method average), as it has been extensively used

in the literature of gene expression analysis (Eisen et al., 1998). In this method, the

proximity between two cluster is calculated by the average proximity between the

objects in one group and the objects in the other group. Given the object set E, the

average linkage hierarchical clustering works as follows (Jain et al., 1999):
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1. Calculate a proximity matrix containing the proximity between all
the objects in E. Each object is treated as a cluster;

2. Find the most similar pair of clusters and merge these two clusters in
a single one;

3. Update the proximity matrix, by recalculating the proximities of the
new cluster formed by the merge operation. The proximity between two
cluster is calculated by the average proximity between the objects in
one group and the objects in the other group;

4. Go to step 2 until only one cluster is left;

3.2 Proximity Indices

In order to cluster a set of objects, clustering methods need an index of alikeness or

association between the data objects. This can be achieved by the use of proximity

(similarity or dissimilarity) indices that calculate the alikeness of two objects. For

the choice of a suitable index, the type of the variables and the characteristics of the

index should be taken into consideration. For example, in the case of quantitative

variables, the use of an Euclidean distance captures the proximity between objects

considering the absolute magnitude of the values, while correlation-type indices mea-

sure the proximity in relation to the relative magnitudes of the values (Gordon, 1999).

As this dissertation focuses on measures used in the literature of gene expression

analysis, proximity indices for quantitative variables with emphasis on relative mag-

nitude proximity are investigated. Additionally, as gene expression data sets often

contain missing data, the proximity indices studied need also to support missing data

(Gower, 1971). Based on this, versions of the following proximity indices are studied:

Euclidean distance, Pearson correlation and angular separation (Gordon, 1999). The

Euclidean distance does not capture the relative magnitude proximity, unless the ob-

jects have their values normalised or standardised. Because of this, for the Euclidean
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distance version, the effect of normalisation and standardisation are also investigated.

The indices studied can be formally defined as follows. Let xik denote the kth

quantitative value (expression value of time point k) of the ith object (gene) where

i = 1, . . . , n and k = 1, . . . , p; the modified version of the Euclidean distance between

the ith and jth objects is defined as:

dij =

∑p
k=1(xik − xjk)

2δijk∑p
k=1 δijk

(3.3)

where

δijk =




0, if xij or xik is missing

1, otherwise

Such a version of the Euclidean distance (Eq. 3.3) - ED, for short - is a dissimilarity

index, with values near zero representing similar objects. As this version is based on

the Euclidean distance, it shares the desirable characteristics of the original distance

such as the ability to detect compact and isolated clusters. However, attributes with

high scale values can dominate the others. This can be solved by the normalisation

of the data attributes (Jain & Dubes, 1988).

The equation for the version of the Pearson correlation - PC, for short - is as

follows:

sij =

∑p
k=1(xik − xi)(xjk − xj)δijk

(
∑p

k=1 δijk)
√∑p

k=1 (xik − xi)2ϑik
∑p

k=1 (xjk − xj)2ϑjk

(3.4)

where

xi =
∑p

k=1
xikϑik∑p

k=1
ϑik

;
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ϑik =




0, if xik is missing

1, otherwise
;

and δijk as in Eq. 3.3.

PC is a correlation type index that measures the angle similarity of two data

vectors, yielding values between -1 and 1, where 1 represents similar objects and -1

dissimilar objects.

The equation for the version of the angular separation - AS, for short - is as follows:

sij =

∑p
k=1 xikxjkδijk

(
∑p

k=1 δijk)
√∑p

k=1 x2
ikϑik

∑p
k=1 x2

jkϑjk

(3.5)

where δijk is as defined in Eq. 3.3; and ϑik is as defined in Eq. 3.4.

AS (Eq. 3.5) is also a correlation type index, with the same characteristics as

those of PC (Eq. 3.4). The difference between them is that AS measures the angle

similarity from the origin, while PC measures the angle similarity from the mean of

the data. Both correlations differ from ED (with no prior normalisation) in that they

do not consider the vector size when measuring the proximity.

As clustering methods work either with pairwise similarity (sij) or a dissimilarity

(dij) indices, sometimes, it is necessary to transform similarities in dissimilarities and

vice-versa (Gordon, 1999). In the case of similarities bound to [-1,1] and dissimilarities

bound to [0,1], the two following equations can be used to transform, respectively,

similarities in dissimilarities (Eq. 3.6) and dissimilarities in similarities (Eq. 3.7):

dij =
1 + sij

2
(3.6)
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sij = 1 − 2dij (3.7)

Among a number of pre-processing procedures available, two of them broadly used

in the literature of gene expression are analysed (Tamayo et al., 1999). The first

procedure is the normalisation of the data vectors (genes) so that they have a norm

equal to one. This procedure requires the values of the data vectors to be positive.

The other is a standardisation procedure that makes the data vectors to have zero

mean and standard deviation equals to one. The application of either procedure

makes ED capture relative magnitude dissimilarity. As the data sets used in this

work contain missing data, both procedures were adapted to support missing values.

Formally, let xik denote the kth quantitative value (expression value of time point

k) of the ith object (gene) where i = 1, . . . , n and k = 1, . . . , p; the standardised values

are obtained by the following equation:

zik =




missing, if xik is missing

xik − xi

si

, otherwise
(3.8)

where

s2
i =

∑p

k=1
(xik−xi)

2ϑik

(
∑p

k=1
ϑik−1)

;

and xi and ϑik are defined as in Eq. 3.4.

In order to obtain the normalised values, the following equation is used:

yik =




missing, if xik is missing

xik∑p
k=1 xikϑik

, otherwise
(3.9)
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where ϑik is defined as in Eq. 3.4.

3.3 Cluster Validity

The evaluation of clustering results in an objective and quantitative fashion is the

main objective of cluster validity. Despite of its importance, cluster validity is rarely

employed in applications of cluster analysis. The reasons for this are, among others,

the lack of general guidelines on how cluster validity should be carried out, and the

great need of computer resources (Jain & Dubes, 1988).

In this section, procedures and tools for cluster validity relevant to this work are

described. More specifically, Section 3.3.1 describes aspects of indices for cluster

validity. Next, in Section 3.3.2, methodologies used for the evaluation of clustering

methods are explained.

3.3.1 Validity Indices

The aim of validity indices is to measure objectively the adequacy of a structure

returned from a cluster analysis. Such indices should measure the alikeness that

the structure gives true information about the data, or that the structure captures

intrinsic characteristics of the data (Jain & Dubes, 1988).

The validity indices vary in two main aspects: the type of structure, and the type

of criteria measured. In terms of structure, validity indices can handle hierarchies,

partitions or individual clusters. With respect to the criterion, there are three types:

external, internal and relative. The external criteria asses the accuracy by comparing

the structure with a priori information. Internal criteria measure the accuracy by

comparing the structure with the input data (and only the input data). The last
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type, relative criteria, are used to compare two cluster structures, in order to point

out which structure is better in some sense. This work will attain to validity in-

dices appropriate for evaluating partitions and external criteria. The reasons for this

choice are, among others, the fact that: most of the methods evaluated gives par-

titions as result and external labels are available for some data sets. Alternatively,

internal criteria could be used, allowing the addition of unlabelled data sets in this

experiments. However, there are a number of difficulties in applying internal indices,

specially in a comparative analysis, where the choice of the index could favour some

specific clustering methods (Dubes, 1998).

External Indices

External indices are used to assess the degree of agreement between two partitions

(U and V ), where partition U is the result of a clustering method and partition V

is formed by an a priori information independent of partition U , such as a category

label (Jain & Dubes, 1988). There are a number of external indices defined in the

literature, such as Jaccard, Rand and corrected Rand (or adjusted Rand) (Jain &

Dubes, 1988). One characteristic of most of these indices is that they can be sensitive

to the number of classes in the partitions or to the distributions of elements in the

clusters. For example, some indices have a tendency to present higher values for

partitions with more classes (Rand), others for partitions with a smaller number of

classes (Jaccard) (Dubes, 1987). The corrected Rand, which has its values corrected

for chance agreement, does not have any of these undesirable characteristics (Milligan

& Cooper, 1986). Thus, the corrected Rand index is the only external index used in

the validation methodology proposed by this work. However, in order to explain the

general idea of external indices, the Rand and Jaccard indices are first described.

More formally, let D be a set of objects, U = {u1, . . . , ur, . . . , uR} be the partition
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obtained by clustering D, and V = {v1, . . . , vc, . . . , vC} be the partition defined by

the a priori classification of the objects in D. Given two objects xi and xj from D,

the external indices can be expressed in terms of the following indicator functions

(Jain & Dubes, 1988):

IU(i, j) =




1, if xi ∈ ur and xj ∈ ur for r ≤ R

0, otherwise
(3.10)

IV (i, j) =




1, if xi ∈ vc and xj ∈ vc for c ≤ C

0, otherwise
(3.11)

These indicator functions define the following contingency table:

IU

IV

1 0

1 a b m1

0 c d M − m1

m2 M − m2 M

(3.12)

In this table, the agreements of the partitions are represented by a and d, where a

indicates the number of individual pairs in the same classes in both partitions, and

d denotes the number of individual pairs in separate classes in both partitions. The

disagreements are indicated by b and c, where b represents pairs in the same class in

partition V but in separate classes in partition U , and c represents pairs in separate

classes in V but in the same class in U . M is the total number of element pairs, m1

is the sum of a and b, and m2 the sum of a and c. From these values the Rand and

Jaccard indices can defined as:
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Rand =
a + d

a + b + c + d
(3.13)

Jaccard =
a

a + b + c
(3.14)

Both Jaccard (Eq. 3.14) and Rand (Eq. 3.13) indices yield values in the interval

[0,1], where the more the value approximates to 1 the higher the agreement is. The

difference among them is that Jaccard does not take into consideration the agreement

represented by term d. These two indices suffers from the same problem, as there is no

indication of how good a partition is given the value obtained. For instance, Milligan

& Cooper (1986) showed that partitions with a high number of clusters can obtain

Rand index values near 1 independently of their quality. One way to overcome this

problem is to correct the indices for random agreement. The corrected Rand index

(Hubbert & Arabie, 1985), for example, can be described as the following equation:

corrected Rand =
a + d − nc

a + b + c + d − nc

(3.15)

Such an index is obtained by adding to the Rand index a correcting term (nC),

which adjusts the statistic by estimating random agreement (Hubbert & Arabie,

1985). This correction considers that the baseline distributions of the partitions are

fixed. The corrected Rand index can take values from -1 to 1, with 1 indicating a

perfect agreement between the partitions, and values near 0 or negatives correspond-

ing to cluster agreement found by chance. In fact, an analysis by Milligan & Cooper

(1986) confirmed that corrected Rand scores near to 0 when presented to clusters gen-

erated from random data, and showed that values greater than 0.05 indicate clusters

not achieved by chance.
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As the nc term cannot be defined from a, b, c and d, the exact corrected Rand

equation can only be expressed in terms of the contingency table of partitions U and

V , as defined below (Jain & Dubes, 1988):

v1 v2 . . . vC

u1 n11 n12 · · · n1C n1.

u2 n21 n22 · · · n2C n2.

...
...

...
. . .

...
...

uR nR1 nR2 · · · nRC nR.

n.1 n.2 · · · n.C n

(3.16)

where nij represents the number of objects that are in clusters ui and vi; n is the

number of all objects in the partitions; ni. indicates the number of objects in cluster

ui; and n.j indicates the number of objects in cluster vj. Thus, the exact corrected

Rand equation is as follows:

corrected Rand =

∑R
i

∑C
j

(
nij

2

)
−

(
n
2

)−1 ∑R
i

(
ni.

2

) ∑C
j

(
n.j

2

)
1
2
[
∑R

i

(
ni.

2

)
+

∑C
j

(
n.j

2

)
] −

(
n
2

)−1 ∑R
i

(
ni.

2

) ∑C
j

(
n.j

2

) (3.17)

3.3.2 Validation Methodologies

Methodologies for cluster validity are inherently statistical. The task of such proce-

dures is to find how unusual or valid a certain cluster structure is. One procedure

very popular in cluster validity is the Monte Carlo test (Jain & Dubes, 1988). In

this test, a number of data sets are built given a null model (usually this null model

represents no structure or randomness). These data sets are clustered and evaluated

by a validity index, giving as result a distribution of values (baseline distribution).
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Then, the observed value (the cluster structure to be evaluated) is compared with the

baseline distribution (obtained by the null model) using statistical tests.

Monte Carlo tests have been widely employed in cluster validity studies (Gordon,

1999; Jain & Dubes, 1988; Milligan, 1996). However, this test presents some prob-

lems. First, Monte Carlo consumes a lot of computer resources, as a high number

of replications are needed for building the baseline distribution (from 500 to 1000

replications) (Jain & Dubes, 1988). Nowadays, this may not be a big problem, as

processing time is becoming cheaper. However, for complex experiments, such a num-

ber of replications can still be a problem. Second, the definition of the null model is

not a trivial task. In fact, there is a wide range of null models types, each with some

advantages and disadvantages (Gordon, 1996). Indeed, Gordon (1996) suggested that

more than one null model should be employed in validation analysis, what makes the

validation process more complex and time consuming.

Other statistical methodology that has an increasing use in cluster validity is boot-

strap. Bootstrap has been used to build consensus trees (Felsenstein, 1985), and to

measure cluster stability (Jain & Moreau, 1987). In fact, bootstrap samples of an

original data set could be used to build a null model (the hypothesis of no structure or

randomness) (Jain & Dubes, 1988). These bootstrap samples can be obtained either

by resampling the objects or the attributes in the data set. In order words, all the

problems present in Monte Carlo tests related to the choice of the null model would

be avoided. But still, the number of resamples necessary for building accurate test is

still high (500 to 1000) (Efron & Tibshirani, 1993).

Replication analysis is another well known procedure for cluster validation (McIn-

tyre & Blashfield, 1980). This procedure, based on cross-validation, measures the

stability of a method in clustering a certain data set. This method is also based on

making a number of samples from the original data set. However, it requires a small



CHAPTER 3. CLUSTER ANALYSIS 49

number of replications to perform the test (at least 30). Since in this work the number

of experiments necessary for comparing the proximity indices and clustering meth-

ods is high (around a 100 distinct experiments), it would be too costly to use either

the Monte Carlo or the bootstrap test. Because of this, the validation methodology

proposed in this dissertation is based on the replication analysis. As a consequence,

only the replication analysis is described with further details.

Replication analysis

Replication analysis is a procedure based on cross-validation with the aim of measur-

ing the stability (or replicability) of clustering methods. This is done by comparing

the results obtained by clustering subsets of data randomly drawn from a single pop-

ulation (McIntyre & Blashfield, 1980; Morey et al., 1983). The higher the similarity

of the partitions obtained by clustering the distinct subsets, the higher the stability of

the given method is. It is important to point out that stability and accuracy are not

necessarily correlated. Even though the solution given by a method can be stated as

stable, it does not mean that the solution has a good accuracy. In contrast, stability

is related to the reliability of the results, being a necessary characteristic of accurate

results (McIntyre & Blashfield, 1980).

In the supervised learning context, the cross-validation procedure is performed in

two steps. First, a sub set of the data (training set) is used to training the method,

obtaining a classifier (or function) as result. Then, another subset of the data (test

set) is presented to this classifier. In contrast, clustering results are not classifiers

(or functions) as in supervised learning. In fact, the results obtained with clustering

methods consist of structures such as partitions or hierarchies, which cannot be di-

rectly used to classify other objects. This problem is overcome in replication analysis

by the use of the nearest centroid procedure. In this procedure, for each cluster of
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a partition, a centroid is calculated. In order to classify one object, the distances

between the object and the centroids are calculated. The object is then assigned,

given a proximity index, to the class with the nearest centroid. This method resem-

bles steps of some clustering algorithms (SOM, k -means, average linkage hierarchical

clustering) when an element is assigned to a cluster. As a consequence, the use of this

procedure should not include an additional bias in the validation process (McIntyre

& Blashfield, 1980).

Basically, the replication procedure works as follows. The data set is randomly

divided in two disjoint data sets A and B. Then, the objects in A are clustered. The

resulting partition is used in conjunction to the nearest centroid procedure to classify

the objects in B (Nearest Centroid step). Next, the objects in B are clustered in the

same way as the objects in A (Direct Clustering step). Finally, the partitions obtained

in the Nearest Centroid Step and Direct Clustering step are compared (both partitions

are obtained from the set B). The higher the agrement between these partitions, the

higher the stability. This procedure is then repeated a number of times with distinct

partitions A and B.

Formally, let D be the data set; n the number of clusters; Ai and Bi the two

random subsets from the data set D; Ri the resulting partition of the set Ai; Ci the

set of centroids of partition Ri; Pi and NCi the resulting partitions of the set Bi, for

i = 1, . . . , k; then, the replication analysis procedure works as follows (McIntyre &

Blashfield, 1980):
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1. for i = 1 to k do

2. D is randomly divided into two disjoint folds Ai and Bi;

3. Apply the clustering method to the set Ai obtaining partition Ri

with n clusters as result;

4. Calculate the n centroids of the clusters in Ri, forming Ci;

5. Calculate the distances between the centroids in Ci and the objects
in Bi;

6. Assign the objects of Bi to the nearest centroid in Ci obtaining
partition NCi as result (Nearest Centroid step);

7. Apply the clustering method to the set Bi obtaining partition Pi

with n clusters as result (Direct Clustering step);

8. Measure the agreement of partitions NCi and Pi with an external
index;

The idea behind the replication analysis is simple. The stability is measured by

comparing the partition obtained by a clustering method, with the partition obtained

in a independent sub set of data (via the nearest centroid procedure). Monte carlo

experiments of this procedure (McIntyre & Blashfield, 1980) have shown that the

replication analysis is useful for the evaluation of clustering methods. Furthermore,

its was also demonstrated that there was a high correlation between the stability and

the accuracy of the results.

An evaluation of variant procedures was carried out in Breckenridge (1989). Be-

sides the nearest centroid procedure the study evaluated the nearest neighbour pro-

cedure and the quadratic discriminant analysis classification rule. Monte Carlo ex-

periments demonstrated that the nearest neighbor procedure obtained better results

for detecting instability than the other procedures. However, its was stated that the

nearest centroid procedure should be used in situations were the data is clustered by

relative magnitude or shape, which is the context of this work (Breckenridge, 1989).



Chapter 4

Methods and Experiments

This chapter presents in details the validation methodology and the experimental de-

sign used in the comparative analysis. Section 4.1 introduces the validation method-

ology proposed in this dissertation. Then, Section 4.2 describes the data sets used

in the experiments. The last section describes the experimental design utilised in

the experiments, as well as some implementation issues specific to each clustering

method.

4.1 Validation Methodology

In this section, a methodology for cluster validity with the objective of comparing the

accuracy of clustering methods and proximity indices is described. This methodology

consists of the use of an adaptation of the k -fold cross-validation procedure to unsu-

pervised methods. Such a procedure is inspired in the replication analysis (McIntyre

& Blashfield, 1980). The accuracy of the results obtained in the k -fold cross-validation

is measured with the use of an external index. The mean values of the external index

obtained by each clustering method (or proximity index) are compared two by two
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with a bootstrap hypothesis test, in order to asses the statistical significance of any

difference in the results.

4.1.1 Cross-validation

The comparison of two supervised learning methods is, often, accomplished by ana-

lysing the statistical significance of the difference between the mean of the classifi-

cation error rate, on independent test sets, of the methods evaluated. In order to

evaluate the mean of the error rate, several (distinct) data sets are needed. However,

the number of data sets available is often limited. One way to overcome this problem

is to divide the data sets into training and test sets by the use of a k-fold cross valida-

tion procedure (Mitchell, 1997). This procedure can be used to compare supervised

methods, even if only one data set is available. The procedure works as follows. The

data set is divided into k disjoint equal size sets. Then, training is performed in k

steps, each time using a different fold as the test set and the union of the remaining

folds as the training set. Applying the distinct algorithms to the same folds with a

k at least equal to thirty, the statistical significance of the differences between the

methods can be measured, based on the mean of the error rate from the test sets.

In unsupervised learning, when there is an a priori classification of the data set

available, the comparison between two methods can also be done by detecting the

statistical significance of the difference between the mean value of a certain external

index (it is important to point out that the a priori classification is not used in the

training, but only to evaluate the results). But again, the number of training sets

available is also limited. Monte Carlo and bootstrap tests could be used to generate

additional training sets, but they have a high computational cost. This work proposes

a method to overcome these problems. Such a methodology is an adaptation of the

k-fold cross-validation procedure for unsupervised methods.
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In the proposed unsupervised k-fold cross-validation procedure, the data set is

also divided in k folds. For each iteration of the procedure, one fold is used as the

test set, and the remaining folds as the training set. The training set is presented

to a clustering method, giving a partition as result (training partition). Then, the

nearest centroid technique is used to build a classifier from the training partition.

The centroid technique calculates the proximity between the elements in the test set

and the centroids of each cluster in the training partition (the proximity must be

measured with the same proximity index used by the clustering method evaluated).

A new partition (test partition) is then obtained by assigning each object in the test

set to the cluster with nearest centroid. Next, the test partition is compared with

the a priori partition (or a priori classification) by using an external index (this a

priori partition contains only the objects of the test partition). At the end of the

procedure, a sample with size k of the values for the external index is available.

Formally, let D be the data set; n the number of clusters; Fi the ith test fold (or

set); Ri the resulting partition of the training set D − Fi; Ci the set of centroids of

partition Ri; Ti the resulting partition of test fold Fi; and Pi the a priori partition with

the objects from Fi, for i = 1, . . . , k; then, the unsupervised k-fold cross-validation

procedure works as follows:
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1. D is randomly divided into k equal and disjoint folds Fi;

2. for i = 1 to k do

3. Apply the clustering method to the set D − Fi obtaining partition
Ri with n clusters as result;

4. Calculate the n centroids of the clusters in Ri, forming Ci;

5. Calculate the distances between the centroids in Ci and the objects
in Fi;

6. Assign the objects of Fi to the nearest centroid in Ci obtaining
partition Ti as result;

7. Measure the agreement of partitions Ti and Pi with an external index;

The general idea of the k -fold cross-validation procedure is to observe how well

data from an independent set Fi is clustered, given the training results. If the results

of a training set have a low agreement with the a priori classification, so should have

the results of the respective test set. In conclusion, the objective of the procedure is

to obtain k observations of the accuracy of the unsupervised methods with respect

to an a priori classification, all this with the use of independent test folds.

The proposed procedure is an adaptation of the replication analysis described in

Section 3.3.2. However there are two main differences between these procedures. In

the replication analysis, the nearest centroid technique is used to analyse the stability

of the results. In order to do so, the test set is also clustered with the same method

from the Step 3, obtaining one partition of the test set as result. The stability is

measured by comparing this partition with the partition obtained in Step 6 (partition

Ti) (see algorithm in Section 3.3.2) . On the other hand, the unsupervised k-fold cross

validation is used to analyse the accuracy of the results. This is done by comparing

the partition from Step 6 with an a priori classification. Second, the “test folds”
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(fold B) of the replication analysis are not drawn independently from the others, in

contrast to the independent test folds of the unsupervised k-fold procedure.

4.1.2 Hypothesis Test

Two-sample hypothesis tests are applied to measure the significance of the difference

between the sample means of two random variables. In this work, these two samples

are formed by the values of the external index provided by the unsupervised k -fold

cross-validation procedure for the two clustering methods (or proximity indices) to be

compared. The test indicates if a sample mean of a clustering method can be stated

to be superior to the other.

The hypothesis test used in this work is based on bootstrap resampling. Bootstrap

is a data based method used to measure the accuracy of statistical estimates (Efron

& Tibshirani, 1993). The idea behind bootstrap is simple; given a sample, elements

are randomly drawn with replacement, forming a bootstrap sample. The estimate is

build by calculating a desired statistics from a large number of bootstrap samples.

The bootstrap method was chosen due to its capacity to build accurate estimates

when a limited number of elements are available in the samples. Furthermore, the

bootstrap method has the advantage of not making parametric assumptions about

the sample distributions. However, such a method is not so accurate as other tests

such as the t-test (Efron & Tibshirani, 1993).

More formally, let r be the number of bootstrap samples replicates; y be the sample

y = (y1, . . . , yi, . . . , yn); z be the sample z = (z1, . . . , zj, . . . , zm); and y and z be two

sample means. The hypothesis of the test are:

H0 : y = z
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H1 : y < z

Then, the bootstrap procedure to compare samples y and z is defined as (Efron &

Tibshirani, 1993):

1. Form samples ỹ and z̃ by applying the following transformation to y and z:

ỹi = yi − y + x for i = 1, . . . , n and z̃j = zj − z + x for j = 1, . . . , m; where y

and z are the samples means, and x is the mean of the combined sample

2. for k = 1 to r do

3. Form the bootstrap samples y∗k and z∗k from ỹ and z̃

4. Calculate t(y∗k ,z∗k), given the statistic defined by Equation 4.1

t(A,B) =
a − b√
s2
a

n
+

s2
b

n

(4.1)

where

A = (a1, . . . , ai, . . . , an);

B = (b1, . . . , bj, . . . , bm);

s2
a =

∑n
i=1 (ai − a)2/(n − 1)

and s2
b =

∑m
i=1 (bi − b)2/(n − 1).

5. Calculate the statistic t(y, z) with the original samples y and z (Eq. 4.1), and

find the achieved significance level (ASL) (Eq. 4.2), given W = {(y∗1 ,z∗1), . . . ,

(y∗k ,z∗k), . . . , (y∗r ,z∗r)}

ASL =

∣∣∣ {
∀(y∗k, z∗k) ∈ W |t(y∗k, z∗k) ≥ t(y, z)

} ∣∣∣
r

(4.2)

6. If ASL is smaller than a defined significance level (α) then H0 is rejected.
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4.2 Data Sets

The yeast Saccharomyces cerevisiae is one of the most well studied biological organ-

ism, in fact, it is one of the first organisms to have the whole genome known (Heyer

et al., 1999). Since there is a wide availability of public data from the yeast, as well

as the availability of an extensive functional classification of its genes, allowing the

validation of the clustering results, this dissertation focus on data from this organism.

More specifically, one classification scheme and two data sets from the Yeast are used.

The Yeast Functional Classification consists of a classification scheme of half of the

known yeast genes. The two data sets contain data of gene expression time series:

the Yeast All and the Mitotic Cell Cycle data sets. From these expression data sets,

only genes belonging to a certain classification scheme are used to form the final data

sets. More specifically, from the Yeast All expression data, two data sets are formed

by the use of two distinct functional classifications schemes devised from the Yeast

Functional Classification. In terms of the Mitotic Cell Cycle data set, also two data

sets are formed, one is formed by the Yeast Functional Classification scheme and the

other is formed by a series shape classification performed in Cho et al. (1998).

4.2.1 Yeast Functional Classification

Munich Information Center for Protein Sequences Yeast Genome Database (MYGD)

is the main scheme for classifying protein function of the yeast organism (Mewes et

al., 2002). This classification scheme is currently composed of a tree with 249 classes

spread in five levels. The genes are catalogued in accordance to information from

biochemical and genetic studies, where genes with a large amount of information

tend to be classified in higher levels of the tree (the number of classes in each level

is shown in Table 1). Genes can be assigned to more than one class, consequently
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the overlap of classes is large, with genes being assigned to an average of 2.9 classes.

Out of the 6200 known yeast ORFs (Open Reading Frames), around 3900 belong

to at lest one of the MYGD classes. (Original data available at: http://mips.sf.de/

proj/yeast/catalogues).

Level NUMBER
OF CLASSES

1 16
2 107
3 85
4 39
5 2

Table 4.1: Number of classes in the five levels of the MYGD classification.

This data is used as the external category label in order to evaluate the accuracy

of the clustering results. In other words, this classification data does not contain

any gene expression data, but it is used in conjunction with expression data sets,

supplying a label for the genes contained in the expression data sets. In fact, two

classifications schemes were obtained from this data, the FC and the REDUCED FC.

The FC classification scheme is formed by thirteen first level classes of the MYGD,

as in (Zhu & Zhang, 2000). These classes are expected to show similar expression

profiles. Table 2 shows theses classes and the number of genes in each class.

The REDUCED FC (Table 3) is composed of five MYGD classes that have shown

a high tendency to cluster together (Eisen et al., 1998). Furthermore, genes belonging

to these classes have been successfully used for building function prediction classifiers

using supervised methods (Brown et al., 2000).
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CLASS NUMBER
OF GENES

Metabolism 1215
Energy 258
Cell Cycle and DNA Processing 815
Transcription 847
Protein Synthesis 363
Protein Fate 655
Cellular Transport 537
Cellular Communication 60
Cell Rescue, Defense and Virulence 287
Regulation of Cellular Environment 216
Transposable Elements, Viral, Plasmid Proteins 116
Control of Cellular Organisation 217
Transport Facilitation 363

Table 4.2: MYGD classes from the FC scheme with theirs respective number of genes.

CLASS NUMBER
OF GENES

Tricarboxylic acid cycle 17
Respiration 22
Cytoplasmic ribosome 121
Proteasome 35
Histones 11

Table 4.3: MYGD classes from the REDUCED FC scheme with theirs respective
number of genes
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4.2.2 Yeast All

This data set contains data from five yeast experiments, where 6200 ORFs had their

expression profiles measured using cDNA microarrays. The ORF profiles contain 71

time points, observed during the following five biological processes: the mitotic cell

division (cycle alpha, cdc15, elutration) (Spellman et al., 1998), sporulation (Chu et

al., 1998) and diauxic shift (DeRisi et al., 1997). These processes contained, respec-

tively, 18, 25, 14, 7 and 7 time points. The expression value of each ORF in a time

point is the log transformation (base 2) of the ratio between the measured expression

level and the control expression level (Eisen et al., 1998). Some of the genes con-

tain missing values, either because insignificant hybridisation levels were detected,

or because the genes were not measured in certain processes. (Data available at:

http://genome-www.stanford.edu/clustering).

As stated in Section 3.2, the normalisation procedure requires the data vectors to

contain only positive values, which is not the case of the log ratio values obtained

in cDNA microarrays. In order to overcome this problem, the data sets applied to

experiments that use normalisation are raised to the power of two, returning to the

original measure-control ratio.

Two data sets were devised from the original Yeast All data set, the FC Yeast All

and the Reduced FC Yeast All. The FC Yeast All data set contains only genes in the

FC classification. A missing data filter was applied to this data set, excluding profiles

with more than 20% of missing data. As in Heyer et al. (1999), a final filtering was

employed in order to remove uninformative genes with low expression levels or with

low variance between the time points. In these removed ORFs, the expression level

did not vary across time, thus these profiles were considered uninformative in relation

to gene function. In order to apply this filtering, genes were ranked according to

their variance and mean, where the ones within the 25% lowest values (Heyer et al.,
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1999) in each rank were removed. At the end, the FC Yeast All data set contained

1765 genes. The Reduced FC Yeast All data set contains only genes from the Reduced

FC classification. Since there is a reduced number of genes in this data set, only the

missing filter was applied, ending up with 205 genes.

4.2.3 Mitotic Cell Cycle (CDC 25)

This data set was obtained in an experiment from the Yeast organism during the

mitotic cell division cycle (Cho et al., 1998). The set contains the expression profiles

measured with oligonucleotides arrays during 17 time points, with a similar set of

ORFs as the one used in the Yeast All data set. In oligonucleotides arrays, there are

20 pairs of probes for each ORF. These pairs are composed of perfect match (PM)

and mismatch (MM) probes, where the latter works as a specificity control. The

expression of a gene is measured by the average of the difference of the PM and MM

probes (Lipshutz et al., 1999).

Two data sets were also devised from the Mitotic Cell Cycle, the FC CDC 25 and

the Series CDC 25. In the FC CDC 25 dataset, only genes in the FC classification

were considered. A variance filtering was employed in order to remove the 25% of the

genes with lowest variance and mean. This data sets did not contained any missing

data. The final number of genes in this data set was 1869. The Series CDC 25 data

set contains genes belonging to a visual classification of the series shape performed by

Cho et al. (1998). In this classification, 420 genes were assigned to one of five known

phases of the cell cycle (some of the genes were assigned to a multiple phase class).

There was no need to pre-process this data set, as only informative gene profiles were

included in the classification.
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4.3 Experiments

The experiments are divided in two parts. In the first part, only the proximity indices

are compared, while in the second one the comparison of the clustering methods is

accomplished. The results obtained in the former are used to choose the proximity

indices (with the best accuracy given a clustering method) to be used in the latter

part. In the following two sections, both experiments are described. In the last

section, implementation issues specific to each each clustering method are described.

4.3.1 Comparison of Proximity indices

The first part of the experiments compare versions of three proximity indices: angu-

lar separation (AS), Pearson correlation (PC) and Euclidean distance (ED). With

respect to the Euclidean distance version, experiments are performed with the data

vectors in three forms, namely, original (ED1), normalised (ED2) and standard-

ised (ED3) values. This yields five distinct settings of proximity indices and pre-

processing. Each of these settings was implemented in the following clustering meth-

ods : CLICK, SOM, hierarchical clustering, dynamical clustering, k -means, and dy-

namical clustering and k -means with initialisation from the hierarchical method. The

experiments were accomplished by presenting the four data sets (FC Yeast All, Re-

duced FC Yeast All, FC CDC 25 and Series CDC 25) to all these methods and indices

settings. More specifically, for each method, proximity index, and data set; a thirty-

fold unsupervised cross-validation was applied. Afterwards, the mean values of the

corrected Rand index (CR) for the test folds were measured. Finally, the mean of CR

obtained by the five settings of proximity indices and pre-processing were compared

two by two, using the bootstrap hypothesis test with 1000 bootstrap samples. As

the interest of this experiment is in comparing the proximity indices, the hypothesis
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tests only compared the results of experiments performed with the same clustering

methods and data sets.

4.3.2 Comparison of Clustering Methods

The second part of the experiments compare the following clustering methods: CLICK,

SOM, hierarchical clustering, dynamical clustering, k -means, and dynamical cluster-

ing and k -means with initialisation from the hierarchical clustering. Each clustering

method was evaluated with the proximity index that obtained the higher accuracy

in the first part of the experiments. The experiments were accomplished by present-

ing the same four data sets (FC Yeast All, Reduced FC Yeast All, FC CDC 25 and

Series CDC 25) to all methods. More specifically, for each method and data set; a

thirty-fold unsupervised cross-validation was applied. Afterwards, the mean values of

the corrected Rand index (CR) for the test folds were measured. Finally, the mean

of CR obtained by the seven clustering methods were compared two by two, using

the bootstrap hypothesis test with 1000 bootstrap samples. As the interest of this

experiment is in comparing clustering methods, the hypothesis tests only compared

the results of experiments developed with the same data sets.

In order to evaluate the usefulness of the validation methodology, a random as-

signment method was also included in this evaluation. This method simply assigns

randomly the objects in the input data set to a cluster. Its is important to notice

that this method is evaluated in the same manner as the other methods. In brief, the

method is used to cluster the training sets in the k-fold cross-validation procedure.

The nearest centroid procedure used to cluster the test set is then performed normally

given the random partition. The only distinction of the evaluation of the random as-

signment method is that the final results are taken from the mean corrected Rand

values obtained in 100 different runs. These mean results obtained by the random
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assignment method are taken as the worst case. All other clustering methods should

obtain values significantly higher than it.

4.3.3 Clustering Method Implementations

In order to perform the experiments with dynamical clustering and k−means meth-

ods, an implementation from (Costa et al., 2002a) was used. In terms of the param-

eters of these two methods, the number of clusters was set to the number of a priori

classes (the number of clusters was also set to the number of a priori classes in the

other methods), and the number of distinct initialisations used was 100.

In relation to the CLICK method, an implementation available in the software

Expander was utilised. (Expander available at: http://www.cs.tau.ac.il/∼rshamir/

expander/expander.html). The implementation did not support the Euclidean dis-

tance version, so only the Pearson correlation and angular separation versions are

compared with this method. Missing data was not supported as well, so only the

CDC 25 data sets were used in the CLICK experiments. The homogeneity, the other

algorithm parameter, was set to its default value.

The SOM Toolbox for Matlab was used to run the SOM experiments (SOM Tool-

box available at: http// www.cis.hut.fi/projects/somtoolbox.). The original imple-

mentation only supported the Euclidean distance. Thus, in order to include Pearson

correlation and angular separation, modifications were done in the code. SOM re-

quires parametrisation experiments, in order to tune its performance (see Section

3.1.4). Due to the number of parameters available, and the complexity of choosing

them, only the topology will be varied. This choice is based in a previous study with

gene expression data, where its was found that the topology was the parameter with

highest impact on the results (Jonsson, 2001).
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In order to set the other parameters from SOM, a method of the toolbox that uses

a number of heuristics to set the parameters was employed (for more details see the

description of the method som make in Vesanto et al. (2000)). As not all the results

obtained by this parametrisation were satisfactory, another parametrisation based on

the one used in Vesanto & Alhoniemi (2000) was employed (this parametrisation is

refereed as VESANTO, while the former is refereed as DEFAULT ). The VESANTO

parametrisation used 10 epochs and a learning rate of 0.5 during the ordering phase.

The initial radius was set to the topology highest dimension and the final radius to

half the highest dimension. In the convergence phase, 10 epochs and a learning rate

of 0.05 were used. The initial radius was set to half the highest topology dimension

minus 1 and the final radius to 1. In both phases, the neighbourhood function was the

Gaussian. In relation to the topology, the following procedure was applied. An initial

topology is chosen. Additionally, experiments with a larger and smaller topology

are also performed. If the initial topology obtain the best results then no more

experiments are done. Otherwise, the same process is repeated for the topology with

best result.

R software was used with the hierarchical clustering experiments (software available

at: http://www.r-project.org/). Only experiments with the average linkage method

were performed, since this method has been extensively used in the gene expression

literature (Eisen et al., 1998). As the external index used in this work is suitable only

for partition comparison, the resulting hierarchies were cut in a given level in order to

provide partitions (see Section 3.1.5). In the experiments with gene expression data,

sub-trees with less than 5 objects were ignored.
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Results

The results of the comparative analysis are presented and analysed in this chapter.

Section 5.1 describes the results achieved in the comparative analysis of the proximity

indices, while Section 5.2 describes the results achieved in the comparative analysis

of the clustering methods. The results of the experiments for selection for parameters

for SOM are reported in Appendix A, while Appendix B presents detailed statistics

of all experimental results.

5.1 Proximity Indices

5.1.1 Experiments

Figure 5.1 shows the mean values of corrected Rand for the experiments performed

with the FC Yeast All data set (the higher the corrected Rand, the higher the accu-

racy). Regarding the experiments with SOM, ED3 and PC obtained higher values

than the other proximity indices. In these cases, the hypotheses of no difference (null

hypothesis) were rejected in favour of ED3 and PC (at significance level α of 0.01).

67
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In respect to the hierarchical clustering, ED1 and ED2 achieved lower values than

the other proximity indices. In these cases, the hypotheses of no difference were re-

jected in favour of ED3, AS and PC at α of 0.01. For all other methods, except for

the SOM and hierarchical clustering, AS obtained a higher accuracy than the other

proximity indices. In these cases, the hypotheses of no difference between AS and

the other proximity indices were rejected in favour of AS at α = 0.05. In fact, with

all clustering methods, except for SOM and hierarchical clustering, the hypotheses

of no difference between ED1 and AS were rejected in favour of AS at even a lower

significance level (α = 0.01).

Figure 5.1: Mean of corrected Rand values from the FC Yeast All experiments

In Figure 5.2, the mean values of corrected Rand with the Reduced FC Yeast All

data set are illustrated. In the experiments with SOM, ED3 obtained a higher ac-

curacy than the other proximity indices. In these cases, the null hypotheses were

rejected in favour of ED3 in comparison to ED1 (α = 0.01), AS and PC (α = 0.05).

In terms of hierarchical clustering, ED1 and ED2 achieved lower values than the
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other proximity indices. In these cases, the hypotheses of no difference were rejected

in favour of ED3, AS and PC at α = 0.01. Furthermore, still in the hierarchical

clustering, PC obtained the higher accuracy than the other proximity indices. The

null hypotheses were rejected in favour of PC at α = 0.05. For the dynamical clus-

tering and k-means, both with or without hierarchical initialisations, AS achieved a

lower accuracy in comparison to the other proximity indices. For these four exper-

iments, the hypotheses of no difference between AS and all other proximity indices

were reject in favour to ED1, ED2, ED3 and PC at α = 0.02. Furthermore, still

with these four methods, ED1 obtained an accuracy as high as ED2, ED3 and PC,

with no significant difference detected among these proximity indices.

Figure 5.2: Mean of corrected Rand values from the Reduced FC Yeast All experi-
ments

The results for the FC CDC 25 data set are summarised in Figure 5.3. In the dy-

namical clustering (with or without hierarchical initialisation), ED2 and AS achieved

a higher accuracy than ED1. In both cases, the null hypotheses were rejected in favour
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of ED2 and AS at α = 0.02. In the results with k-means (with or without hierarchical

initialization), ED2 had a higher accuracy in comparison to ED1. In this case, the

null hypothesis was rejected in favour of ED2 at α = 0.02. In terms of CLICK, SOM

and hierarchical clustering, no significant difference was detected among the results.

Figure 5.3: Mean of corrected Rand values from the FC CDC 25 experiments

Figure 5.4 shows the mean values of corrected Rand with the Series CDC 25 data

set. ED2, ED3, AS and PC achieved a higher accuracy in comparison to ED1 in

all clustering methods, except for CLICK. The hypotheses of no difference between

ED1 and the other proximity indices were rejected in favour of ED2, ED3, AS and

PC at α = 0.01. The accuracy of ED3, AS and PC were also higher than ED2 in

the dynamical and k-means methods (with or without hierarchial initialisations). In

these cases, the null hypotheses were rejected in favour of ED3, AS and PC at α =

0.02. In respect to the experiments with CLICK, the PC obtained values significantly

higher than AS (null hypothesis rejected at α = 0.01).



CHAPTER 5. RESULTS 71

Figure 5.4: Mean of corrected Rand values from the Series CDC 25 experiments

5.1.2 Discussions

ED1 lead to the lowest accuracies in all but in the Reduced FC YeastAll data set.

These results were already expected, due to the fact that this proximity index is not

suitable for capturing relative magnitude dissimilarity (or shape dissimilarity). In the

Series CDC 25 data set, which is the only data set with the classification directly

related to the series shape, the difference of ED1 and the other proximity indices,

which capture relative magnitude, was even larger.

With respect to the Reduced FC YeastAll data set, ED1 had values as high as other

proximity indices, but not showing a significant advantage over them. This is actually

a rather interesting result that shows that the data set, by having a reduced set of

genes, has distinct characteristics of data sets with a higher number of genes such

as the FC Yeast All data set. Recalling Section 4.2.1, the Reduced FC classification

was devised from the results achieved in Eisen et al. (1998). In other words, this
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reduced set of classes were the ones more easily classified in previous studies, so one

could argue that these genes profiles are so well separated that even ED1 is capable

of discriminating them. Furthermore, it also can be said that this data set is biased.

In the experiments carried out in Eisen et al. (1998), the hierarchical clustering was

used with the Pearson correlation to cluster the results. Not surprisingly, in the

hierarchical clustering experiments, the Pearson correlation got a higher accuracy

than the other proximity indices.

In relation to the proximity indices capable of measuring shape similarity (ED2,

ED3, AS and PC), no proximity index can be stated to be superior to the others.

In the FC Yeast All data set, AS obtained significant higher values than the others.

On the other hand, in the FC CDC 25 data set, ED2 obtained the highest values.

ED2, ED3 and PC achieved the highest values in the Reduced FC Yeast data set,

while ED3, AS and PC had the highest values in the Series CDC 25 data set. One

possible reason for these contrasting results is that the data sets were captured with

different microarray technologies and use different expression level representations. As

mentioned in Section 4.2, the elements in the Yeast All data set was captured with

cDNA microarrays, where the expression levels were log ratios between the measure

and control expression levels. In contrast, the elements in the CDC 25 data set were

captured with oligonucleotide arrays, where the expression values represent the mean

of the absolute values from twenty distinct probes.
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5.2 Clustering Methods

5.2.1 Experiments

The results of Section 5.1 were used to select the proximity indices for the comparative

analysis of the clustering methods. Indeed, only the proximity indices with best

accuracy for a given clustering method and data set were selected. Table 5.1 shows

these proximity indices.

FC Yeast All Red. FC Yeast All FC CDC 25 Series CDC 25
SOM PC PC ED2 PC
hierarchical AS PC PC PC
dymanical AS ED1 ED2 ED3

k-means AS ED1 ED2 AS
hier. + dym. AS ED2 AS AS
hier. + k-me. AS ED2 ED2 AS
CLICK - - AS PC

Table 5.1: Proximity indices with best accuracy in the experiments of Section 5.1 for
a given clustering method and data set.

Figure 5.5: Mean of corrected Rand values from the FC Yeast All experiments
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In Figure 5.5, the mean values of corrected Rand for the experiments with the FC

Yeast All data set are shown. The dynamical clustering obtained a higher accuracy

than the other clustering methods. The null hypotheses were rejected in favour to the

dynamical clustering in comparison to random assignment and hierarchical clustering

at α = 0.01. SOM and k-means also achieved a significant higher accuracy than

random assignment and hierarchical clustering. In these cases, the null hypotheses

were rejected in favour to k-means and SOM in comparison to random assignment

(α = 0.02) and hierarchical clustering (α = 0.05). Dynamical clustering and k-means

both with hierarchical initialization also achieved a significant higher accuracy than

random assignment and hierarchical clustering. In these cases, the null hypotheses

were rejected in favour to dynamical clustering and k-means in comparison to random

assignment (α = 0.05) and hierarchical clustering (α = 0.05).

Figure 5.6: Mean of corrected Rand values from the Reduced FC Yeast All experi-
ments

The mean values of corrected Rand for the experiments with the Reduced FC Yeast-

all data set are presented in Figure 5.6. The random assignment method obtained the

lowest accuracy in comparison to all other methods. The null hypotheses were rejected
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in favour to SOM, hierarchical clustering, dynamical clustering and k-means (with or

without hierarchical initialization) in relation to the random assignment method at a

α = 0.01. No other significant difference were detected among the methods.

Figure 5.7: Mean of corrected Rand values from the FC CDC 25 experiments

Figure 5.7 ilustrastes the mean values of corrected Rand of the experiments with

the FC CDC 25 data set. The CLICK method obtained a lower result than all

others methods, including the random assignment. In these cases, the null hypotheses

were rejected in favour to all other methods at α = 0.01. k-means (with or without

hierarchical initialization) and SOM obtained significant higher accuracy than random

assignment and hierarchical clustering. The null hypotheses were rejected in favour to

SOM and k-means at a α = 0.01. Dynamical clustering (with or without hierarchical

initialization) also obtained significant higher accuracy than random assignment and

hierarchical clustering. The null hypotheses were rejected in favour to dynamical

clustering at a α = 0.5.

Figure 5.8 shows the mean values of corrected Rand for the experiments performed

with the Series CDC 25 data set. The random assignment method obtained the lowest
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Figure 5.8: Mean of corrected Rand values from the Series CDC 25 experiments

results in comparison to all other methods. In these experiments, the null hypotheses

were rejected in favour to SOM, hierarchical clustering, CLICK, dynamical clustering

and k-means (with or without hierarchical initialization) at a α = 0.01. No other

significant difference were detected among the methods.

5.2.2 Discussions

In terms of hierarchical clustering, low accuracies were achieved in experiments with

the FC CDC 25 and FC Yeastall 25 data sets. This was not the case of the two other

data sets (Reduced FC Yeastall and Series CDC 25 ), as the hierarchical clustering got

accuracies as high as other methods. It can be concluded that hierarchical clustering

has some problems in clustering larger data sets formed by the complete Functional

Classification (FC) scheme. The clusters in the data sets based on the FC scheme are

not so compact and isolated, as the ones with the Reduced FC and the series shape

classification. The FC data sets have a higher number of genes and their classification
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were not devised from gene expression analysis. Given the lack of robustness of the

hierarchical clustering methods to outliers and noisy data (see Section 3.1.5), the low

accuracies in the FC data sets are expected. These results are also compatible to other

comparative analysis of clustering methods for gene expression . In Datta & Datta

(2003), the average hierarchical clustering also obtained worse results than other

clustering methods, such as k-means and model-based methods. The hierarchical

methods also showed a low stability in the experiments presented in Costa et al.

(2002b).

Some comments about the results of the CLICK method also should be made. In

the Series CDC 25 experiments, CLICK achieved the highest mean corrected Rand

in relation to all other methods. On the other hand, CLICK obtained negative values

in the FC CDC 25 data set. As mentioned before, the CLICK method encounters

the number of clusters automatically. This task was perfectly performed in the Series

CDC 25, where 6 clusters were encountered in most of the experiments. This was not

the case in the FC CDC 25 experiments, where the number of clusters varied around

20 and 26 with the PC; and around 5 to 7 with the AS. These results suggest that

CLICK showed instability in clustering the FC CDC 25 gene expression data set. It

can be the case that CLICK presented similar problems as the hierarchical clustering,

however, only one data set with the complete Functional Classification was used in

the experiments. Further experiments are necessary to investigate this issue properly.

As a whole, k-means, dynamical clustering (both with or without hierarchical

initialization) and SOM obtained high accuracies in all experiments. The use of

the hierarchical initialization does not affect the accuracy of k-means and dynamical

clustering, even if the hierarchical method alone does not achieve a good accuracy. In

fact, the hierarchical initialization reduces the run time of both dynamical clustering

and k-means experiments, as there is no need of several random initializations (see
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Section 3.1.2). SOM has one main disadvantage in relation to k-means and dynamical

clustering. It required more complex experiments for selecting the parameters. On the

other hand, SOM returns a topological map, where the clusters have neighboorhood

relations. Such structure is much more informative than simple partitions returned

by k-means and dynamical clustering. Furthermore, in the experiments performed in

this dissertation, the number of clusters was already known. However, in a problem

where this number is unknown, the use of k-means and dynamical clustering also

requires “parametrisation” experiments for finding the ideal number of clusters.

The results of the experiments with the Reduced FC Yeast All data set reinforce

the suggestions made in Section 5.1.2 that there is some bias in this data set. Even

though, k-means and dynamical clustering (with or without hierarchical clustering

initialization) achieved good results, the hierarchical clustering had the largest ac-

curacy. Again, this is not a coincidence, as the functional classes presented in this

classification scheme were the ones more easily clustered in experiments done with

the hierarchical clustering.

Regarding the utilisation of gene annotation as an a priori classification, in both

FC Yeast all and FC CDC 25 data sets, where the complete functional classification

was used, a low agreement with the clustering results was encountered. In these exper-

iments, the mean values of corrected Rand were below 0.05, which indicate clustering

solutions found by chance (Milligan & Cooper, 1986). A previous study (Gertein &

Janssen, 2000), using similar data sets, had already indicated that the functional clas-

sification has only a weak relation to the clustering of gene expression profiles. The

reasons for this are, among others, the vague definitions of some functions and the

great overlap of the classes (Gertein & Janssen, 2000). These weak relations were also

encountered in the context of supervised methods for building functional classifiers

based on the gene expression profiles (Kuramochi & Karypis, 2001). Nevertheless, in
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the context of this work, the previous issues do not represent a problem, since this

work is concerned only with the comparison of the clustering methods (or proximity

metrics), and not with the evaluation of the quality of the clusters generated.

In relation to the validation methodology, the results obtained by the random

assignment method demonstrated the usefulness of the validation methodology em-

ployed in this work, and as a consequence, the validity of the results encountered. As

expected, the random assignment method showed the lowest accuracy (or accuracies

as low as other methods) in all experiments.
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Conclusions

The main contribution of this dissertation was to present a comparative analysis of

clustering methods and proximity indices applied to the analysis of gene expression

time series. In order to do so, a validation methodology based on the k-fold cross-

validation procedure and the use of gene annotation was proposed. The study carried

out in this dissertation is more complete than previous ones, as it used more data sets,

and included methods not evaluated before, such as SOM and dynamical clustering.

Furthermore, no comparative analysis of proximity indices has been performed before.

In the comparative analysis of the proximity indices, the results did not indicated

the superiority of one particular index over the others. In three out of four data sets,

the Euclidean distance version with original data obtained the worst results. This was

already expected, since that proximity index does not capture the relative magnitude

proximity. With respect to proximity indices that capture relative magnitude, in the

FC Yeast All data set, the angular separation version achieved the highest values;

while in the FC CDC 25 data set, the Euclidean distance version with normalisation

achieved the highest values. In the Series CDC 25 data set, where series shape was

directly taken into consideration in the classification labels, all relative magnitude

80
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proximity indices achieved high values. From these results, no relative magnitude

proximity index can be stated to be superior to the others.

In relation to the comparison of the clustering methods, the methods presented

distinct performances. The hierarchical clustering and CLICK obtained low accura-

cies in the data sets with the complete Functional Classification. On the other hand,

SOM, dynamical clustering and k-means had the best accuracies in all experiments.

Furthermore, the use of the hierarchical method as initialisation to dynamical clus-

tering and k-means resulted in a substantial reduction of run time, with no lost in

the accuracy.

The comparative analysis carried out in this dissertation only compared the ac-

curacy of the clustering methods. However, it is important to point out that other

characteristics should be taken into consideration in the choice of a clustering method.

For example, one should also consider the type of output of the clustering method.

SOM, for instance, gives a topological map as result, a structure more informative

than the partitions provided by CLICK, dynamical clustering and k-means. Another

example, some methods, such as CLICK, do not require the number of clusters to be

set, which is not the case of k-means and dynamical clustering. This characteristic is

very important when the number of clusters in the data set is unknown.

Another contribution of this work is the proposed validation methodology. There

is no report of the use of the unsupervised k-fold cross-validation procedure as ap-

proached in this work. This methodology has as advantage to others, a lower compu-

tational cost. The methodology showed consistent results, specially, with the random

assignment method. Such a method obtained the lowest results (or results as low as

other methods) in all data sets. Furthermore, the use of functional classification as

a external classification proved to be valid in the context of a comparative analysis,

despite the low relation of the gene expression data with functional classification.
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The analysis of the absolute accuracy obtained in the data sets with the complete

Functional Classification is another contribution of this work. The results reinforce

the findings of previous works (Gertein & Janssen, 2000; Kuramochi & Karypis,

2001), where it was found that the functional classification of the genes has only a

weak relation to gene expression data.

6.1 Future Work

The number of public data sets of gene expression time series with an external classi-

fication is undesirable low. The use of new data sets in the future is vital to answering

some of the questions raised in this work. One of the questions is to investigate if a

particular proximity index is more suitable for data captured with a particular type

of microarray technology. Another issue to be further evaluated is the poor results

obtained with the CLICK method in the experiments with the FC CDC 25 data sets.

It should be investigated if the poor results are related with the use of the complete

Functional Classification.

Other types of biological information have already been used as external categories.

Such data can be used in the proposed validation methodology as a complement to

the use of functional classification. Among these sources there are: regulatory regions,

protein structure, and metabolic pathways (Gertein & Janssen, 2000; Zhu & Zhang,

2000).

This analysis can also be enhanced with the inclusion of new clustering methods.

In special, methods with good results in other comparative analysis (Datta & Datta,

2003) and of model-based clustering methods, which are now extensively applied to

analysis of gene expression time series (Schliep et al., 2003).
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In relation to the validation methodology, one future work is to perform a detailed

evaluation of the unsupervised k-fold cross-validation procedure. Such evaluation

should carry out Monte Carlo experiments with the generation of artificial data sets,

so as to evaluate the characteristics of this methodology.
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Appendix A

Parametrisation of SOM

This appendix ilustrastes the results of the parametrisation experiments with SOM.

As stated in Section 4.3.3, SOM requires parametrization experiments in order to tune

its performance. Due to the number of parameters available, and the complexity of

choosing them, only a reduced set of parameters will be varied. Previous studies with

gene expression data has found that topology was the parameter with highest impact

of the results (Jonsson, 2001). As a result, the topology will be the only parameter

to be varied.

The following procedure was applied to vary the topology. First, an initial topology

is chosen. Then, experiments with a larger and smaller topology are also performed.

If the initial topology obtain the best results then no more experiments are done.

Otherwise, the same process is repeated for the topology with best result. In the FC

Yeast All and FC CDC 25 data sets, the initial topology was 10x10, while in the

Reduced FC Yeast All and Series CDC FC the initial topology was 5x5.

In order to set the other parameters from SOM, a method of the toolbox that

uses a number of heuristics to set the parameters was used (this parametrisation
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is refereed as DEFAULT ). The detailed description of this heuristics can be found

in Vesanto et al. (2000). As not all the results obtained by this parametrization

were satisfactory, another parametrisation based on the one used in Vesanto & Al-

honiemi (2000) was employed (this parametrisation is refereed as VESANTO). The

VESANTO parametrisation had 10 epochs and a learning rate of 0.5 during the or-

dering phase. The initial radius was set to the topology highest dimension and the

final radius to half the highest dimension. In the convergence phase, 10 epochs and

a learning rate of 0.05 are used. The initial radius is set to half the highest topology

dimension minus 1 and the final radius to 1. The exact initial and final radius can

be seen in Table A.1 and Table A.2.

4x4 6x6 8x8 10x10 12x12
initial radius (ordering phase) 4 6 8 10 12
final radius (ordering phase) 2 3 4 5 6
initial radius (convergence phase) 1 2 3 4 5
final radius (convergence phase) 1 1 1 1 1

Table A.1: Topologies and parameters used in the VESANTO parametrisation with
the FC Yeast All and FC CDC 25 data sets.

Table A.3 shows the type of parameterisation and the topology that obtained

the best accuracy for each proximity index and data set. In a whole, topologies

smaller than the initial one obtained the best results. In relation to the type of

parametrisation, neither VESANTO or DEFAULT showed advantage over the other.
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3x3 4x4 5x5 6x6 7x7
initial radius (ordering phase) 3 4 5 6 7
final radius (ordering phase) 2 2 2 3 3
initial radius (convergence phase) 1 2 2 3 3
final radius (convergence phase) 1 1 1 1 1

Table A.2: Topologies and parameters used in the VESANTO parametrisation with
the Reduced FC Yeast All and Series CDC 25 data sets.

FC Yeast All Red. FC Yeast All FC CDC 25 Series CDC 25
ED1 VESANTO - 4x4 VESANTO - 3x3 DEFAULT - 8x8 DEFAULT - 5x5
ED2 DEFAULT - 4x4 VESANTO - 3x3 VESANTO - 4x4 VESANTO - 4x4
ED3 DEFAULT - 8x8 DEFAULT - 3x3 VESANTO - 6x6 DEFAULT - 3x3
AS DEFAULT - 4x4 DEFAULT - 3x3 VESANTO - 4x4 DEFAULT - 3x3
PC DEFAULT - 8x8 VESANTO - 6x6 VESANTO - 10x10 DEFAULT - 5x5

Table A.3: Type of parametrisation and topologies with best accuracy in the experi-
ments wiht SOM.



Appendix B

Results of the Experiments

ED1 ED2 ED3 AS PC
Minimum -0.038955000 -0.02011100 -0.00715300 -0.02011100 -0.00715300
1st Quartile -0.011842500 0.00107025 0.01266925 0.00107025 0.01266925
Mean 0.001434833 0.01390043 0.02492750 0.01390043 0.02492750
Median 0.003211000 0.01342950 0.01938250 0.01342950 0.01938250
3rd Quartile 0.015756500 0.02172650 0.03366200 0.02172650 0.03366200
Maximum 0.035862000 0.05571200 0.08626300 0.05571200 0.08626300
Std Dev. 0.021609145 0.01831361 0.02147350 0.01831361 0.02147350

Table B.1: Detailed results of the SOM method in the experiments with the FC Yeast
All data set

ED1 ED2 ED3 AS PC
Minimum -0.00589800 -0.02209700 -0.01933300 -0.01690300 -0.02208400
1st Quartile 0.00524825 -0.00708550 -0.00276125 0.00058600 0.00207075
Mean 0.02278537 0.00994930 0.01390600 0.01878857 0.01770200
Median 0.02081150 0.00581650 0.00917000 0.01420100 0.00962450
3rd Quartile 0.03758400 0.02189675 0.02495825 0.03079775 0.02945175
Maximum 0.06536200 0.06250300 0.09621600 0.09306800 0.07647000
Std Dev. 0.02114637 0.02070905 0.02515325 0.02611256 0.02510121

Table B.2: Detailed results of the hierarchical clustering method in the experiments
with the FC Yeast All data set
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ED1 ED2 ED3 AS PC
Minimum -0.01307200 -0.01848900 -0.02618400 -0.01106100 -0.03525500
1st Quartile -0.00059550 -0.00367500 0.00237350 0.00920575 0.00208275
Mean 0.01008307 0.01144753 0.01751193 0.02872277 0.01497493
Median 0.00771900 0.01449450 0.01706250 0.02627250 0.01231550
3rd Quartile 0.01433575 0.02116800 0.02799325 0.04432500 0.02454025
Maximum 0.05043400 0.08472600 0.06005700 0.09312800 0.08445500
Std Dev. 0.01573918 0.02047774 0.02196634 0.02782920 0.02434092

Table B.3: Detailed results of the dynamical clustering method in the experiments
with the FC Yeast All data set

ED1 ED2 ED3 AS PC
Minimum -0.0192270 -0.0247980 -0.0254510 -0.0169030 -0.0204350
1st Quartile 0.0029902 -0.0045587 -0.0034280 0.0070192 -0.0017165
Mean 0.0134798 0.0118640 0.0128157 0.0263822 0.0143914
Median 0.0111390 0.0037545 0.0141965 0.0188280 0.0123260
3rd Quartile 0.0303467 0.0289612 0.0257190 0.0395310 0.0237000
Maximum 0.0404540 0.0654960 0.0556210 0.1120520 0.0733450
Std Dev. 0.01772847 0.0225336 0.0204279 0.030316 0.0219716

Table B.4: Detailed results of the dynamical clustering method with the hierarchical
initialisation in the experiments with the FC Yeast All data set

ED1 ED2 ED3 AS PC
Minimum -0.02046400 -0.01971200 -0.01885600 -0.01741900 -0.00797700
1st Quartile -0.00086700 -0.00036375 -0.00314075 0.00788625 0.01095450
Mean 0.01102020 0.01334937 0.01521707 0.02679240 0.02104383
Median 0.01052900 0.01063400 0.01405750 0.02154050 0.01942100
3rd Quartile 0.02598250 0.02461725 0.03280550 0.04146975 0.03269625
Maximum 0.05464900 0.10320800 0.07197200 0.10494000 0.05287200
Std Dev. 0.01913167 0.02448483 0.02423892 0.02930881 0.01719546

Table B.5: Detailed results of the k-means method in the experiments with the FC
Yeast All data set
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ED1 ED2 ED3 AS PC
Minimum -0.032699000 -0.039570000 -0.04498300 -0.04348100 -0.0274750
1st Quartile -0.006754000 -0.007965750 -0.00445250 0.00350650 -0.0143537
Mean -0.000617966 -0.000507666 0.00843563 0.01396167 0.0068099
Median -0.001645000 0.000230000 0.00961100 0.01047700 0.0022325
3rd Quartile 0.004225250 0.006265750 0.01843375 0.02617025 0.0261447
Maximum 0.043605000 0.033034000 0.06111200 0.07309700 0.0922250
Std Dev. 0.0122873723 0.013360061 0.02609532 0.0216848 0.0280843

Table B.6: Detailed results of the k-means method with the hierarchical initialisation
in the experiments with the FC Yeast All data set

ED1 ED2 ED3 AS PC
Minimum 0.1666660 0.2500000 0.6500000 0.0374990 0.3170730
1st Quartile 0.6400000 0.8137305 0.8590600 0.7892855 0.7929890
Mean 0.7793728 0.8613679 0.9206397 0.8418367 0.8553418
Median 0.8739740 1.0000000 1.0000000 0.9524885 0.8969325
3rd Quartile 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Maximum 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Std Dev. 0.2472943 0.2154636 0.1059930 0.2424424 0.1865070

Table B.7: Detailed results of the SOM method in the experiments with the Reduced
FC Yeast All data set

ED1 ED2 ED3 AS PC
Minimum 0.00000000 0.0000000 0.3859640 0.3823520 0.5161290
1st Quartile 0.03749925 0.3636730 0.6425000 0.7555550 0.8888880
Mean 0.29620580 0.5056674 0.8274096 0.8506834 0.9233477
Median 0.22126400 0.5161290 0.9524885 0.8969325 1.0000000
3rd Quartile 0.43229150 0.6475000 1.0000000 1.0000000 1.0000000
Maximum 0.90497700 1.0000000 1.0000000 1.0000000 1.0000000
Std Dev. 0.29596473 0.3104467 0.2100381 0.1766119 0.1249292

Table B.8: Detailed results of the hierarchical clustering method in the experiments
with the Reduced FC Yeast All data set
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ED1 ED2 ED3 AS PC
Minimum 0.3170730 0.3152170 0.1025640 0.1126760 0.3170730
1st Quartile 0.8665170 0.8599222 0.7519835 0.3143635 0.7681218
Mean 0.9026139 0.8711358 0.8454977 0.4953523 0.8491364
Median 1.0000000 1.0000000 0.8888880 0.4722220 0.8888880
3rd Quartile 1.0000000 1.0000000 1.0000000 0.6400000 1.0000000
Maximum 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Std Dev. 0.1622026 0.2006912 0.2052012 0.2360171 0.1898708

Table B.9: Detailed results of the dynamical clustering method in the experiments
with the Reduced FC Yeast All data set

ED1 ED2 ED3 AS PC
Minimum 0.2500000 0.3170730 0.0374990 0.0869560 0.0374990
1st Quartile 0.8590600 0.8665170 0.5987232 0.4111102 0.6335225
Mean 0.8670838 0.8880683 0.7730904 0.6263922 0.7757642
Median 1.0000000 1.0000000 0.8888880 0.6290905 0.8768760
3rd Quartile 1.0000000 1.0000000 1.0000000 0.9762442 1.0000000
Maximum 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Std Dev. 0.2252518 0.1740505 0.2870277 0.2992167 0.2748604

Table B.10: Detailed results of the dynamical clustering with the hierarchical initial-
isation method in the experiments with the Reduced FC Yeast All data set

ED1 ED2 ED3 AS PC
Minimum 0.3170730 0.2222220 0.1666660 -0.1413040 0.1463410
1st Quartile 0.8559565 0.3678252 0.8524652 0.2108572 0.7519835
Mean 0.8808899 0.6947467 0.8533684 0.4074373 0.8366877
Median 1.0000000 0.8223870 0.8969325 0.3856065 0.8888880
3rd Quartile 1.0000000 1.0000000 1.0000000 0.6090322 1.0000000
Maximum 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Std Dev. 0.1880846 0.2964676 0.2204303 0.2537918 0.1940716

Table B.11: Detailed results of the k-means method in the experiments with the
Reduced FC Yeast All data set
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ED1 ED2 ED3 AS PC
Minimum 0.2500000 0.3170730 0.0374990 0.0740740 0.1249990
1st Quartile 0.8590600 0.8665170 0.5161290 0.4111102 0.5486482
Mean 0.8670838 0.8880683 0.7044799 0.5275299 0.7428550
Median 1.0000000 1.0000000 0.7181960 0.5247310 0.8619620
3rd Quartile 1.0000000 1.0000000 1.0000000 0.6362500 1.0000000
Maximum 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Std Dev. 0.2252518 0.1740505 0.2702943 0.2545882 0.2770787

Table B.12: Detailed results of the k-means with the hierarchical initialisation method
in the experiments with the Reduced FC Yeast All data set

ED1 ED2 ED3 AS PC
Minimum -0.026465000 -0.02353700 -0.02743500 -0.01259400 -0.02855800
1st Quartile -0.013982750 0.00081600 0.00076250 -0.00166175 -0.01278025
Mean 0.002310433 0.01851277 0.01495410 0.01600093 0.01194507
Median -0.001790000 0.01724300 0.01462300 0.01107200 0.00483600
3rd Quartile 0.012871750 0.03695675 0.03026000 0.02902600 0.03574000
Maximum 0.055510000 0.06381000 0.05800100 0.07681300 0.06948100
Std Dev. 0.023394508 0.02405881 0.02206298 0.02190193 0.02586289

Table B.13: Detailed results of the SOM method in the experiments with the FC
CDC 25 data set

ED1 ED2 ED3 AS PC
Minimum -0.02271000 -0.025208000 -0.03339400 -0.01066600 -0.0324360
1st Quartile -0.00240000 -0.011236750 -0.00893425 0.00000000 -0.0073320
Mean 0.00873153 0.000210066 0.00494963 0.00373496 0.0088233
Median 0.00432750 -0.002901500 0.00347400 0.00000000 0.0062020
3rd Quartile 0.01529625 0.010414000 0.01565775 0.00000000 0.0241665
Maximum 0.08727900 0.042238000 0.05645800 0.06038600 0.0556600
Std Dev. 0.02131606 0.016459574 0.02131238 0.01360641 0.0214893

Table B.14: Detailed results of the hierarchical clustering method in the experiments
with the FC CDC 25 data set
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ED1 ED2 ED3 AS PC
Minimum -0.02042000 -0.01499800 -0.028298000 -0.02607200 -0.023044000
1st Quartile -0.00636575 -0.00207425 -0.005215000 0.00304500 -0.007672750
Mean 0.00380890 0.01681667 0.009513133 0.01386087 0.009426333
Median 0.00135550 0.01197550 0.010249000 0.00939550 0.010751500
3rd Quartile 0.00856975 0.02605075 0.023440000 0.02404775 0.023276500
Maximum 0.04983800 0.08040600 0.048761000 0.05221700 0.055180000
Std Dev. 0.01621921 0.02446900 0.019859272 0.01815733 0.022023515

Table B.15: Detailed results of the dynamical clustering method in the experiments
with the FC CDC 25 data set

ED1 ED2 ED3 AS PC
Minimum -0.04220500 -0.02267300 -0.025887000 -0.02526400 -0.02694900
1st Quartile -0.00486150 -0.00537200 -0.012403750 -0.00460775 -0.01037450
Mean 0.01145683 0.01776647 0.006880433 0.01081817 0.00798090
Median 0.00704950 0.01355600 0.005263500 0.00797400 0.00511950
3rd Quartile 0.02735750 0.02999100 0.021991000 0.02092275 0.02144875
Maximum 0.08246900 0.10073900 0.056232000 0.08306000 0.06444600
Std Dev. 0.02483053 0.03004264 0.022410962 0.02334287 0.02294249

Table B.16: Detailed results of the dynamical clustering method in the experiments
with the FC CDC 25 data set

ED1 ED2 ED3 AS PC
Minimum -0.01669200 -0.02559500 -0.01802300 -0.02688100 -0.03171800
1st Quartile -0.00783050 0.00668475 -0.00014725 -0.00384750 -0.01126800
Mean 0.00632460 0.01796753 0.01301357 0.01076463 0.00000840
Median 0.00453250 0.01533800 0.01070450 0.01100400 0.00216100
3rd Quartile 0.01306025 0.03099350 0.02238025 0.02280075 0.01329875
Maximum 0.06059100 0.05872400 0.06095200 0.05165400 0.03226200
Std Dev. 0.01902226 0.01919484 0.01794062 0.02068030 0.01654204

Table B.17: Detailed results of the k-means method in the experiments with the FC
CDC 25 data set
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ED1 ED2 ED3 AS PC
Minimum -0.02278000 -0.01821000 -0.01615000 -0.02361600 -0.033421000
1st Quartile -0.00908575 -0.00255700 -0.00574375 0.00138675 -0.003519500
Mean 0.00539350 0.01599837 0.01397607 0.01882283 0.009854267
Median 0.00350250 0.00681200 0.01158250 0.01779500 0.010167000
3rd Quartile 0.01591750 0.03866150 0.03133950 0.03141950 0.025452500
Maximum 0.04625500 0.07946500 0.05914800 0.08556200 0.050062000
Std Dev. 0.01922413 0.02800058 0.02096454 0.02462083 0.024383853

Table B.18: Detailed results of the k-means method with the hierarchical initialisation
in the experiments with the FC CDC 25 data set

AS PC
Minimum -0.0078200000 -0.0356400
1st Quartile 0.0000000000 -0.0200780
Mean -0.0005700667 -0.0021954
Median 0.0000000000 -0.0012555
3rd Quartile 0.0000000000 0.0093820
Maximum 0.0000000000 0.0434950
Std Dev. 0.0017106661 0.0205161

Table B.19: Detailed results of the CLICK method in the experiments with the FC
CDC 25 data set
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ED1 ED2 ED3 AS PC
Minimum -0.14609500 0.0722890 0.1223620 0.1512950 0.1170960
1st Quartile -0.06958725 0.2766270 0.2945575 0.2940890 0.2886520
Mean -0.01055743 0.3892668 0.4144066 0.4092227 0.4354292
Median -0.02492200 0.3709215 0.3839525 0.3755730 0.4472155
3rd Quartile 0.01138975 0.4829067 0.5632032 0.5510202 0.5734952
Maximum 0.26916500 0.8460230 0.8212180 0.8239840 0.8212180
Std Dev. 0.10250789 0.1884654 0.1907337 0.1816961 0.1990142

Table B.20: Detailed results of the SOM method in the experiments with the Series
CDC 25 data set

ED1 ED2 ED3 AS PC
Minimum -0.18181800 0.0791160 0.1053370 0.0597010 0.1845010
1st Quartile -0.06236975 0.2116350 0.2730070 0.2848555 0.2786980
Mean 0.00057430 0.3500720 0.3929059 0.4178399 0.3949949
Median -0.01591600 0.2871400 0.3869960 0.4483040 0.3758325
3rd Quartile 0.03626225 0.4950988 0.4861800 0.5248928 0.4945055
Maximum 0.26778200 0.7271730 0.7448380 0.7448380 0.7172150
Std Dev. 0.11307053 0.1819851 0.1618505 0.1822161 0.1504085

Table B.21: Detailed results of the hierarchical clustering method in the experiments
with the Series CDC 25 data set

ED1 ED2 ED3 AS PC
Minimum -0.18954200 0.0791160 0.1304340 0.1053370 0.0995670
1st Quartile -0.05383400 0.1960662 0.2784205 0.2402258 0.2182145
Mean 0.02366617 0.3083868 0.4028769 0.3946001 0.3879385
Median 0.00926450 0.2815780 0.3813080 0.3481525 0.3813080
3rd Quartile 0.06391275 0.4138440 0.5019395 0.5353082 0.5019395
Maximum 0.31906600 0.6845250 0.7271730 0.7448380 0.7271730
Std Dev. 0.12306776 0.1470607 0.1709510 0.1723212 0.1852805

Table B.22: Detailed results of the dynamical clustering method in the experiments
with the Series CDC 25 data set
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ED1 ED2 ED3 AS PC
Minimum -0.169714000 0.0791160 0.1845010 0.0597010 0.1512950
1st Quartile -0.075091250 0.2108388 0.2909635 0.2848555 0.3090785
Mean -0.002685267 0.3484938 0.3941878 0.4172044 0.4080005
Median -0.017190000 0.2871400 0.3813080 0.4483040 0.3869960
3rd Quartile 0.041951750 0.4950988 0.4909160 0.5248928 0.5019395
Maximum 0.268274000 0.7271730 0.7283580 0.7448380 0.7172150
Std Dev. 0.114705161 0.1829879 0.1412790 0.1829587 0.1594077

Table B.23: Detailed results of the dynamical clustering method with the hierarchical
initialisation in the experiments with the Series CDC 25 data set

ED1 ED2 ED3 AS PC
Minimum -0.156473000 0.1340830 0.0800000 0.0597010 0.0597010
1st Quartile -0.087649000 0.2126630 0.3038920 0.3108712 0.2411188
Mean 0.003923567 0.3068223 0.3924228 0.4000893 0.3793802
Median -0.013970500 0.2812560 0.3667820 0.3881490 0.3759840
3rd Quartile 0.065359000 0.4051102 0.5326460 0.5274132 0.4914248
Maximum 0.367041000 0.6845250 0.7172150 0.7283580 0.7271730
Std Dev. 0.112776364 0.1417217 0.1679634 0.1724263 0.1785361

Table B.24: Detailed results of the k-means method in the experiments with the
Series CDC 25 data set

ED1 ED2 ED3 AS PC
Minimum -0.13576800 0.1512950 0.1007900 0.1007900 0.1294640
1st Quartile -0.06707075 0.3039733 0.2767645 0.2799075 0.2627222
Mean -0.01973157 0.4098164 0.4131179 0.4140051 0.4175295
Median -0.03349250 0.3734520 0.3955645 0.4157565 0.3925210
3rd Quartile 0.02065325 0.5065978 0.5414718 0.5200700 0.5322922
Maximum 0.16428500 0.7271730 0.6976740 0.7448380 0.7663070
Std Dev. 0.07463268 0.1457338 0.1657752 0.1720371 0.1828924

Table B.25: Detailed results of the k-means method with the hierarchical initialisation
in the experiments with the Series CDC 25 data set
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AS PC
Minimum 0.15189800 0.0259480
1st Quartile 0.03358100 0.3414435
Mean 0.01529393 0.4206158
Median 0.00000000 0.4075320
3rd Quartile 0.03937275 0.5755730
Maximum 0.38362000 0.7283580
Std Dev. 0.09963067 0.1914951

Table B.26: Detailed results of the CLICK method in the experiments with the Series
CDC 25 data set


