Federal University of Pernambuco
Informatics Centre

Master in Computer Science

Efficient and Mechanised Analysis of Infinite CSP;y
Specifications: strategy and tool support

Adalberto Cajueiro de Farias

Master Dissertation

Recife, 3 April 2003

il

This dissertation is dedicated to,

my parents, my brothers,

my nephews and niece
and God.

Federal University of Pernambuco
Informatics Centre

Efficient and Mechanised Analysis of Infinite
CSPj; Specifications: strategy and tool
support

Adalberto Cajueiro de Farias

Dissertation submitted for the degree of Master

at the Federal University of Pernambuco, Brazil

Surpevisors: Augusto Sampaio and Alexandre Mota

Recife, 3 April 2003

Acknowledgments

The contributions received during these last two years have been essential to the conclusion
of this work. I am sincerely thankful for the effort, advice and help from my supervisors,
Augusto Sampaio and Alexandre Mota (the ninja). They always have given me attention,
even when I asked for help in a not scheduled time.

I would like to thank Fernanda Moreira and Ana Cavalcanti for the implementation of
the Z parser in Java. The original Z grammar was sent them by Ian Toyn, a member of Z
Standards Panel. In addition, I would like to thank Phil Armstrong, a member of Formal
Systems, for having sent me the original CSP parser used by FDR. That help were very
important to our implementation.

I also thank Marcio and Adnan Sherif (my partner for coffee and tea) for many informal,
but fruitful discussions about formal methods and problems found during our researches.

It is my duty to thank my father, Aldemar, and my mother, Fatima, for everything,
specially when I decided to abandon a military career to study computer science. Their
pride felt because my good military position is now bigger because they can see seven years
of investment producing a professional more prepared to face less dangerous problems than
fireman activities. For many times when I was working until late, my father looked at the
screen and said: “What is that? I really do not know how you understand that!”. T lost
the notion about how many times my mother got angry with me. The funniest situation
occurred when I forgot to have lunch and she said: “You cannot allow the machine dominate
you! Stop! Take a rest! Have lunch!”.

Finally, I would like to tank the Brazilian government agency CNPq for having financed
this work.

Resumo

Na modelagem de sistemas concorrentes, o uso de diferentes linguagens formais tem sido
uma alternativa muito utilizada nos tltimos anos. Algebras de processos (como CSP e
CCS) sao adequadas para modelar comportamento, enquanto que linguagens baseadas em
modelos mateméticos (como Z e VDM) sdo mais adequadas para descrever aspectos de
dados.

As linguagens integradas surgiram com o intuito de prover suporte para lidar com
diferentes aspectos ao mesmo tempo. CSPz, por exemplo, é uma notacao integrada que
faz uso de CSP e Z para especificar comportamento e dados de forma ortogonal. Sua
semantica foi definida em termos de CSP, o que tornou possivel reusar FDR, o verificador
de modelos padrao para CSP, na verificacdo de CSPy.

Embora essa estratégia elimine a necessidade de implementar um verificador de modelos
especifico para CSPgz, ela nao é suficiente para resolver um problema conhecido como
explosao de estados. Tal problema ocorre porque a técnica de verificagao de modelos
analisa todos os possiveis estados do sistema. Caso essa quantidade seja infinita ou muito
grande, a aplicagao da técnica torna-se impossivel ou impraticavel.

Dentre as diversas técnicas usadas para lidar com essa limitacao, abstracao de dados
concentra-se em tranformar um sistema infinito em um finito e equivalente, tal que o mesmo
possa ser verificado por ferramentas. Para CSPy, a abstragao de dados faz uso da teoria de
independencia de dados de Lazié e interpretacdo abstrata dos Cousots. A primeira teoria é
aplicada na parte de CSP para garantir que seu comportamento é o mesmo, independente
do tipo de dado manipulado pela especificacao. A segunda teoria fornece suporte para
reescrever programas utilizando objetos de um dominio abstrato (mais simples) ao invés
de utilizar objetos de um dominio concreto. A idéia geral da abstracao de dados para
CSPy é fazer um refinamento de dados na parte de Z sem afetar propriedades originais da
especificagao.

O trabalho de Mota, relacionado & abstracao de dados para CSPz, concentra-se apenas
na preservagao de propriedades da parte de dados (Z) da especificagdo. Isso significa que
algumas situagoes manifestadas pela parte de CSP nao sao capturadas pela abordagem e
a busca pela abstracao explora mais possibilidades que o necessario.

Procurando contribuir com a pesquisa sobre abstracao de dados para CSPz, nosso
trabalho apresenta uma estratégia mais geral que abstrai uma especificacao considerando
as partes de CSP e Z. A primeira contribuicdo diz respeito a classe de problemas sobre
a qual a técnica pode ser aplicada, considerando que situacoes especificas da parte de
CSP sao capturadas. Uma outra contribui¢do é o substancial aumento de eficiéncia do
algoritmo.

Em termos de ferramentas de suporte, nés também apresentamos uma implementacao
em Java para nossa abordagem. Embora com algumas limitacoes, nossa ferramenta é um
trabalho pioneiro na area, visto que as outras abordagens estudadas durante esta pesquisa
requerem a intervencao do usuario na construcao da abstracao, ou utilizam protétipos que
nao encorajam o uso pratico.

Abstract

In concurrent systems modelling, the use of different formal languages has been an alter-
native very used in the last years. Process algebras (like CSP and CCS) are adequate to
model behaviour, while languages based on mathematical models (like Z and VDM) are
more suitable to describe data aspects.

Integrated languages have appeared in order to provide support to deal with different
aspects at the same time. Many of them were proposed to specify concurrent systems.
CSP,, for example, is an integrated notation which makes use of CSP and Z to specify
behaviour and data orthogonally. Its semantics was defined in terms of CSP, what made
possible to reuse FDR, the standard CSP model checker, in CSP; verification.

Although this strategy eliminates the necessity of implementing a model checker specific
for CSPy, it is not sufficient to solve a problem known as state explosion. Such a problem
occurs because the technique of model checking analyses all possible states of the system. If
the state space is infinite or too large, the application of model checking becomes impossible
or impractical.

Among several techniques used to deal with such a limitation, data abstraction con-
centrates on transforming an infinite system into an equivalent finite one, such that it can
be verified by tools. For CSPz, data abstraction uses the data independence theory from
Lazi¢ and the abstract interpretation theory from the Cousots. The first theory is applied
to the CSP part in order to guarantee that its behaviour is the same, independently of the
data type manipulated by the specification. The second theory gives support to rewrite
programs by using objects from an abstract domain (simpler) instead of using objects
from a concrete domain. The general idea of C'SP; data abstraction is achieving a data
refinement in the Z part without affecting the original properties of the specification.

The work of Mota, related to data abstraction for CSPy, concentrates on preserving
properties of the data (Z) part of the specification. This means that some situations
manifested by the CSP part are not captured by the approach and the search for the
abstraction explores more possibilities than necessary.

Focused on producing contributions for CSP; data abstraction, our work presents a
more general strategy which abstracts a specification by considering the CSP and the Z
parts. The first contribution concerns the class of problems to which it can be applied,
considering that specific situations of the CSP part are captured. Another contribution is
a substantial increase of efficiency of the algorithm.

In terms of support tools, we also present an implementation in Java for our approach.
Although with some limitations, our tool is a pioneer work on the area, since the other ap-
proaches studied during this research require user assistance when building the abstraction,
or use prototypes that do not encourage their practical use.

Contents

1 Introduction

2.6 Conclusions

1.1 Computer-aided Verification
1.1.1 Model Checking
1.1.2 Theorem Proving oL
1.2 Concurrent Systems Lo
1.2.1 Verifying Propertiesin CSP;
1.3 Scope of this Work L
1.4 Organisation of this Work 0.
2 (CSP; Notation
2.1 CSP . s
2.1.1 Channels. e
2.1.2 Processes e
2.1.3 Initials and Afters L
2.1.4 Models
2.1.5 Refinement L
22 71 e
221 Types . . o o e e
2.2.2 Definitionso
223 Operations.o
224 ZRefinement
2.3 COSPz Grammar e e e
24 CSPz Model Checking o
2.5 CSPz Behaviour e
2.5.1 The Blocking View of CSP,
25.2 LTS for CSP;

3 (CSPz; Data Abstraction
3.1 Data Independence Lo
3.2 Abstract Interpretation
3.3 COSP; Data Abstraction
3.4 Algorithm oL

vii

SO W NN N

CONTENTS

3.4.1 Considering the Z Part
3.4.2 Considering the CSP Part
3.5 Examples and Comparisons
3.6 Limitations e
3.7 Conclusions e

4 Tool Support

4.1 The Tool
4.1.1 The CSPz Parser e
4.1.2 The Translator Module
4.1.3 The Data Independence Module
4.1.4 The Data Abstraction Module

4.1.4.1 The Expansion Engine
4.1.4.2 Stability Plugin Factory
4.1.4.3 Specification Abstractor

4.2 Screens, Dialogs and Components L.

4.3 Design Patterns Lo L

4.4 Configuration Lo

4.5 Conclusions Lo

5 Conclusions
5.1 Related Work
5.2 Future Work

A CSP and CSPy
A.1 Process Expressions
A2 Sets . . . e
A3 Sequences
A4 Booleans
ADb Extra. e
A6 Traces e
A7 Imitials e

B (CSPy,
B.1 Property Generalisation o L.
B.2 Proofs
B.3 Auxiliary Functionso L oo

C Z-Eves Proofs

viil

44
o1
29
66
69

72
73
73
74
75
75
7
79
80
30
85
91
92

94
96
98

108
108
109
109
110
110
110
111

112
112
113
115

118

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

View of CSPz 4
Data Abstraction for CSP; 6
Failures diagram L Lo 15
CSPy; grammar v v i e e e e e 24
Clock process asablack box 28
LTSs for CSP o e 30
The blocking view of CSP; 30
LTS for a CSPy transition 30
LTS for the infinite clock, 31
Hasse diagram for a complete lattice 36
Operations mapping 0t 37
An infinite LTS of a CSPy; process 42
Abstracted system L. 43
Lattice of preconditions 45
Equivalence between LTS nodes 46
Finite LTS produced by the algorithm 46
Algorithm expanding the Z part L. 48
Expansions up to the stable pointo 0 0L, 49
Lattice of properties L 52
The structure of Node and its initialisation 54
Algorithm expanding for the whole CSP; process 56
Expansions according to the new execution model 57
LTS of the process after abstracted 58
Differences between the algorithms 59
Two LTSs for the same process 60
LTS produced by the two approaches 61
Example with terminationo Lo 0oL 62
Example with deadlock L. 63
Example with divergence Lo Lo 64
Different acceptances of both parts 64
An event occurring twice inacycle 65

ix

LIST OF FIGURES X

3.23
3.24

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

5.1
5.2

LTS with two cycles 67
Example with divergence Lo Lo 69
Modules of the tool 73
Structure of the CSPy; parser 74
The Specification object L 74
Translator module 75
Data Independence module 76
Data Abstraction module 76
A CSP LTS with twocycles 79
Main SCTeen e e e e e e e e e 81
Menu Bar 81
Dialog for editing functionso 82
Tool Bar e 83
Dialog for the stability of the Z part 83
Editor panel 84
Error messageso 85
Abstract Factory pattern L L 86
Mediator patterno 87
The use of the Mediator pattern 87
Observer pattern 88
The use of the Observer pattern 89
Facade pattern 89
The use of the Facade pattern 90
Singleton pattern Lo 90
The use of Singleton pattern o L. 90
The use of distinct theories in CSPy; data abstraction 95

Explosion of communication eventso L. 99

List of Tables

2.1

3.1
3.2

4.1
4.2

CSP process definitions 23
Structures manipulated by the algorithm 47
Values produced by the stability theorems 54
Properties of the tool 91
Further information 92

xi

Chapter 1

Introduction

Since software development has been progressively changing from art to science, several
techniques are emerging to enrich software processes as much as possible. The research
area of Software Engineering has naturally appeared to study methodologies for the best
practices of software. Several software processes (and, more specifically, life cycle models)
have been proposed to guide the development. However, the increasing and dynamic com-
plexity of systems raises more and more challenges to Software Engineering professionals.
Methods and techniques have been constantly improved in order to supply ways of solving
new problems.

To deal with the production of large-scale software, there is a consensus among the
many development processes: several phases are proposed in order to enhance the quality
of the final product [79]. Depending on the kind of software being developed, more or less
phases can be employed. Critical systems (or safety-related systems), for example, require
a formal guarantee of consistency when evolving from one phase to the next, that is, the
artefact in the following phase must satisfy the properties of the current one. The use
of formalisms in those kinds of systems is justified by the serious consequences caused to
human life when such systems do not work properly (or correctly).

Some development models—known as Formal Development Processes—define a phase
called specification. In such a phase, the software is described by a formal specification—
an unambiguous and abstract description, where some of its properties can be analysed,
studied and guaranteed even before its implementation [17]. In this scenario, Formal
Methods represent an important research area to supply methodologies and techniques to
deal with such an approach. Although the use of formalisms still finds many obstacles,
support tools have been very promising to diffuse Formal Methods, in the sense that their
application becomes easier.

In a formal development process, a formal notation is used to build an abstract de-
scription of the system. Afterwards, techniques and tools are used in order to derive more
concrete (or implementable) versions or prove desirable properties. Notations used to de-
scribe systems must provide a concise way of writing programs, such that their aspects are
precisely and abstractly characterised.

Considering the Rational Unified Process [68], a widely adopted current practice of

CHAPTER 1. INTRODUCTION 2

software development, formalisms have been employed in many ways. For example, to
guarantee refinement between UML [39] diagrams, to generate test cases based on the pre-
and postconditions of the operations, to annotate UML objects with a formal language,
etc.

The increasing complexity of systems has raised new questions about what aspects
have to be dealt formally. Regarding concurrent systems, there are many aspects to be
taken into account—behaviour, data, time, mobility, probability, etc. Current notations do
not present enough expressiveness to deal with distinct aspects simultaneously. Instead,
integrations of different formalisms, known as the research area of linking theories and
tools, have been used as an effective alternative to deal with concurrent systems aspects
modelling.

The idea behind linking theories consists in building a new theory as a formal combina-
tion of other existing and widely accepted theories. The result of such an integration is a
more expressive theory with capabilities to model a larger class of problems. Furthermore,
the reuse of the syntaxes and semantics of the constituent languages is a natural advantage
and the reuse of existing tools represents an important motivation.

1.1 Computer-aided Verification

Software analysis is becoming more complex than developing the software itself. Its goal
consists of comparing two documents—a specification (Spec) and an implementation (Impl)
or a property to be satisfied—in order to guarantee that Impl must really work as specified
in Spec [76]. Apart from many techniques, model checking and theorem proving are the
two main approaches used in computer-aided verification.

1.1.1 Model Checking

Model checking is an automatic technique used to determine properties of a system by
exploring their state spaces [64]. Formally speaking, it consists of checking the satisfaction
relation M = p, which states that M is a model for p, a logical formula.

Although this technique is completely automatic, it works only for well-delimited finite
state systems, that is, their state spaces can only grow to an amount supportable by the
current hardware technology. In the last few years, model checking has demonstrated to
be very useful in practice, and applicable to real world problems from the Industry [11].
Several model checkers (like FDR [36], SPIN [38] and SMV [55]) are available to aid software
verification.

1.1.2 Theorem Proving

Theorem proving is another technique employed to determine properties of a specification.
Unlike model checking, this technique can be applied to specifications with infinite state
spaces.

CHAPTER 1. INTRODUCTION 3

The price paid for using theorem proving is that, depending on the logic the system
makes use and the deduction rules used during the proof, user assistance can be required.
That is, in general, theorem proving is an interactive and laborious approach.

Like model checking, theorem proving has also demonstrated to be very useful in prac-
tice. Several examples employing support tools (like Z-Eves [60], PVS [63] or ACL2 [59])
are reported in the literature [12].

1.2 Concurrent Systems

Concurrency is a very common characteristic in systems today. Apart from many aspects
presented by concurrent systems, behaviour and data are the most essential among them
and can be viewed orthogonally. The existing notations to model behaviour have expres-
siveness to describe control flow (order of operations and interactions between processes).
However, the expressiveness presented by those formalisms are not adequate to model data
aspects. They work with primitive and concrete structures and, therefore, do not have
support to model data structures abstractly. Examples of formal languages used to model
behaviour are CSP |25, 13] and CCS [77]|. The theory of Petri Nets [86] is also useful to
specify behavioural aspects of a system.

On the other hand, formalisms like Z [62] and VDM [44] are suitable to describe data
aspects because they are based on models. Mathematical objects (like sets, relations,
functions, etc) are used to specify data structures. However, concurrency and behavioural
aspects are not described by using these formalisms because they do not present enough
expressiveness.

The integration of formalisms has been recently employed to deal with behaviour and
data aspects separately. While process algebras are used to describe control flow, model-
based languages are used to specify data aspects (data structures, state space and opera-
tions). There are many options of formal integrations in this category:

e CSP; |20, 22] — a combination of CSP and Z.
e CSPoyz |21, 23] — a combination of CSP and Object-Z |74].
e ZCCS [5] — an integration of Z and CCS.

e RAISE [83] — a combination of VDM, ACT ONE [41] and OBJ [46] with the process
algebras CSP and CCS.

e MOSCA [85] — an integration of CCS and VDM
e LOTOS [45] — a combination of CCS and ACT ONE.
e Circus [51] — a language based on Z, CSP and The Unifying Theory [26].

CHAPTER 1. INTRODUCTION 4

Syntactical View Semantical View
csp, €SP,
CSP Part 7 Part Process capturing | |Process capturing
(behaviour) (data) the CSP part the Z part
(MASTER) (SLAVE)
CspP

model P osp p

checking \ / V4
synchronisation
traces (7) failures (F) failures—divergences (FD)

Figure 1.1: View of CSPy,

Integrated languages are an elegant way of dealing with complex concurrent systems. The
natural understanding of behaviour and data as orthogonal aspects permits to break the
problem into two smaller and complementary ones.

We have chosen CSP; due to our experience in CSP and Z, and because the normal
form proposed by Mota [8] for specifications written in that language has proved very
promising to deal with verification, analysis and data refinement.

Figure 1.1 illustrates two views of CSPy. In the syntactical view, a specification is com-
posed by two distinct parts: CSP (behavioural) and Z (data). The operational semantics
of CSP; (semantical view) is described by the CSP semantics itself. Two processes—P¢sp
and Pz—capture the CSP and the Z parts respectively. They are completely synchronised,
so that the CSP part acts as a master (controller) process and the Z one acts as a slave pro-
cess, achieving data manipulation. Through one of the three CSP models (traces, failures
or failures-divergences), the original specification can be analysed by model checking.

1.2.1 Verifying Properties in CSP;

Basing the semantics in that of CSP, the model checking of C'SP is achieved by describing
a specification as a synchronisation of two smaller CSP processes, such that existing tools
for CSP can also analyse CSP;. This approach was deeply investigated by Mota and
Sampaio [8] who defined a strategy to convert a CSPj specification into an equivalent
CSP process. An interesting case study can be found in [6] where a subset of an on-board
computer of an artificial Brazilian micro-satellite was specified in CSP; and then verified
using FDR [36].

The idea of model checking CSP specifications using only FDR is not enough to deal
with all classes of problems, especially those concerning infinite systems (due to the state

CHAPTER 1. INTRODUCTION 5

explosion problem). To overcome this limitation, several techniques have been proposed to
be used before applying model checking: abstraction |7, 42, 28, 30|, elimination of symme-
try [61], binary decision diagrams [54|, partial order methods [69], data independence [76],
local analysis [48], integration of model checking with theorem proving [7, 87, 82], etc. In
this work, we are interested in investigating data abstraction, a kind of abstraction which
allows one to transform an infinite system into a finite one, while still preserving most of
its properties.

In this challenging search for a technique to treat infinite CSP specifications, Lazié¢ |76]
proposed a theory called data independence, which deals with refinement checking between
infinite, but data independent, processes. Broadly, a data independent system is one that
works similarly, independently of the data type manipulated by it. This imposes that a
data independent system must use operations which work with any data type (polymorphic
operations). Lazi¢ showed that refinement checking between data independent processes
can be made by considering a sufficient subset of the original data type manipulated by
them. This strategy has been successfully applied to some practical examples; however, it
is not able to deal with processes which are data dependent.

The work of Wehrheim [42] has investigated the same problem for CSPg specifications;
however, her work consists on applying (manually) data abstraction on the Z part and it
does not mention any constraint upon the CSP part (in terms of data independence). This
means that her technique can be applied to CSPyy processes, although the behavioural part
presents data dependence aspects. In fact, it is not valid because if the behavioural part
has some data dependence, then it must be considered when applying the data abstraction
technique [7].

Mota [7, 9] used the theory of Lazi¢ and the results obtained by Wehrheim to investigate
an automatic way of abstracting CSP; specifications. Before model checking an infinite
CSPy process, his strategy applies the data independence theory to guarantee that the CSP
part will not be affected when abstracting the data type manipulated by the whole process,
and the abstract interpretation theory to the Z part to build a new one (by abstracting
values and operations), such that the combination of the CSP part with the new Z part
preserves the properties of the original process (see Figure 1.2). This abstraction technique
consists of replacing an infinite data type with a finite one (an inverse refinement), so that
model checking can be successfully applied to the resulting CSP; process. The strategy
is based on the discovery of infinite and stable behaviour of the data part, that is, the
possibility of executing infinitely the same sequence of operations. It is worth commenting
that, if the process does not present an infinite and stable behaviour, the algorithm is
nonterminating. Furthermore, the algorithm does not captures the effects of the CSP part
over the Z one.

Although the automatic strategy proposed by Mota [9] represents an important step
towards tool support development for data abstraction, it abstracts an original process by
considering only the data (Z) part. Besides exploring more possibilities than necessary, his
approach does not capture some situations manifested by the behavioural (CSP) part.

CHAPTER 1. INTRODUCTION 6

CSP 7 CSP 7 ’
CSP Part Z Part CSP Part New Z Part
(possibly infinite) (guaranteed to be firi
data independent) (finite)
N pan ?
. Daa Data Refinement Abstraction
- Independence based on csP,
. Theory Abstract | nterpretation Model Checking

Figure 1.2: Data Abstraction for CSP;

1.3 Scope of this Work

This work investigates an extension to the data abstraction technique proposed in [7, 9]
by also considering the behavioural part when abstracting a specification. Now, the idea
of considering a CSPy specification as a compound process (see Figure 1.1) is strongly
observed. As the CSP part plays a major role, establishing the control flow, one does not
have to explore all possible states permitted by the Z part.

Our approach has a series of advantages: not all possibilities need to be explored,
but only those ones allowed by the behavioural part; our algorithm to find a CSP; data
abstraction is at least as efficient as (and often more efficient than) that one proposed by
Mota [7, 9] and often converges more quickly; our data abstraction approach is obtained
more easily because we use concrete data provided by the expansion of the C'SP; process;
we also capture special aspects of the behavioural part (successful termination, deadlock
and livelock). It is worth pointing out that our algorithm behaves the same as that of
Mota only when the CSP part is a recursive external choice of all the events (operations)
of the system; in such case, the CSP part does not improve any restriction on the Z one,
but this is very unlikely to happen.

In the model checking viewpoint, our approach represents the necessary states of a
system instead of considering the whole state space. Moreover, we also present a robust
and flexible implementation in Java which applies our formal approach through a friendly
graphical user interface. The tool interacts with the Z-Eves [60] theorem prover in order
to determine properties which cannot be dealt by model checking. In this context, we also
make use of model checking and theorem proving in an integrated approach.

1.4 Organisation of this Work

This work is organised as follows. Chapter 2 introduces the CSP; language by explaining
both CSP and Z separately. The syntax of CSP; used in this work is a subset of the
original one |20, 22]. The normal form of a C'SP; process is also given in order to reinforce
the adequacy of a process to be verified by model checking, through the application of

CHAPTER 1. INTRODUCTION 7

a consolidated conversion strategy [8]. Furthermore, such a normal form facilitates the
application of a guided data abstraction technique.

In Chapter 3 we present our main contribution: an extension to Mota’s mechanised
strategy for CSP; data abstraction. First, we give a view of data independence and
abstract interpretation for CSP;. Corollaries 3.1 and 3.2 introduce the notions of safe and
optimal abstractions for CSP; processes. Then, we present Theorem 3.1, which formalises
the advantage of our approach over Mota’s one |7, 9|. Afterwards, we present an algorithm
which mechanises our idea, several examples of its application, and the limitations of our
approach.

The tool implementing our strategy is presented in Chapter 4. In the same chapter,
there is a section dedicated to Design Patterns [33], which improves the structure of imple-
mentations in the object-oriented paradigm. After that, we present the screen and dialogs
of the tool as well as details about configuration and interaction with other tools (model
checkers and theorem provers).

Finally, in Chapter 5 we present the benefits obtained with this work and some topics
for future research, concerning the extension of the technique itself and improvements to
the tool.

We also provide an appendix with useful definitions, proofs and extra information used
by this work.

Chapter 2

CSP; Notation

The application of Formal Methods in software development includes the use of formal
notations for modelling systems in an abstract manner. This abstract model is known as
formal specification, from which important properties can be extracted through the appli-
cation of techniques and tools. For concurrent systems, two aspects need to be considered:
behaviour and data. Several notations have been developed in order to supply expressive-
ness to model control flow and data aspects. Process algebras such as CSP [25, 13] and
CCS [77] are useful to model behavioural aspects, while languages like Z [62] and VDM [44]
are adequate to model data structures. Most integrated notations combine a process al-
gebra and a model-based language. Some examples of integrated languages are ZCCS [5]
(an integration of Z and CCS), RAISE [83] (combination of VDM, ACT ONE [41] and
OBJ [46] with the process algebras CSP and CCS), MOSCA [85] (integration of CCS and
VDM), LOTOS [45] (a combination of CCS and ACT ONE), CSPyz [21] (a combination
of CSP and Object-Z [74|), Circus [51]| (a language based on Z, CSP and The Unifying
Theory of Programming [26]) and CSPz [20, 23| (a combination of Z and CSP).

The CSPz language makes use of Z to model data types, state and operations in a very
abstract and natural manner, because Z is based on set theory and first order logic. The
basic structures of Z are schemas—abstract descriptions containing declarations, pre- and
postconditions. Although Z presents expressiveness to model operations as mathematical
entities (schemas), it is not suitable to model order of execution or interaction among them.
Unlike Z, CSP allows us to describe interactions between operations in an easy manner. The
notion of process and communication makes the language suitable to describe behavioural
aspects and synchronisation. Processes can interact among themselves in many different
ways in order to produce new processes.

Combining these complementary features of CSP and Z, CSP; was defined as a con-
servative! integration of them, such that CSP is used to model process interaction and Z
is used to manipulate data structures, state and operations.

Syntactically, a CSP, specification treats such aspects—process and data—into two
separate and complementary parts which give a modular structure. The semantics of the

'Tn the sense that most of their structures are preserved.

CHAPTER 2. CSPz; NOTATION 9

language [20, 21| has been defined in terms of CSP. The data part is viewed as a process
which synchronises with the behavioural one. Based on that, the behaviour of a CSPy,
specification was defined in terms of a labelled transition system (LTS), a set of nodes and
transitions between them. This representation permits to apply the technique of model
checking after deriving a C'SPy; (the machine-readable version of CSP accepted by the tool
FDR [36]) process from a CSPy specification [8]. Therefore, CSPy; can be also analysed
using the model checker FDR.

This chapter is organised as follows. Section 2.1 gives an overview of CSP, including
its most important operators and the notion of models and refinement between processes.
Section 2.2 presents the Z language and introduces the notion of refinement in Z. Section 2.3
presents a reduced version of the C'SP; abstract syntax and an example of a specification.
Section 2.4 shows the strategy proposed by Mota and Sampaio [8] for converting a CSP
specification into CSPy. Moreover, we also reproduce a theorem from [7] stating that the
translation preserves the semantics and then present the normal form of a CSP; process.
Such a reduced form is important to explain the behaviour of a CSPz process (Section 2.5)
in terms of a labelled transition system. Finally, Section 2.6 presents our conclusions about
this chapter.

2.1 CSP

According to Roscoe [13], CSP was designed to be a notation and a theory for describing and
analysing systems whose primary interest arises from ways in which different components
interact at the level of communication. Each component is treated as a process and a
communication is an event which processes must agree on. A communication can be
viewed as a transaction or synchronisation between two or more processes rather than as
necessarily being the transmission of data one way.

Communication events happen in a channel, which represents a wire between processes.
During a synchronisation, values can be communicated from one process to another through
channels.

Based on communication and event concepts, several constructs are defined. Here, we
only show the main structures of CSP (see [13, 36| for a complete description).

2.1.1 Channels

Channels are declared in order to define events. Example:

channel a, b
channel ¢ : {1, 2,3}

Channels a and b do not support data types; they represent events. On the other hand,
channel ¢ accepts a data type whose values come from the set {1,2,3}. Therefore, three
distinct events can be captured from c: c.1, ¢.2 and ¢.3. Input and output communications
are characterised by the symbols 7 and !, respectively, as for example in c?z and in c!y.

CHAPTER 2. CSPz; NOTATION 10

2.1.2 Processes

A process is a behavioural description of a computation (in terms of events). For any
process P, aP denotes its alphabet, the set of events which can be performed by P. The
set of all events in CSP is called ¥ (Sigma).

Basic Processes

Some processes are considered elementary (not built from others). STOP denotes a process
which cannot perform any event (it represents a deadlock). On the other hand, SKIP
denotes a process which terminates successfully.

Prefixing

The prefix operator is the simplest way of creating a process. For example,
P=aq—b— STOP

defines the process P which accepts the event a, performs it and behaves like b — STOP.
Before reaching STOP, P can perform the sequences of events (traces): (), (a) or (a,b).
When data types are considered, input and output events can be performed as in

Q =a?z:{1,2} = blz - STOP,

where () is a process which accepts an input value put into a, outputs it into b and then
deadlocks. The alphabet of @ is the set {a.1,a.2,b.1,5.2}. Along its execution, ¢ can
perform the following traces: (), (a.1), (a.2), {a.1,b.1) and (a.2,.2). It is worth noting
that values communicated on channels can augment substantially the events performed by
a process. For example, a?z : {1} represents one event, whereas a?z : Int is an infinite set
of events because Int represents the integers in CSP.

Input and output events can be combined into a multiprefix construct as in

P = a?zlf(z)?y!d — @

where P is a process which receives the input values z and y on the channel ¢ and sends
outputs f(z) and d through the same channel. Afterwards, it behaves like Q.

External Choice

The external choice operator represents a choice between two processes which is made
based on the environment synchronisation. For example, the process

a— STOPObL — ¢ — STOP

offers ¢ and b as initial events. Depending on the interaction with other processes (the
environment), it performs a or b and then behaves accordingly. Thus, it can exhibit the
following traces: (), (a), (b) or (b, c).

CHAPTER 2. CSPz; NOTATION 11

Internal Choice

This operator represents a nondeterministic choice. For example, the process
P=a— STOPMb— c— STOP

decides to engage on a or b without considering any interaction. Therefore, an agreement
on a between P and another process can raise a deadlock because P can reject it. The
choice is made as an internal action, called 7-transition, in which one can make an analogy
that the process plays a coin and decides the following behaviour by itself.

Sequential Composition

This process combinator allows one to express an idea of sequential execution in the sense
that one process is executed until it terminates and only then another one is executed.
The process P;() runs P until it terminates and then runs). If P never terminates or
deadlocks then @) will never be executed. For example, a — STOP; b — SKIP never
performs b, whereas SKIP; b — SKIP always does it.

Conditional Choice

Conditional choice is analogous to the conditional statements existing in most of program-
ming languages; it is represented by P « b 3 . First of all, the boolean condition b is
evaluated. If it is true then the process behaves like P else it behaves like ().

Conditional choice can also be represented by a boolean guard. For example, b & P is
the same as P € b 3 STOP.

Alphabetised Parallelism

When processes are placed in parallel, they can interact by performing events in com-
mon. The alphabetised parallelism is a binary operator which allows to establish these
interactions by giving the synchronisation alphabets of both processes. For example, in

P=a— b— SKIP
@ =b— c— SKIP

k= P{a,b}H{b,c} Q

{a,b} and {b, c} are the synchronisation alphabets of P and @), respectively. The syn-
chronisation occurs on events from the intersection {a, b} N{b, c}, that is {b}. The events
outside this intersection can be performed independently by the processes whose synchro-
nisation alphabet contains them. For example, the event a is performed by P and the
event c is performed by (), independently.

CHAPTER 2. CSPz; NOTATION 12

Interleaving

With this operator, processes run completely independent of each other, that is, P ||| @
does not have any agreement. For example, a — SKIP ||| ¢ — b — SKIP has two
possibilities of behaviour:

e a — (SKIP ||| a = b — SKIP) - the left process performs the event a.

e a — (a — SKIP ||| b — SKIP) - the right process performs the event a.

The interleave operator is very adequate for specifying processes that will be executed by
distinct resources.

Generalised Parallelism

The generalised parallel operator is a simple and general manner of placing processes into
parallel. Unlike the alphabetised parallelism operator, we only give the synchronisation
interface—a set containing all events which the component processes must synchronise on.
Events outside the interface can be performed independently, depending on the alphabets
of the component processes. For example, the process

a—b— SKIP || ¢ » b — SKIP
)

produces an agreement only on b. The events a and ¢ are performed, independently, by
the left- and the right-hand processes, respectively.

It is worth mentioning that the interleave and the alphabetised parallel operators can
be expressed by using generalised parallelism:

+PIQ-P|Q
* PX||Y Q:PXHYQ

We also observe that, in the original version of CSP presented by Hoare [25], parallelism is
represented by the operator ||. In P || @, the synchronisation depends on the alphabets of
P and @. In the CSP version of Roscoe [13], the same operator means full synchronisation
and it can be expressed as u or as >:||>:'

Hiding

Sometimes a process performs internal events and does not require any agreement on it. If
such events are left visible to the environment, other processes can synchronise on them,
causing interference, and thus producing undesirable behaviour or side effects (for example,

deadlock). The CSP hiding operator allows to hide events from the environment such that
no process can synchronise on them. For example, the process

(a = b — ¢ — SKIP)\{b, c}

can perform the events b and ¢ independently of the environment. Therefore, for the
environment, it is similar to a — SKIP.

CHAPTER 2. CSPz; NOTATION 13

Renaming

Sometimes, CSP processes can have a similar syntactical structure, differing only by the
event names. A simple renaming of events would be enough to build a new process. For
example, b — STOP can be built from ¢ — STOP by simply renaming a to b,

b — STOP = (a — STOP)[b/d]

where [b/a] denotes the substitution of the event a for the new event b.

Recursion

In CSP, recursion can be expressed either by the special operator u or by making a process
to reference itself or another recursive process. Let (), ()’ and P be CSP processes. By
the following definitions, ¢) and ()’ are equivalent, although their syntactical definitions
are different.

Q=e—P
P=a—b—0Q
Q=pX(e—>a—>b—X)

The semantics of p consists of unfolding an expression when the binded variable is reached
along the same expression, that is, the execution of u X.F(X) causes F(X) to execute and
replace all occurrences of X with u X.F(X).

Some important processes

There are some non-basic processes which represent standard and useful properties. They
are:

RUN(A) =7z : A — RUN(A)
Chaos(A) = STOP 1 (?z : A — Chaos(A))
div=(pX.(?e: ¥ = X))\X

The RUN process represents the most non-deterministic deadlock-free CSP process. The
Chaos process is similar to RUN except for breaking at any moment. The div process
requires special attention: it performs any event from Y and then hides this action from
the environment. Therefore, although the process is computing something, no one can see
what is happening within it. This situation is known as livelock and it is an undesirable
behaviour of a process.

2.1.3 Initials and Afters

At each step of its execution, a process can offer a set of events. These events are called
initials and they are defined for each CSP construct. Appendix A.1 contains the definition
of initials of a CSP process and its application to the main constructs. The following
examples give a brief idea about the initials of a process:

CHAPTER 2. CSPz; NOTATION 14

e initials(STOP) = {};

e initials(a — P) = {a};

e initials(a - POb — Q) = initials(a — P M b — Q) = {a, b}
In the third equation, although there is an internal decision, both a and b can be initially
performed by the processes.

To consider the behaviour of a process after a given trace, we use the afters operator
(/), which gives the behaviour of a process after performing a trace. For example,

(¢ — STOPOa — b — STOP)/{a)
produces b — STOP.

2.1.4 Models

According to Roscoe [13], CSP can be viewed as a notation to describe concurrent systems
as well as a collection of mathematical models and reasoning methods useful to study
processes which interact with each other by communication. This section gives a brief
view of the three CSP models: traces (T), failures (F) and failures-divergences (FD).
They define the essence of specifications in CSP.

Traces

The most common way of understanding a process is looking at the sequences of events
(traces) performed by it. For each process P, traces(P) is the set containing all (possible)
sequences of events performed by P. For example:

o traces(STOP) = {()}. The empty trace is the only way of representing a process
which cannot perform any event;

e traces(a — b — STOP) = {{),(a),(a,b)}. This process may have communicated
nothing yet, performed only a, or a and then b;

e traces(a — STOPOb — STOP) = {{), (a),(b)}. The process initially offers a or b;

o traces(p X.(a — X)) = {(a)" | n € N}. This process can perform as many a’s as its
environment likes.

Some operations are defined over traces:

e Concatenation (s 7 t). The usual sequence concatenation. Example: (a) ™ (b, c)
produces {a, b, c);

e Exponentiation (s"). Means n-fold concatenations: s = () and s"*! = s™ ™ s;

CHAPTER 2. CSPz; NOTATION 15

e Prefix relation (s < t). s is prefix of ¢ if there is a sequence (possibly empty) w such
that t = s w.

For any process P, traces(P) will always have the following properties:
e traces(P) is non-empty: it always contains the empty trace ();

e traces(P) is prefix-closed: if s ™t is a trace performed by P then at some earlier
time, the trace s was also performed by P.

The set of all possible representations of a process using traces is called the traces model
(T), the simplest CSP model which gives information about the visible events of a process.

Failures

Sometimes it is not sufficient analysing processes by looking at its traces because they do
not give a complete description of its behaviour. Sometimes, processes can reject events
and this subtle feature raises an important difference in terms of what a process can do
and must do. For example, the processes (¢ — b — STOP) M STOP and a — b — STOP
have the same traces, even though the second is allowed to do nothing at all, no matter
what we offer to it. Indeed, the second one decides whether to offer a or to reject anything.
Therefore, they are completely different in terms of refusals.

For all processes P, refusals(P) is defined to be the set of events P cannot engage in.
Under this viewpoint, the failures model (F) permits to analyse processes according to
its failures, a set of pairs (s,X) where s € traces(P) and X € refusals(P/s). The set
failures(P) can be calculated from the failures diagram—a directed graph where a node
denotes the refusals (at that point) and an edge denotes a performed event. Figure 2.1
shows such diagrams for a — b — STOP and (a — b — STOP) 1 STOP, respectively.

[]
T \
¢ {b} {ab} / {0}
|

a

® (3 {a}

bi b
{ab} ® {ah}

@) (b)

Figure 2.1: Failures diagram

Calculating their failures from the above figure we obtain:

failures(a — b — STOP) = {({), {b}), ((a), {a}), ((a, b),{a, b})}
failures((a — b — STOP)NSTOP) = {((), {a, b}), (O, {t}), ((a), {a}), ((a, b), {a, b})}

CHAPTER 2. CSPz; NOTATION 16

Although they perform the same traces ({(), (a),{a,b)}), the second process has more
failures than the first one. This shows that the first process is as good as the second one in
terms of traces, and better in terms of failures (it has less failures). Moreover, it is worth
pointing out that, as presented by Roscoe [13], the failures of a process are calculated for
each CSP construct, in an analogous way to the traces calculation. The failures diagram
is presented only to give a graphical view of the failures.

Failures-Divergences

Although the failures model allows one to analyse processes in terms of failures, it is
not sufficient to analyse invisible actions. Sometimes a process can execute infinitely many
actions without showing any progress to the environment—divergence. A divergent process
neither does anything useful nor refuses anything; it is similar to an infinite loop whose
action is doing nothing.

The simplest example of a divergent process is p X.(a — X)\{a}. The only really
satisfactory way of dealing with divergence is to record the set of traces on which a process
can diverge. Once a process diverges, we assume it can perform any trace, refuse anything,
and diverge on any latter trace. Thus, divergences(P) is defined to be the set of P’s diver-
gences and contains not only the traces s on which P can diverge, but also all extensions
s 7t of such traces. For example, consider the processes P = a — div O b — STOP and
) = a — div 1 b — div. Calculating their failures and divergences we obtain:

o fuilures(P) = {({a),{a, b}), ((b),{a, b})}
o fuilures(Q) = {((a),{a,b}), ((b),{a,b})}
e divergences(P) = {(a)}

o divergences(Q) = {{a), (b)}

Note that, although ¢) and P have the same failures, ¢) diverges more than P.

In the failures-divergences model (FD)—the standard CSP model—a process is denoted
by a tuple (failures,, divergences(P)) where failures, is an extension of failures(P) in the
sense that it works with divergences:

failures, (P) = failures(P) U {(s, X) | s € divergences(P)}.

In fact, when a process is diverging, it can be refusing everything. Therefore, X can be
any event from 3.

2.1.5 Refinement

The notion of refinement between CSP processes depends on the model under which they
are analysed. In the traces model, the relation P C+) means “(¢) does not perform
any trace different from P”. In the failures model, P Cx () means “@} fails less than P”.

CHAPTER 2. CSPz; NOTATION 17

Finally, in the failures-divergences model, P Cxp @ means “Q) fails and diverges less than
P”. These meanings are better expressed by the following definitions.
Definition 2.1 (Traces Refinement)

P Cr @ < traces(P) D traces(Q) &

Definition 2.2 (Failures Refinement)
P Cr Q < failures(P) D failures(Q) ¢

Definition 2.3 (Failures-Divergences Refinement)
P Crp Q < failures, (P) D failures, (Q) A divergences(P) D divergences(Q) &

The notion of determinism is based on the FD model: a process P is defined to be
deterministic if and only if divergences(P) = {} and s ™ (a) € traces(P) = (s,{a}) ¢
failures(P). In other words, it cannot diverge, and never has the choice of both accepting
and refusing any action. Furthermore, the notion of equivalence between processes is
derived from refinement as follows:

P=y Q& PCy QAQLCY P,
where M is one of the CSP models 7, F or FD.

2.2 7

The Z notation is based on set theory and first-order logic, allowing one to describe abstract
data types and operations on these types. The language is suitable to model the following
aspects:

1. Static aspects:

e state-space;

e invariant (a constraint preserved during all the system execution).
2. Dynamic aspects:

e operations;
e relationships between their inputs and outputs;
e state changes.
In general, a Z specification is composed by paragraphs and has the following structure:

data types and definitions, state, initialisation and operations. As the notation has many
structures, we give a simplified presentation (see [62| for details).

CHAPTER 2. CSPz; NOTATION 18

2.2.1 Types

The most common way of defining a type in Z is using Given Sets, Free Types, and Ab-
breviations. A Given Set introduces a new type without worrying about its internal rep-
resentation. For example, |[EVEN]| defines a new type EVEN which can be used along the
specification. An Abbreviation introduces a new name for a type which has been previously
defined. For example, T' == EVEN defines a type T as being the same as EVEN. Free
Types are useful to describe union of values and recursive structures. For example:

ANSWER ::= SUCCESS | ERROR
TLIST ::= nil | cons{(T x TLIST))
TTREE ::— nil | tree(T x TTREE x TTREE))

The type ANSWER has two possible values: SUCCESS or ERROR. TLIST is a recursive
definition of a list whose elements have the type 7. TTRFEE is a recursive definition for a
tree of elements whose type is also 7.

2.2.2 Definitions

Usually, definitions include generic functions and axiom descriptions used along the speci-
fication.

Axiomatic Definitions

An axiomatic definition usually includes an object and a constraint upon it. For example:

| EVEN :PZ
| Vz:ZezeEVEN & zmod2 =0

Generic Definitions

A generic definition is a generic form of an axiomatic definition in which generic types can
be parameters. It is useful to define generic operations, as in the definition of set inclusion
below, which is polymorphic regarding the element type, represented by X.

—[X]
C:PX & PX

Vs,t :PXesCtesVr: Xerzcs=zetl

State and Initialisation

The system state and its initialisation are characterised by schemas, which are organisa-
tional structures of Z and include declarations and a predicate. For example:

CHAPTER 2. CSPz; NOTATION 19

_ State _ Init
e:PT State'
#e <10 =0

The schema State defines the system state as a structure composed by components (vari-
ables). In the above example, only one component (e) was declared. There is also a
constraint (invariant) to be guaranteed initially as well as when any state change occurs:
the cardinality of e must be less than or equal to 10.

The schema Init defines initial values for the state components. In the example, it
consists of initialising e with the empty set.

Schemas can also be described in a horizontal style:

State = [e : P T | #e < 10]
Init = [State' | ¢ = O]

2.2.3 Operations

Specifying operations in Z consists of describing them by using schemas, such that the
declarations include information about state change (A or =), input (z?) and output (y!)
variables, and the predicate contains pre- and postconditions. For example:

_insert
AState
z?: T

e =eU{z?}

The operation insert changes the state (AState) and receives an input parameter (z?: 7).
Its (implicit) precondition is #e < 10 (which could have been made explicit, although
redundant: consequence of the state invariant) and its postcondition simply adds the input
value to e. Variables decorated with ' denotes its value after the operation is executed.
The A operator corresponds to the following expansion:

AState = [State; State']
= [e,e :PT|#e <10AF#e <10]

On the other hand, operator = corresponds to the an expansion which does not change the
state:

EState = [State; State' | State’ = State]
= [e, :PT |#e<10ANH#e <10A € = ¢]

Now applying the notion of A to the insert schema, we obtain its expanded version:

CHAPTER 2. CSPz; NOTATION 20

_insert
e,e/ :PT
z?: T

#e <10 A
#e' <10 A
e =eU{z?}

The operation remowve receives and element to be removed from e. Its precondition consists
of checking whether the input value belongs to e or not. If so, it is removed from e,
otherwise the value of e’ is arbitrary.

_ remove
AState
z?: T

z?7€e

e =e\{z?}

In addition, schemas can be combined in order to produce more powerful operations. For
example, let OpA and OpB be two operation schemas. The composition OpA§ OpB means
that OpA is executed first and then OpB is executed. This sequential execution imposes
that the state produced by the execution of OpA is used as initial state for OpB, and this
intermediate state is hidden:

OpA § OpB = 3 State; @ OpA[State;/State'] A OpB|[State; / State].

2.2.4 7 Refinement

There are two types of refinement in Z: operation (algorithmic) and data. The former
consists of making operations more applicable and deterministic, whereas the latter consists
of replacing abstract data types with concrete ones. In this work we only give a brief
explanation about such refinements. See [52, 62| for a complete explanation and real world
examples.

Operation Refinement

Usually, operations defined by schemas are not complete in the sense that they are not
enabled (applicable) for all input values and states. For example, recall that the operation
remouve presented in previous section can be executed only in cases where 27 € e. The algo-
rithmic refinement consists of increasing the applicability of an operation, such that it can
be executed in more cases (by weakening its precondition) or making it more deterministic,
producing more predictable results (by strengthening its postcondition). For example, let

CHAPTER 2. CSPz; NOTATION 21

us define the operations remove_error and remove_complete, such that remove_error can be
applied in cases where remove cannot, and remove_complete is defined in terms of remove
and remove_error.

_ remove_error
=State
z?: T
msg! : ANSWER

z? e
msg! = FRROR

remove_complete = remove V remove_error

The operation remove_complete can be executed in more cases than remove by acting as
remove_error. Therefore, remove_complete was obtained by an operation refinement of
remove.

Data Refinement

The idea behind data refinement is replacing abstract data structures by concrete ones
which are closer to an implementation language.

When applying data refinement to a Z specification, state, initialisation and operations
must be affected. The following schemas show an example: on the left, we have the simple
specification we have concentrated in previous examples, where the schemas deal with an
abstract data structure (set), while on the right the structure was replaced with a more
concrete one (sequence).

_ State _ (CState
e: PN s:seqN
#e <10 #s <10
_ Init _ CInit
State' CState'
e =0 s'={()
_insert _ c_insert
AState A CState
z?7: N z?7: N
e =eU{z?} z? & ran s
s'=s5"(z?)

Note that all definitions were rewritten to the new type (sequence) which is easily imple-
mented by using arrays, an actual structure supported by most programming languages.

CHAPTER 2. CSPz; NOTATION 22

The schema retrieve is a relation between the two state schemas and establishes the cor-
respondence between them. In this case, as sequences are modelled as a mapping from
N\ {0} to any type, the set e must be equal to the range of the corresponding sequence
(that is, e = ran s).

_ retrieve
State
CState

e=ran s

Using the Z notation, types, state, initialisation and operations can be easily modelled
as mathematical objects. However, the constructs of Z are not adequate to model order
(or interaction) between operations. Therefore, the idea of integrating languages is a
potential solution to this limitation because different aspects are modelled by using distinct
notations: a process algebra and a model-based language. The following sections show an
integration between Z and CSP which has this purpose.

2.3 (CSP; Grammar

The CSPy syntax is relatively complex because all structures of CSP and Z are considered.
Therefore, instead of using the original version of the grammar given by Fischer [20, 23], we
deal with a simplified version which is accepted by the tool presented in [1, 2|. Keywords
are in bold font. Square brackets denote optionality and * means 0 or more occurrences
of a term.

A CSPy specification is limited by the keywords spec and end_spec. It has an identifier
(Procld), a synchronisation interface (Interface) and two distinct parts (CSPart and ZPart):

Specification ::= spec Procld Interface CspPart ZPart end_spec Procld

The specification identifier (Procld) denotes a process name; it can be just a name or a
name with parameters:

Procld ::= Identifier | Identifier (Parameters)

The interface (Interface) corresponds to a set of events and includes channels and local
channels. The difference between them is the visibility: channels are visible by another
process, whereas local channels are not.

Interface ::= Channel* | LocalChannel*
Channel ::= chan Listldentifier [: ChannelType |
LocalChannel ::= Ichan Listldentifier [: ChannelType]

Listldentifier is a list of identifiers, separated by comma, and ChannelType has the same
structure as the declaration part of a Z schema:

CHAPTER 2. CSPz; NOTATION 23

ChannelType ::= [Identifier : Type (; Identifier : Type)*]

The type of an identifier (Type) can be an identifier or a type defined as in Z (e.g. P N,
seq T).

On the other hand, the CSP part (CspPart) contains paragraphs which are process
definitions; it must include a special process, named main, representing the CSP part as a
whole.

CspPart ::= CspParagraph*
CspParagraph ::= Procldent = Process

Because there are many CSP operators, the language is rather flexible to build processes.
Table 2.1 shows the main forms of building processes, including an example written in
CSPy, the machine-readable version of CSP accepted by the tool FDR [36]. Figure 2.2
shows the C'SP; grammar as a whole.

CSP CSPy Name
Process ||| Process PIIlQ Interleaving
Process [Process P[Q External Choice
Process M Process P I7l Q Internal Choice
Process || Process P Il Q Synchronous Parallelism
Process ||, Process P [XI1Y] Q Alphabetized Parallelism
Process || Process P [IXI] Q Generalized Parallelism
Process ;(Process P;Q Sequential Composition
Event — Process a -> Q@ Prefixing
STOP STOP Deadlock
SKIP SKIP Successful Termination
Chaos(Expr) CHAOS (A) Chaos Process
div div Divergent Process
Process « Cond > Process | if b then P else Q Conditional Choice
Cond & Process b &P Boolean Guard
P(f(s)) let s’=f(s) within P(s?) Local Declaration

Table 2.1: CSP process definitions

The Z part includes a list of paragraphs (ZPart ::= ZParagraph*) defining data types,
state, initialisation and operations. The Z structures considered here have already been
introduced in Section 2.2: given sets, abbreviations, free types, etc. Refer to [62, 52| for a
complete description of Z.

Looking at the grammar, one can see that a CSPy specification has the general form:

spec Name
Interface; CSP part ; 7 part
end_spec Name

CHAPTER 2. CSPz; NOTATION 24

Specification = spec Procld Interface CspPart ZPart end_spec Procld
Procld = ldentifier | Identifier (Parameters)
Interface ;= Channel* LocalChannel*
Channel = chan Listldentifier [: ChannelType |
LocalChannel = Ichan Listldentifier [: ChannelType]
Channel Type := [Identifier : Type (; Identifier : Type)*]
CspPart .= CspParagraph*
CspParagraph .= Procldent = Process
Process = Process ||| Process | Process (0 Process
| Process M Process | Process || Process
| Process ||, Process | Process || Process
| Process ; Process | Event — Process
| STOP | SKIP | Chaos(Expr)
| Process < Cond * Process | Cond & Process
ZPart = ZParagraph*
ZParagraph z= GivenSet | FreeTypes | Abbreviation
| AxiomaticDefinition | GenericAxiomaticDescription
| SchemaDefinition | GenericSchemaDefinition

Figure 2.2: CSP; grammar

It is worth pointing out that, for each CSP event, there exists one schema whose name is
composed by the com_ prefix and the respective event name. This standard creates a strict
association between a schema execution and its corresponding event performance: while
the CSP part performs an event e, the Z one executes the schema com_e.

In the following, we present a specification of a simple clock which performs two events
infinitely: tick and tack. An internal counter is incremented when any of these events
is performed. This example has also been used by Wehrheim [42], except that here, all
preconditions are true, that is, the Z part is ready to execute com_tick and com_tack all
the time.

Example 2.1 (A simple clock)

spec Clock
chan tick, tack (CSP part: channels)
main = tick — tack — main (CSP part: main process)
State = [n : N] (Z part: state declaration)
Init = [State’ | n' = 0] (Z part: initialisation)
com_tick = [AState | n' =n + 1] (Z part: operation)
com_tack = [AState | n' =n + 1] (Z part: operation)

end_spec Clock

CHAPTER 2. CSPz; NOTATION 25

2.4 (CSP; Model Checking

The principle of model checking is automatically verifying if a given formula p is satisfied
on a specific finite domain M. In other words, the problem of model checking is determining
the satisfaction relation M = p, which states that M is a model for p. In terms of CSP,
this checking can be achieved by refinement [14]: (M = p) < (Sp C Sy), where Sp and
Swu are CSP specifications and Sp is built (or predefined in cases such as deadlock-freedom)
as abstract as possible exhibiting the desired property p.

Since the semantics of C'SP; is based on the standard semantic model of CSP, model
checking CSP; is an extension of model checking of CSP. The language had its model
checking well studied by Mota and Sampaio [8] who defined a strategy to convert a CSPy
specification into an equivalent CSP), process in order to be able to use the FDR tool [36]
to analyse C'SPz as well. Naturally, the translation raised some questions about embedding
the 7 language into CSP:

1. How to describe a state-space in CSP?
2. How to constrain the CSP behaviour based on the state values?
3. How to completely characterise the Z part as a CSP process?

4. How to combine and synchronise the CSP and the Z parts of a CSP; specification?

These questions have been carefully discussed in [8]. In this work, we give only a brief
explanation about the conversion in a step-by-step manner and apply the strategy to
Example 2.1. Moreover, we present a theorem given by Mota [7] stating that the generated
CSP)y, is equivalent to the original CSP, specification.

The first task is converting the synchronisation interface: CSP; channels produce
CSPjs channels. Therefore, chan tick,tack produces

channel tick, tack.

If the CSPy specification includes local channels, they are also introduced as CSP channels,
but are hidden in the top level CSP process translated.

All process definitions from the CSP part are rewritten to CSPy,. This is achieved by
a one-to-one syntactic transformation (see Table 2.1).

In the adopted example, main = tick — tack — main produces

main = tick -> tack -> main.

The Z part conversion takes into account types, state-space, initialisation and operations.
Although there is no type definition in the example, it is worth commenting that usually
a Z type cannot be translated into a CSP), structure automatically; the target language
(CSPy), unlike Z, does not offer, for example, maps, relations and bags as pre-defined
abstract types, and, therefore, many steps of data refinement might be required. These
conversions are, nevertheless, standard, and discussed, for example, in [65].

CHAPTER 2. CSPz; NOTATION 26

As we have already seen, the state is defined by a schema whose declarations denote
its components and the predicate establishes a condition over the state itself (the invari-
ant). Hence, the state is represented by a set comprehension including a tuple of variables
representing the state components, and a predicate establishing the constraints over them.

Applying this transformation to the example, we have both state and initialisation
translated into two set comprehensions as follows:

State _ Init
’777, ' N State’
n' =0

produces, respectively:

State = { n | n <- Int, n >= 0} and
Init = { n’> | n’ <- Int, n’ == 0 }

The CSPy, type Int represents all integers. As the state component is a natural number,
the set comprehension defining the state has a new constraint which imposes that n must
be a non-negative integer (n <- Int and n >= 0).

In terms of operations, the idea is converting schemas into functions that possibly
change the state. We must observe, however, that a Z operation actually defines a rela-
tion between input variables (and before states) and output variables (and after states).
Therefore, its translation into a function requires that, for each state and input value, the
output be a set of possible after states and output values. In order to include pre- and
postconditions, such functions are defined by using set comprehension. For instance, recall
from Example 2.1 the two operations, com_tick and com_tack:

_ com_tick _ com_tack
AState AState
n=n+1 n=n-+1

Their translations produce, respectively:

{n’ | n’ <- State, n’ == n + 1 } and
{n’ | n’ <- State, n’ ==n + 1 }

com(n, tick)
com(n, tack)

The strategy used to represent the Z part as a process consists of combining all com_
functions into an external choice in a recursive way, such that all enabled operations are
offered all the time. When the process engages into one of the events, the state is updated
accordingly (the corresponding schema is executed). Furthermore, the next value State’
is chosen internally among the set States of all possible values.

Z(State) = ([1 (States,Comm) : { (com(State,c),c) | c <- Interface } @
States !'= {} & |~| State’:States @ Comm -> Z(State’))
[Jterminate -> SKIP

CHAPTER 2. CSPz; NOTATION 27

Before starting the above process, we have to initialise the state:

Z_PART = let
Z(State) = as defined before

within |~| iState: Init @ Z(iState)

Once defined a CSP,, process for the CSP and the Z parts, we have to synchronise them.
The CSP part only performs events, whereas the Z one (possibly) changes the state. It is
worth recalling that when an event is performed by the CSP part, its corresponding schema
com_is executed by the Z one. This establishes a complete agreement between them which
is expressed by the following generalised parallelism: main [|Interfacel|] Z_PART.

Now, converting the entire example we obtain:

channel tick, tack
Clock = let

--The Interface

Channels = {|tick,tack|}

1Channels = {}

Interface = union(Channels,lChannels)

-- The CSP part
main = tick -> tack -> main

-- The Z part
com(n, tick) = {n’ | n’ <- State, n’ ==n + 1 }
com(n, tack) = {n’ | n’ <- State, n’> ==n + 1 }
Z_PART = let
Z(State) = ([](States,Comm) : { (com(State,c),c) | ¢ <- Interface } @
States != {} & |~| State’: States @ Comm -> Z(State’))
[Jterminate -> SKIP
within |~| iState: 1Init @ Z(iState)

within (main [|Interface|] Z_PART)\1lChannels

Note that local channels (1Channels) are hidden at the end. Therefore, events happening
on 1Channels are visible only within the scope of the Clock process definition.

After translation, a CSPj; process is viewed as a synchronisation of two smaller pro-
cesses, such that one captures the Z part (Pz) and another captures the CSP one (Pgsp).
Hence, a CSPy process has a standard form which is established by the following definition.

Definition 2.4 (Normal Form of CSP; Processes) Let Pgsp, be a CSPyz specifica-
tion and Pcgp,, be the corresponding CSPy process resulting from the translation. Let

CHAPTER 2. CSPz; NOTATION 28

Py and Pesp be processes which capture the Z part and the CSP one, respectively, after
translation. Then, Pcgp,, can be viewed as a synchronisation between two smaller pro-
cesses:

Pcsp,, = (Py |1| Pesp) \ L,

where I = aPyz = aPgsp (I is the synchronisation interface), L is the set of local channels
declared on the original specification (L C I), and Py is a parameterised process which has
the form:

pre com_chany & chany — Py (com_chan, (State))
O pre com_chany & chany — Pz(com_chany(State))
Py (State) =
O pre com_chan, & chan, — Pz(com_chan,(State))
O terminate — SKIP

¢

It is worth noting that the processd resulting from the translation of a C'SP; one can be
viewed as a black box containing a synchronisation between two inner processes (see Figure
2.3). In the rest of this work, we assume that CSP; processes are in this normal form.

Clock

B Il B

Figure 2.3: Clock process as a black box

Furthermore, the normal form also deals with termination. The Z part can terminate
by behaving like terminate — SKIP, and the translation of the CSP part replaces all
occurrences of SKIP with terminate — SKIP. 'This causes the synchronisation of both
parts upon termination as required.

The translation makes the CSP; model checking possible because the generated CSP,
process is equivalent to the original specification. Such an equivalence is according to the
CSP denotational semantics ([.]?) defined by Scattergood [16]. The following theorem was
established by Mota [7] and states the equivalence between a CSPy specification and the
CSPy process resulting from the translation strategy defined in [8].

Theorem 2.1 (CSP; Translation) Let P be the CSPy specification
spec P
I; main; State; Init; Z
end_spec P

provided that Pggp captures the CSP part and Py captures the Z part. If P' is the CSPy
process resulting from the translation approach, then [P]? = [P']? O

CHAPTER 2. CSPz; NOTATION 29

It is worth pointing out that the equivalence between a CSPj; process and a CSPy, one is
defined in terms of CSP. Fischer [23] has established the semantics of CSP; in terms of
CSP through the function [.]JP. Similarly, Scattergood [16] has established the semantics
of a CSPy process through the function [.J” and the correspondence between a CSP and
a CSP, representations, for a same process. As the semantics of CSP; and CSP,, are
defined in the same model, processes written in those languages can be compared.

2.5 (CSP; Behaviour

Roscoe [13] described the CSP semantics by using different formalisms: operational, deno-
tational and algebraic semantics. The operational approach was presented by using labelled
transition system (LTS) and traditional rules of operational semantics, which permits to
look at them as a logical inference system.

Recall that the model checking of CSP; was defined in terms of CSP. Therefore, the
behaviour of CSPz; can be explained in terms of CSP. In this section, we give an overview
of the blocking view of C'SP; and its behaviour in terms of transition systems—a graphic
representation where the progress of a process is easily represented.

In CSP, a LTS is a set of nodes and, for each event a in some set, a relation —% between
the nodes. It is a directed graph with a label on each edge representing what happens when
we take the action which the edge represents. Figure 2.4 illustrates some examples of LTS
for CSP. The process STOP stands for a canonical deadlock and it is represented by a black
node (a). The process SKIP is a grey node and it leads the system to an end state 2 (b) by
performing the special event /. The process a — b — ¢ — STOP is represented by a linear
LTS (c). The LTS for the external choice ¢ — STOP O b — ¢ — STOP presents two
possibilities of behaviour (d), whereas the internal choice « — STOP 1 b — ¢ — STOP
performs an internal action (7) and then decides the following behaviour (e). In the
conditional choice (¢ — STOP « b % d — e — STOP), the following behaviour is
determined by a condition evaluation (indicated between square brackets).

2.5.1 The Blocking View of CSPy

A CSPjy specification is defined as a parallel combination of its CSP and its Z parts via
the interface, such that if an event ev occurs on the CSP part, then its related schema
com_ev is executed [20, 23]. Recall from Section 2.2.3 that, when the precondition of a Z
schema is false, then the execution of such a schema produces an unpredictable result. As
the semantics of CSPz is based on the standard model of CSP, we should explain what
happens when an event ev can be performed by the CSP part of a CSP; process, but its
related schema is disabled (its precondition is false).

In the blocking view of CSPz, a schema is executed by the Z part if and only if its
precondition is true. This is obtained by using the precondition as a guard of an opera-
tion [40], that is, pre com_chan & chan — Pz(com_chan(S)). Note that, if pre com_chan
is false, then this expression is similar to STOP. Figure 2.5 illustrates the blocking view

CHAPTER 2. CSPz; NOTATION 30

@ O~ OO0

STOP XIP

(€) (b) ©

[b] [not b

(d) C) ()

Figure 2.4: LTSs for CSP

of CSPy considering one operation (com_a). Although the CSP part offers the event a,
it is not performed because pre com_a is false. Therefore, the whole process behaves like
deadlock and the state remains unaltered.

aisoffered by P, T
yrese g ‘ STOP
com_aisdisabled [1 precom_ 4]

Figure 2.5: The blocking view of CSPy

2.5.2 LTS for CSPy

Representing the parallelism of both parts of a CSP; specification, the transitions of a
CSPz LTS have two arrows [8]: a filled one denoting an event performance, and a dotted one
indicating the corresponding schema execution. The information about state is kept in each
node of the LTS. Figure 2.6 shows the LTS for a single transition in CSP; and Figure 2.7
shows the LTS for the specification presented by Example 2.1 (the Clock process).

com_op

Figure 2.6: LTS for a CSP; transition

CHAPTER 2. CSPz; NOTATION 31

Init com tick com_tack

Figure 2.7: LTS for the infinite clock

At initialisation, the CSP part performs a 7-transition, whereas the Z part executes the
Init schema. Afterwards, both parts synchronise their executions.

The acceptances of the whole process can be calculated by taking the events from the
CSP part whose corresponding schemas are enabled. This is formalised in the following
lemma, whose proof is in Appendix B.

Lemma 2.1 (Initials of a CSP; Process) Let Pcsp, be a CSPy; process whose syn-
chronisation interface is I. Let Posp be the process representing the CSP part of Pesp,.
Then,

initials(Pesp,) = Ug,er{ai | pre com_a; A a; € initials(Pcsp)}. &

2.6 Conclusions

Linking theories and tools has been an effective effort for improving expressiveness of
concurrent system modelling. Most integrated languages use a process algebra to describe
behavioural aspects and a model-based or algebraic language to describe data aspects. In
this chapter we presented CSPz [20, 23|, a combination of CSP [13| and Z [62], which
reuses the expressivenesses of both notations to give support for describing both aspects
of concurrent systems: behavioural and data.

We also discussed the models under which CSP processes are analysed: traces(T),
failures(F) and failures-divergences(FD), as well as the definitions of refinements under
these three models (Section 2.1.5).

This chapter has considered the specification language CSP; both from the analysis
and the verification viewpoints. From the analysis viewpoint, we have briefly presented
its syntax and behaviour in terms of labelled transition systems. From the verification
viewpoint, we presented its model checking as an extension of the model checking of CSP,
following the translation approach presented by Mota and Sampaio [8]. Moreover, the
interesting normal form (Definition 2.4) generated after translation is useful for abstracting
CSPz processes, as well as for using FDR [36] in CSP; model checking.

To formalise the idea of the acceptances of a CSP; process, we also presented a lemma,
(Lemma 2.1) stating that the acceptances of the whole process depend on the acceptances
of both parts (CSP and Z). This complete agreement between those parts is a result of the
blocking view of CSP;.

The information given in this chapter is essential for understanding next chapter, which
deals with model checking of infinite C'SP; processes.

Chapter 3

CSP; Data Abstraction

Although model checking has advanced substantially in the last decade, some systems
cannot be automatically analysed due to their large size—the state erplosion problem.
In an attempt to overcome such a problem, several techniques of compression have been
proposed to be used before applying model checking [64, 13]: local analysis, symmetry
elimination, data independence, partial order methods, abstract interpretation, integration
of model checkers with theorem provers, etc. These techniques reduce the number of states
while still preserving most of the systems properties. The combination of theorem proving
and model checking [87] is another approach which presents effective results in concurrent
systems verification. Recall from Section 2.4 that model checking consists of finding a
model M satisfying a given formula p. Moreover, the technique can be applied to finite-
state systems without any user assistance. On the other hand, theorem proving is suitable
for data-dominated verification where the state spaces can be large or unbounded [82].

Another recent trend is avoiding the state explosion problem by combining individual
techniques. Cleaveland and Riely [73]| presented a framework for generating abstractions
of communicating systems based on the abstractions of the values exchanged by processes.
Sifakis et al [28] presented a technique where the notion of abstraction is generally defined
in terms of variants of simulation [78] and bisimulation [77]. The work of Wehrheim [42]
followed an approach similar to [73] and [28] to deal with CSPyz; Mota [9, 7] extended and
mechanised Wehrheim’s approach for CSP; by applying the work of Lazié¢ [76] on the CSP
part, and data abstraction on the Z one. Furthermore, Mota used subtype abstraction!
which makes the process of rewriting predicates (post-conditions of schemas) relatively less
complex than the other approaches. Broadly, his approach uses the notion of stability (the
Z part can infinitely execute a specific sequence of operations) to rewrite the operations,
such that the stable sequence no longer causes infinite expansions. When considering only
the data (Z) part, the algorithm analyses all possibilities, including those ones rejected by
the CSP part, which acts as a controller process.

This chapter further explores data abstraction for CSP;. Our work extends Mota’s
approach by also considering the CSP part of a CSP; specification. This has resulted in

!The abstract domain is a subset of the original one.

32

CHAPTER 3. CSPz; DATA ABSTRACTION 33

improvements in the search for abstractions because our algorithm successfully terminates
at least as often as Mota’s one, and possibly more often, as the CSP part reduces the
possible observable behaviour of the entire C'SP; process. Our algorithm only analyses
possibilities allowed by the CSP part. Naturally, our approach requires a more elaborate
execution model to compute the abstractions; however, when using our approach, some
abstractions do not have to be generated.

Moreover, some situations of the specifications, which might not be perceived by Mota’s
algorithm, are captured by our approach: deadlock, termination and divergence. In par-
ticular, deadlocks in CSPy specifications can happen when the CSP part really deadlocks,
when it rejects the events offered by the Z part or when it offers events whose corresponding
schemas are disabled.

The CSPj; process resulting from the application of our data abstraction approach
presents the same properties of the original process, in the failures-divergences model (see
Corollary 3.2). Therefore, any property under that model can be verified after abstracting
the original specification.

We believe that our approach not only contributes to the technique of data abstraction
for CSPy specifications, but also for data abstraction of integrated notations whose compo-
nent languages are a process algebra and a model-based language. Of course, adaptations
of the idea presented here may be necessary when considering another integrated language.

This chapter is organised as follows. Section 3.1 presents the notion of data indepen-
dence which serves to impose some restrictions on the CSP part. Sections 3.2 and 3.3
present the idea of abstract interpretations and data abstraction of CSP; processes, re-
spectively. The algorithm implementing our approach is presented in Section 3.4. Section
3.5 gives some examples in order to contrast our approach and that of Mota. Finally,
Section 3.7 presents our conclusions about the present chapter and some topics for future
work .

3.1 Data Independence

Data independence is a property which guarantees that a system works similarly over
any data type. That is, it does not matter what type the specification manipulates, its
behaviour is the same. This property imposes some constraints to the specification in the
sense that it must be free of using operations which work over a specific data type.

Lazi¢ [76] deals with data independence of CSP specifications which manipulate a data
type X (a parameter of the system). The main question around this issue is: given a
specification Spec and an implementation Impl which have parameters, is Spec satisfied by
Impl for all instantiations of the parameters?

Such a problem—known as the Parameterised Verification Problem (PVP)—was shown
to be undecidable in general [53]; however, some constraints can be defined in order to make
the problem treatable. Lazi¢ developed studies on data independence which establish the
necessary conditions to deal with this problem symbolically.

Informally, a system P is said to be data independent (with respect to a data type

CHAPTER 3. CSPz; DATA ABSTRACTION 34

X) if and only if it does not perform any operation involving values of type X; it can
only input such values, store them, output them, and compare them for equality. In that
case, the behaviour of P is preserved if any concrete data type (which admits equality)
is substituted for X (a symbolic type). The formalisation of this property in syntactical
terms is given by the following definition [76]:

Definition 3.1 (Data Independence) A system P is data independent in a type X if
and only if:

1. Constants do not appear in P, only variables appear, and
If operations are used then they must be polymorphic, or
If comparisons are done then only equality tests can be used, or

If used, complex functions and predicates must originate from 2 and 3, or

If replicated operators are used then only nondeterministic choices over X may appear
in P. &

The usefulness of the above definition is that if the processes Spec and Impl are infinite
and data independent with respect to a type X, then it is possible to find out the minimum
threshold (cardinality) of X, such that the relation Spec Ty Impl can be checked by only
considering any subset of X with such a specific cardinality. Based on this idea, Lazi¢
defined how to find out that cardinality, that is, #X > N, for N € N;. Therefore, the
problem becomes decidable by making Spec and Impl dealing with a symbolic type X,
provided #X is a finite number greater than or equal to the minimum cardinality required
by Spec and Impl.

Based on the previous definition, Mota |7| presented a more restricted definition of data
independence and then extended that notion to CSPy:

Definition 3.2 (Trivial Data Independence) A trivially data independent CSP pro-
cess 1s a data independent process which has no equality tests, nor polymorphic operations.
Therefore, it satisfies #X > 1 for all data independent type X. &

Definition 3.3 (Partial Data Independence) A CSPj; specification is partially data
independent if its CSP part is trivially data independent. O

Data independence is enough to deal with the CSP part of a CSP; specification; however,
it does not support the data dependence aspects of the Z part. Therefore, the following
section presents a stronger theory to take care of the Z part.

CHAPTER 3. CSPz; DATA ABSTRACTION 35

3.2 Abstract Interpretation

According to the Cousots [66, 67|, abstract interpretation of programs consists of describ-
ing computations in another universe of abstract objects, so that the results of abstract
execution give some information on the actual computations. It is a theory widely used
in most program analysis techniques (symbolic evaluation, data abstraction, program per-
formance analysis, formalisation of program semantics, verification of correctness) and
compiler optimisation, type verification, type discovery etc.

The motivation for using abstract interpretation with model checking is reducing state
explosion. This is achieved by replacing infinite data types with finite ones, while still
preserving most of the properties. The only drawback of this approach is that deterministic
operations may become nondeterministic and specific communications may not be observed
anymore. This is related to the precision of the considered abstraction. Hence, the more
precise is the abstraction, the more properties about the original system are preserved [7].

In order to give an overview of abstract interpretation, we need to present some basic
definitions.

Definition 3.4 (Partially Ordered Set) A poset (partially ordered set) (L,C) is a set
L equipped with a binary relation E on L, such that for all z, y € L, the following holds:

e © C z (Reflexive);
e t CyAyLCz=z=y (Antisymmetric);

e tCyAyCz=zC z (Transitive). ¢

Definition 3.5 (Upper Bounds and Lower Bounds) Let (L, C) be a poset and let S C
L. An element © € L is an upper bound of S if s C x for all s € S. S* denotes the set
containing all upper bounds of S:

St={ze€L|VseSesLC z}
The set containing all lower bounds of S (S*) is defined dually:
St={reL|VseSexLCs} o

If S* has a least element, then it is called the lub (least upper bound) of S. It is common
to use lub(x,y)—the least element of {x,y}—as z LI y (“z join y”). Dually, if S' has the
greatest element, then it is called glb (greatest lower bound) of S, commonly represented
by glb(x,y)—the greatest element of {x,y}—or z M y (“c meet y”).

These operations can also be extended to sets originating their distributed versions:
LIS and 'S, respectively.

CHAPTER 3. CSPz; DATA ABSTRACTION 36

Definition 3.6 (Lattice) Let (L,C) be a poset with L a non-empty set. Then,

o If there exist x Uy and z My for all z,y € L then (L,C) is called a lattice;

o [f there exist LIS and I'1S for all S C L then (L,C) is called a complete lattice.

Example 3.1 The structure (P{a, b, c}, C) is a complete lattice. Figure 3.1 is an example
of a Hasse diagram which shows the subset order on P{a,b,c}.

{ab,c}

{}

\

Figure 3.1: Hasse diagram for a complete lattice

Definition 3.7 (Monotonic Map) Let (L,C;) and (M,Cy) be posets. Let f : L — M
be a function. Then f is said to be monotonic if and only if

Ve,yec Lexz Cry=f(z) Cy f(y) ¢

Definition 3.8 (Galois Connection) Let (A,C4) and (C,C¢) be two lattices. If there
exist monotonic maps o : C — A (abstraction function) and v : A — C (concretisation
function) such that

e Vac A:aov(a) Cy a;

eVce(C:cCeyoafc)

then the representation (C,C¢) % (A, C4) is said to be a Galois Connection. The

maps o and vy are also called adjunctions. Further, from the above conditions we have

a=AX:Cell{YcAeXC(Y)}
y=AY:Aell {X€eCea(X)C Y} %

It is worth noting that, in the abstract interpretation terminology, z C y means “z is more
precise than y” (or “y has less information than z”). Hence, «oy(a) C4 a means oo y(a)
is the best approximation for a, and ¢ C¢ o «(c) means the application of 7o « does not
add information to c¢. A Galois Connection establishes a mapping between (A, C 4) (the

CHAPTER 3. CSPz; DATA ABSTRACTION 37

lattice of properties) and (C, C) (the original semantic domain), such that the abstraction
() does not add information and the concretisation () preserves information. Therefore,
properties of the concrete semantics can be extracted from an abstract structure.

When establishing adjunctions between domains such that they form a Galois Connec-
tion, both objects and operations in the concrete domain have to be mapped into their
abstract versions (compatible in some sense). This compatibility originates the notions of
soundness (safety) and completeness (optimality) |73, 75| of the abstraction. For example,

YA, C YB,D

let (C,C¢) <——= (A,C4) and (D,Cp) ——— (B,Cp) be Galois Connections. Let
C,A D,B

o : C = D be a function defined over concrete domains and f4 : A — B be its abstract
version. The following expressions define, respectively, the soundness and completeness of

fa:
e Vce C:(appofe)(c) T (faoac,a)(c)= faissound for f¢

e Vce C:(appofc)(c) = (faoac,a)(c)= fais complete for f

The first assertion states that f4 is a safe approximation of fo if it can never “add in-
formation” to the results produced by f¢; that is, f4 o @¢ 4 produces a result with less
information than ap g o fc. The optimality condition states that f4 is said to be optimal
for fc if f4 is the most precise safe approximation of f¢; that is, f4oa¢a C ap o fc and
appofoc C faoaca (denoted by fa o aca =4 app o fc). Figure 3.2 gives a graphical
view of the correspondence between structures of a concrete domain and an abstract one.

The Cousots |66, 67| showed how to find the best approximation for an operation, if it
exists: if f4 is the best correct approximation of an operation f¢, then f4 =4 ap pofcoyac.
Based on this idea, Mota |7, 9] defined an algorithm which finds such an approximation
considering only the Z part of a CSPz specification.

Cong:rete A bs;ract

Figure 3.2: Operations mapping

3.3 (CSP; Data Abstraction

The idea behind CSP; data abstraction is using abstract interpretation to build finite
systems, and then overcoming the state explosion problem.

CHAPTER 3. CSPz; DATA ABSTRACTION 38

Wehrheim [42] was the first to investigate data abstraction for CSPpz. Then, Mota |7, 9]
extended her work by providing mechanised support to generate abstractions for CSP; as
well as fixing some weaknesses in the original work by also considering data independence
constraints.

In this section, we present the notion of safe and optimal abstractions for CSP, as well
as definitions and laws necessary to give support for the application of data abstraction.
Furthermore, we present a theorem stating that, when also considering the CSP part,
the LTS representation for a CSPz; process can be substantially smaller than one which
considers only the Z part, as investigated in [7, 9]. We also present a complete example of
CSPy data abstraction to give the idea about its practical application.

Recall from Theorem 2.1 that, from a CSPj specification we can generate an equivalent
CSPy process by applying the strategy defined in [8]. From this, the state schema is
represented by a tuple (e.g. (v, ..., v,)) and all operations as functions with the following
signature:

com_c:D —PD,

where D is the whole state domain (i.e. D = Dy X ... X D).
Similarly, the abstract version of an operation—denoted by {| . }—has the following
signature:

{ com_c [} : DA — P D4,

where D4 is the abstract state domain, obtained by abstracting each original component
domain, that is, D4 = D x ... x DA,

The abstraction function & is a mapping from D (concrete domain) to D4 (abstract
domain), that is, A : D — D4, such that:

= (h(dr), .., hu(dy))
= (df,...,d2)
= 44

Note that the state abstraction process consists of abstracting each domain component by
applying the respective abstraction function h;. Moreover, the construction of {| com_c [}
is compositional in the sense that it is obtained by abstracting its inner operations. For
example, let s, s1, 55 be variables of type set and com_c be a concrete operation which has
the inner operation s = s; U s, (U is the usual union). Thus, in { com_c [} we have abstract
versions for variables and inner operations (e.g. s = sf! U4 s3).

In order to deal with powersets, we define the function H : PD — P D4 as follows:

H(S)={z:Seh(x)}
Operations can have many abstract versions. In this work we are interested in abstrac-

tions which preserve some desirable properties. Such abstractions are considered as “good”
approximations and can be classified into safe and optimal [67, 75| as follows.

CHAPTER 3. CSPz; DATA ABSTRACTION 39

Definition 3.9 (Safe Abstraction) An abstract interpretation {| . [} of an operation
com_c is safe according to h iff:

Vd:De{ com_c[}(d)=Uyz(H o com_c)(d). o

The above definition states that a safe abstraction captures more information than the
original operation because it can insert nondeterminism (provided by the distributed union
applied to the abstraction of the original interpretation). On the other hand, the optimal
abstraction of an operation, if it exists, is the best approximation for that operation.
Furthermore, it is unique and defined by strengthening the definition of safe abstraction.

Definition 3.10 (Optimal Abstraction) An abstract interpretation { . |} of an opera-
tion com_c is optimal according to h iff:

Vd:De({ com_cl[toh)(d)=(hocom_c)(d). O

In the following, we reproduce some definitions from [7] and then extend such definitions
to our approach.

Lemma 3.1 Let P be a partially data independent CSPy process and P# its abstract ver-
sion, defined by a safe abstract interpretation {| . [} with interface abstraction given by the
renaming R. Then P* Cr P[R]. o

Lemma 3.2 Let P be a partially data independent CSPy process and P4 its abstract ver-
sion, defined by optimal abstract interpretation {| . [} with interface abstraction given by
the renaming R. Then P4 =zp P[R]. O

Lemma 3.1 states that, when abstracting the interface of the original CSP; process (P)
by applying the renaming R, we obtain a process which refines, in the traces model, the
abstract version of P (P4), obtained by a safe abstraction. Analogously, Lemma 3.2
states the equality (in the failures-divergences model) between the original process with
the renaming R (P[R]) and the abstract version (P4), obtained by optimal abstraction.

According to Mota [7], interface abstraction means applying a renaming relation to
channels, such that concrete types are replaced with abstract ones, and replacing all oc-
currences of communicated values (concrete) with their abstract ones. Recall from Section
2.1 that a renaming consists of replacing an event with another one by applying a map-
ping. For example, let R be the renaming {a — b} and let P be the process a — SKIP.
Applying R to P we obtain:

P[b/a] = b — SKIP.

Note that, if R is the identity (that is, id,p : «P — aP and id,p(c) = c), then the original
process remains unaltered.

As our approach does not deal with communicated values, we adopt the identity as the
renaming, and use the following corollaries of Lemmas 3.1 and 3.2.

CHAPTER 3. CSPz; DATA ABSTRACTION 40

Corollary 3.1 Let P be a partially data independent CSPy process and P4 its abstract
version, defined by a safe abstract interpretation { . [}. Then PA Ty P. O

Proof. The proof follows direct from considering the renaming R of Lemma 3.1 to be the
identity map.
O

Corollary 3.2 Let P be a partially data independent CSPy process and P4 its abstract
version, defined by optimal abstract interpretation {| . [}. Then P4 =zp P. &

Proof. The proof follows direct from considering the renaming R of Lemma 3.2 to be the
identity map.
Od

Corollary 3.1 states that the original process does not perform any trace different from
its abstract version, whereas Corollary 3.2 states that the original process and its abstract
version are equivalent in the failures-divergences model, that is, they have the same failures
and divergences.

An important contribution of Mota |7, 9] was a mechanised strategy of calculating the
optimal abstraction for C'SP; processes by achieving data abstraction on the Z part. The
strategy consists of expanding the Z part, avoiding infinite repetitions of a same trace. In
our approach, we also consider the CSP part during the expansion. This potentially causes
a substantial reduction of the nodes in the LTS, in the sense that the whole process will
typically perform less traces than its Z part. In Section 3.5 we present some examples in
order to compare both approaches.

The expansion of a process is related to the traces performed by it. The more traces
a process performs, the more nodes are observed on its LTS. Before we present a theorem
establishing that the traces of a CSPz process is a subset of those ones produced by its Z
part (Theorem 3.1), we reproduce a useful CSP law (Law 3.1) from [13], in order to derive
an important corollary (Corollary 3.3) for CSP;. We also present an auxiliary lemma
(Lemma 3.3) stating the traces of a C'SP; process.

Considering two CSP processes, P =7z : A — P' and @ =7z : B — (', the initial
events of P u Qare C=(XNANB)U(A\ B)U(B\ A). The following step law shows
the possible behaviour for the generalised parallelism: an event may be synchronised,
unsynchronised but ambiguous, or from one side only.

Law 3.1 (U - step)

PlQ=":C - (P'||Q) $seX3
(Pl (P|@) fzeAnB3
Q) £red} (P Q))

Now, we can state how a translated C'SP; process can evolve:

CHAPTER 3. CSPz; DATA ABSTRACTION 41

Corollary 3.3 (|1| - step for CSP;) Let P; and Pcsp be CSP processes that represent
the Z and CSP parts of a CSPz specification, respectively. Then,

PZUPCSsz:I_)(PIZUP,CSP)a

where P, = Pz /{x) and Pygp = Pcsp/{z). &

Proof. Recall from Definition 2.4 that I = aP; = aPgsp. Using simple laws of set
theory we can trivially conclude that C' = I, and that the event performed by the whole
process always belongs to the interface. Therefore, the condition € x € X 3 of Law 3.1 is
always valid (because X = I) and the processes Pz and Pcgp synchronise on all events.

O

According to the above corollary, a CSPy; process performs an event if and only if its parts
synchronise on it. Otherwise, it behaves like STOP (deadlock). Therefore, it is reasonable
to affirm that the traces of the whole process can be obtained by the intersection of the
traces of its CSP and Z parts. In the following, we formalise this fact by presenting a
lemma. For details about the proof, refer to Appendix B.

Lemma 3.3 (Traces of a CSP; Process) Let P; and Pcsp be processes representing
the CSP and 7 parts of a CSPy process, respectively. Let I be the interface. Then,
traces(Pyz || Posp) = traces(Pz) N traces(Pcsp). O
1

Now, we present a theorem stating that the expansion caused by the execution of a CSPy
process, considering its two parts, is smaller than that considering only its Z part. To
accomplish this, we examine the traces produced by the internal parallelism of a CSPj
process.

Theorem 3.1 (P U Pcsp refines Py) Let Posp and Py be CSP processes representing
the CSP and the Z parts of a CSPy process, respectively, after translation. Then,

PZETPZUPCSP- &

Proof. The proof follows direct from traces refinement.

1. P; Cy Py |1\ Pecsp [by hypothesis|
2. [&|traces(Pz) D traces(Py |1| Pesp) [by Definition 2.1]
3. [e]traces(Pz) D traces(Pyz) N traces(Pesp) [by Lemma 8.5
4. [e]true [by set theory]

O

CHAPTER 3. CSPz; DATA ABSTRACTION 42

Note that Theorem 3.1 also holds when the CSP part (Pgsp) terminates successfully,
deadlocks or diverges. These situations arise when we consider the interaction between the
CSP and the Z parts. Furthermore, the approach of Mota [7, 9] does not capture these
situations because it considers only the Z part (Py).

In the following we present a complete example including the original specification and
a detailed explanation about the underlying idea of achieving data abstraction.

Example 3.2 Consider the following specification which performs two events (a and b)
alternately and infinitely.

spec P
chan a,b
main = a — b — main
State = [c : Z] com_a = [AState | ¢ < =1 A ' = —¢]
Init = [State’ | ¢! = —1] com_b = [AState | ¢ > =1 A ' = —(c x 2)]
end_spec P

The behaviour of the above specification can be understood by looking at its LTS (Fig-
ure 3.3): in terms of events, it infinitely performs ¢ and b and, in terms of state change,
the value of the variable alternates between positive and negative values.

b

T a a b
it e M ams e L om0

Figure 3.3: An infinite LTS of a CSPj process

Ignoring the state variable value, this preliminary analysis permits us to infer that the
alternation between positive and negative values is the only relevant fact for abstracting
the data type c. Therefore, adopting the set A = {pos, neg} as being the abstract domain,
we can define the abstract map A and the abstract versions for the operations as follows:

hz) = {pos, if > —1

neg, otherwise

a(z) = pos, if r = neg
o neg, otherwise

py — pos, zfa::y:posV:vzy:neg
neg, otherwise

CHAPTER 3. CSPz; DATA ABSTRACTION 43

A _ true, if T = pos Ay = neg
vy = { false, otherwise
A true, if T = neg
< = .
=9 { false, otherwise

Applying the above functions to the original specification, we produce its abstract version:

spec P4
chan a,b
main = ¢ — b — main
State = [c : A] com_a = [AState | ¢ <" neg A ¢/ = —(c)]
Init = [State' | ¢’ = neg] com_b = [AState | ¢ >" neg A ¢! = —A(c % pos)]

end_spec P4

Figure 3.4 shows the new LTS for the system after the abstraction technique has been
applied. The behaviour (in terms of performed events) was not affected because it continues
to perform a and b forever; however, it becomes finite and then can be verified by FDR
[36]. Note that this abstraction is possible because the process has a predictable infinite
behaviour (that is, the infinite repetition of the trace (a,b)). As we are interested in
preserving such a behaviour, we can find out an abstraction that reduces the system’s state-
space by replacing the original data domain with a finite one and giving new meanings to
the operators.

Figure 3.4: Abstracted system

The work of Mota [7, 9] gives a mechanised way of abstracting CSP; processes. He defined
an algorithm which finds out the optimal abstraction (if it exists) based on a mathematical
partitioning. Broadly, the algorithm identifies a class of values (possibly infinite) of the
original type with a single value that represents the entire class (partition). This is achieved
by showing that the result produced by symbolic execution of the process under analysis
is the same for every value in the partition.

His approach applies that idea by considering only the data part of a CSPz specification,
whereas our approach also considers the behavioural description. In the following, we
present the algorithm implementing the data abstraction approach for CSPj.

CHAPTER 3. CSPz; DATA ABSTRACTION 44

3.4 Algorithm

The previous section gave an overview of data abstraction for CSPjz, which consists of
an inverse refinement on the Z part of a CSPj; specification (a concrete data type is
replaced with an abstract one). Looking at Figures 3.3 and 3.4, one can see that both
versions (concrete and abstract) have the same behaviour. The difference is that the LTS
representation of the second version is finite, whereas the LTS for the first one is not. In
this section, we present two algorithms for data abstraction of infinite CSP, specifications.
The first algorithm was proposed by Mota |7, 9|, considering only the Z part of the whole
specification and assuming that the CSP part is trivially data independent (see Definition
3.2). The second algorithm is an extensional improvement which also considers the CSP
part. This algorithm constitutes the central contribution of our work.

Both approaches are based on identifying a particular behaviour of a CSPj; process:
the infinite repetition of a property. Such a behaviour, also referred as infinite and stable
or periodic, can be represented by a finite LTS. In terms of performed traces, this means
that the process can infinitely perform a specific trace. Furthermore, each approach has
a different execution model and property representation, as explained in the rest of this
section.

3.4.1 Considering the Z Part

The algorithm proposed by Mota [7, 9] tries to abstract a CSP; process by looking at its
7 part. Therefore, it deals with properties concerning only data aspects. Instead of the
functional presentation given by Mota, we present his algorithm in an imperative style due
to our interest in an implementation using Java [27].

Lattice of Properties

As the algorithm is based on identifying a periodic behaviour, one has to think about
representing such a behaviour as a concrete property. Considering only the data part,
this property can be expressed by a conjunction of Z schema preconditions. For instance,
the process presented in Example 3.2 performs (a, b) forever. Note that, before and after
performing such a trace, the Z part is ready to execute only com_a. From this observation,
the property is expressed by the following predicate: pre com_a A —pre com_b. The Z
part is ready to execute the schema com_a (uniquely) if and only if all other schemas are
disabled (their preconditions are false). Analogously, if the Z part is ready to execute
com_a or com_b at the same time, then their preconditions are valid at that time, and so
on. Considering all possibilities (combinations) of executing schemas, such properties can
be ordered in a lattice of properties where the bottom element represents deadlock (there
is no enabled schema) and the top element is the full nondeterminism of the Z part (all
schemas are enabled). Figure 3.1 shows an example of that lattice for a system with three
operations (com_a;, com_as and com_ag).

CHAPTER 3. CSPz; DATA ABSTRACTION

45

Recall from Definition 3.8 that a Galois Connection contains two mappings between

a concrete structure (lattice) and an abstract one.

The construction of the lattice of

properties is necessary to show what properties we are interested in preserving.

[oprecom.a A
ioprecoma, A
;71 precom_a,

;precoma A [precoma A
. precoma, A i1 precom.a, A
aprecoma, . precoma;,

;precoma A [aprecoma A"
aprecoma, A . precoma, A
iprecom_a, {1 precom_a,

[aprecom_a A
i precom_a, A
i precom_a,

Jprecoma A
Jprecom.a, A
. precom_a, 3

Figure 3.5: Lattice of preconditions

Stable Behaviour

The periodic behaviour of a CSP; process means that its Z part repeats a property forever
(for some trace), that is, before and after performing some trace ¢, the Z part is ready to
execute the same schemas again. Considering again Example 3.2, the property before and
after performing (a, b) is pre com_a A —pre com_b. Therefore, the strategy for determining
its infinite repetition is described by the following steps:

1. Find the trace causing a property repetition. For example, (a, b).

2. Build the property which repeats before and after performing the trace found and
call it by conj. For example, conj = pre com_a N\ —pre com_b.

3. Recall that, in CSPy, a trace corresponds to a Z schema composition. Therefore, the
trace (a, b) represents the composition com_a § com_b. Call such a composition by

comp (i.e. comp = com_a § com_b).

4. Build the following theorem describing the infinite stable behaviour of the Z part?:

V State, State' | conj e comp = conj’

2This strategy was used by Mota [7, 9] to interact with theorem provers like Z-Eves [60] or ACL2 [59].

CHAPTER 3. CSPz; DATA ABSTRACTION 46

According to the above theorem, for all state where conj is valid, if the execution of comp
validates conj in the following state, then the system is periodic. Therefore, the algorithm
no longer expands such a branch and continues analysing the other possibilities. After the
construction of the LTS finishes, the algorithm builds the abstract CSP; process from it.

In our example, the Z part becomes stable after performing (a, b) for the first time.
Hence, there is no need to generate the original LTS (Figure 3.6) if only behavioural aspects
matter. If we find out equivalent nodes (that is, nodes with the same property), we can
build a finite LTS representation for the same process (see Figure 3.7).

Properties at each node:

Equivalence 1.
e a .] 1: precom_a ~ 71 precom_b

v y v 1: - precom_a . precom_b
N b a b PO e
— T 1T 2T 2 a2 .. -2: precom_a A 1 precom_b
Init com a com b com a 2:

: precom_a A precom_b

[! -4: precom_a . - precom_b

Equivalence

Figure 3.6: Equivalence between LTS nodes

Init

Figure 3.7: Finite LTS produced by the algorithm

Execution Model

The execution of the algorithm is based on LTS representation. Recall from Section 2.5.2
that a CSPj transition is denoted by two arrows indicating an event performance and its
corresponding schema execution, and that the node of a CSP; contains information about
the state and the performed trace. Furthermore, as the algorithm is based on searching
property repetition, the node contains a property and the sequence of nodes produced up
to it. Table 3.1 introduces the structures manipulated by the algorithm.

Description

At initialisation, the schema Init is executed and all variables from Table 3.1 are initialised.
Figure 3.8 shows the algorithm that implements Mota’s approach. The initialisation is
described from line 1 up to line 7. Afterwards, the expansions follow as a Breadth First
Search and, while there are nodes to be analysed (line 8), the algorithm takes all enabled
schemas (line 11) and generates new children nodes (lines 13, 14, 15, 16 and 17) as long as
such an expansion does not lead the system to a stable behaviour (line 12). The function

CHAPTER 3. CSPz; DATA ABSTRACTION 47

Definition Explanation
Node Node=(State,Trace,Property,NodeSequence)
CurrentNode Denotes the node being processed.
CurrentTrace The trace used to reach the current node.

CurrentProperty | The property of the current node.
CurNodeSequence | The sequence of nodes used to reach current node.
VisitedNodes All nodes generated by the algorithm.

CurrentStage A set of nodes being processed.

NextStage A set of nodes which are children of the current nodes. They
are processed after all parent nodes have been considered.

first, second, | Return the respective element of a mnode. For ex-

third, fourth ample, first(CurrentNode) returns CurrentState,

second (CurrentNode) returns CurrentTrace, and so on.
extractProperty | Gives the property of a node based on a specific state
extractIndex Gives the index of a node on a sequence of nodes
extractTrace

Table 3.1: Structures manipulated by the algorithm

checkStable() implements the idea introduced in Section 3.4.1 where the stability is
defined by a Z-theorem. First, a new node is generated and then the sequence of nodes
is analysed in order to find repetitions of such a property. Is so, the trace causing the
repetition is extracted and then the theorem is built. Furthermore, the proof of such a
theorem is only point of this algorithm which requires user assistance (because not always
is possible proving theorems automatically).

In the following we present function checkStable (). For a detailed view of the auxiliary
functions see Appendix B.

checkStable (com op,Node){
isZCycle := false
State’ := com op(first(Node))
Property’ := extractProperty(State’)
index0fRepetition := extractIndex(Property’, fourth(Node))
stableTrace := extractTrace(third(Node), indexOfRepetition)
if (index != 0)
conj := Property’
comp := the composition corresponding to stableTrace
z-theorem := V State; State' | conj e comp = conj’
isZCycle := (ask z-theorem to a theorem prover)
fi
return isZCycle

CHAPTER 3. CSPz; DATA ABSTRACTION

1. CurrentState := Init

2. CurrentTrace := ()

3. CurrentProperty := extractProperty(CurrentState)

4. CurrentNode := (CurrentState,CurrentTrace,CurrentProperty)
5. VisitedNodes := {CurrentNode}

6. CurrentStage := {CurrentNode}

7. NextStage := {}

8. while (CurrentStage has more nodes)

9. Vnode € CurrentStage

10. CurrentNode := node

11. Vcom e enabled

12. if not checkStable(com e,CurrentNode)

13. NewState := com e(CurrentState)

14. NewTrace := CurrentTrace” (e)

15. NewProperty := extractProperty(NewState)
16. NewNodeSeq := CurNodeSequence” (CurrentNode)
17. NewNode := (NewState,NewTrace,NewProperty,NewNodeSeq)
18. if NewNode ¢ VisitedNodes

19. VisitedNodes := VisitedNodes U {NewNode}
20. NextStage := NextStage U {NewNode}

21. fi

22. fi

23. V-end

24. V-end

25. CurrentStage := NextStage

26. NextStage := {}

27. while-end

Figure 3.8: Algorithm expanding the Z part

48

Example 3.3 Applying the algorithm to Example 3.2, the stability point is found after per-

forming {a, b) (Figure 8.9.a) and the repeated property is pre com_a N\ —pre com_b. There-

fore, checkStable(com.b) builds the Z-theorem
V State, State' | conj e comp = conj’,

where conj = pre com_aA—-pre com_b and comp = com_agcom_b; and this can be submitted
to a theorem prover to check if it holds. After finding out a periodic behaviour, the algorithm
stops the expansion of that branch, which is represented by a finite LTS (Figure 3.9.b), and

continues analysing the remaining nodes.

CHAPTER 3. CSPz; DATA ABSTRACTION 49

a b
,,,,,, —l,<>),,,,,,>k1,<a>),,,,,> Stable

Init com a com b

L oprecom_an 5 precom_a A
D precom_b . precom_b

@) (b)

Figure 3.9: Expansions up to the stable point

Calculating the Abstraction

After avoiding infinite expansions by observing a property repetition, the algorithm builds
an abstraction which is finite and captures the original behaviour. Mota |7, 9| defined
a strategy for building such an abstraction by using subtype abstraction: the abstract
domain is a subset of the original one. Furthermore, the abstraction process consists of
abstracting schemas compositionally: inner operations are also abstracted.

An important result of the Cousots’ work [66, 67] concerns the construction of the
optimal abstraction. Recall from Section 3.2 that the best approximation (f4) for a concrete
operation (fo) can be found by construction, that is, f4 = «a o fg o7, where « is the
abstraction function, and 7 is the concretisation function. Mota used this idea and set «
to be a map h, and «y to be the identity (id). Therefore, the abstraction of an operation
Az :Nez+ 1, for example, is:

{Ar:Nez+1}l=ao(Ar:Nez+1)oy=Az": Aeh(z?+1),
where A is the abstract domain.

Let us illustrate the strategy by its application to Example 3.2:

1. Set the abstraction data domain to be the concrete one, that is, A = Z.

2. Set the abstraction map A to be the identity map, that is, h : Z — A, such that
h(z) = .

3. Expand (symbolically) the Z part, avoiding infinite expansions (Figure 3.9.a). In our
example, there is only one periodic behaviour: the infinite performance of {a, b).

4. Check whether all repetitions detected in the previous step are infinite. In our ex-
ample, the property pre com_a A —pre com_b always repeats when the trace (a, b) is
performed infinitely. Therefore, the idea is building equivalence classes for the state
values which cause this periodic behaviour: each node occurring along the trace (a, b)
is a strong candidate to represent an entire class of values. Nodes whose property is
pre com_a N\ —pre com_b, are on the equivalence relation:

CHAPTER 3. CSPz; DATA ABSTRACTION 50

10.

E,={c:Z|c<—-1lecrrcx2}*

It is worth noting that ¢ < —1 is the reduced form of pre com_a A —pre com_b,
and the operator * is the usual reflexive-transitive closure operator.

Update the abstraction map h according to the equivalence class found as follows:

h(z) _{ -1, if (-1,7) € E,

| z, otherwise

The value representing the entire equivalence class can be any value from the do-
main of F,. Is this example we have chosen —1.

Set A to be the range of h, that is A= {-1}U{z | (—1,z) & E,}.

Repeat steps 4, 5 and 6 until all nodes along the stable trace have been processed.
For example, after performing the event a, the following node has the property
—pre com_a N pre com_b. Therefore, its equivalence relation is:

Ey={c:Z|c>—-1ecr cx2}*
Again, the mapping h is updated to:

[=1, if(-1,2) € E,
h(z) = { 1, if(1,z) € B,

and A becomes {—1,1}.

Define the abstract state by replacing the original domain with A:

State = [c: AJ.

. Abstract the initialisation by applying h to the predicate of Init as follows:

Init = [State' | ¢ = h(—1)]
= [State' | ' = —1]

Abstract all schemas by applying h to their post-conditions and preserving their pre-
conditions:

com_a = [AState | ¢ < —-1Ac' = h(—c)]
= [AState | c < —1A ¢ = h(—h(c))]
com_b = [AState | ¢ > —=1Ac" = h(—(cx2))])

AState | ¢ < =1 A" =h(—
AState | ¢ < =1 A" =h(—

[(
[(
[(—(
[AState | ¢ > =1 A ¢’ = h(—(
[(—(
[(=(

CHAPTER 3. CSPz; DATA ABSTRACTION 51

Building the abstracted specification based on the above steps we have:

spec P4
chan a,b
main = a — b — main
State = [c : A

Init = [State' | ¢! = —1]

com_a = [AState | ¢ < =1 A" = h(—h(c))]

com_b = [AState | ¢ > =1 A ¢ = h(—(h(c)))]
end_spec P4

Note that the LTS for the above specification (see Figure 3.9.b) is equivalent to the LTS of
the same specification found in an ad hoc manner (see Figure 3.4). The main differences
are: the current abstract domain is {—1, 1} whereas the previous was {pos, neg}, and, most
importantly, the current abstraction is built by a guided process while the previous had
followed an heuristic approach.

3.4.2 Considering the CSP Part

As we have already explained, the approach of Mota does not consider the influence of
the CSP part over the Z one. Therefore, some behaviour such as successful termination,
deadlock and divergence are not captured by his algorithm. On the other hand, in our
approach we also consider the CSP part, which acts as a controller process. This viewpoint
has some impacts over the data abstraction technique because the CSP part filters the
combinations taken into account when considering only the Z part.

The idea is expanding only the possibilities (traces) accepted by the CSP part. Its LTS
establishes what traces can be performed by it. In this section, we investigate this strong
relation between the CSP part and the abstraction process.

Lattice of Properties

The previous approach considered as stable a CSPj; process whose Z part repeated in-
finitely some property, expressed by a conjunction of preconditions of schemas (enabled
and disabled). When considering the CSP part, the stability is defined in terms of CSP
and Z.

Recall from Lemma 2.1 that the initial acceptances of a C'SP; process are obtained by
capturing the events accepted by the CSP part, whose corresponding schemas are enabled.
That is,

initials(Pcsp,) = Ug,eriai | pre com_a; A a; € initials(Pcsp)},

where [is the synchronisation interface.

CHAPTER 3. CSPz; DATA ABSTRACTION 52

ajininitias(Pegp) A
- ayininitids(Rugp)

aininitials(Fogp) A S aininitids gy) A - aininitds Rogp) A
o agininitials(PCSPZ) ‘} ¢ agininitials(PCSPZ) ‘} S agininitials(PCSPZ) :

ayininitias(Rugp) A - ayininitials Pesp,) ~ ayininiids(Ry) A
1 ayininitias(Rogp) A ~ ayininitias(Rogp)) A 1 ayininitials(Pagp) A
~ aininitials(Pesp) f 7 agininitials(Resp) 7 agininitials(Pesp)

(Fosp)
1 ayininitials(PCSPZ) A
7 agininitials(Rugp)

Figure 3.10: Lattice of properties

The new property is expressed in terms of initials(Pcgp,). For example, consider a CSPy
processes whose synchronisation interface is {a, b, ¢} and that, at a specific moment, the
whole process accepts performing only the event a. The property at that moment is

a € initials(Pgsp,) A b & initials(Pgsp,) A ¢ & initials(Pgsp,)-

Figure 3.10 illustrates the new lattice of properties for such a process. The bottom element
represents deadlock of both parts, whereas the top element represents the full nondeter-
minism of the whole process.

It is worth noting that a deadlock of a C'SPj; process can occur in many situations: the
CSP part is really deadlocked, the CSP part accepts a set of events whose corresponding
schemas are disabled, and the Z part offers schemas whose corresponding events are rejected
by the CSP part. Such situations typically concern synchronisation problems between
the component processes (they cannot progress independently). On the other hand, the
divergence of a CSPj; process happens when its CSP part diverges (it does not offer any
visible event to synchronise with the Z part). These situations are correctly captured by
the property because initials(Pgsp,) is defined in terms of initials(Pgsp). If the CSP part
does not have initial acceptances, then the whole process accepts performing no visible
event.

CHAPTER 3. CSPz; DATA ABSTRACTION 53

Stable Behaviour

By considering the CSP part as well, the stability criterion becomes stronger: both the
CSP and the Z parts have to be periodic and perform the same cycle. For CSP, this means
that there is a cycle which performs a trace infinitely. For Z, it means that before and after
performing a specific trace, the corresponding schema composition (comp) is enabled (i.e.
pre comp is true) again.

Although the algorithm focuses on finding a repetition of a C'SPj; property, when such
a repetition is found, the stability checks are performed separately. First of all, the trace
causing the repetition is extracted. Then the CSP part is analysed in order to find out a
cycle performing such a trace. If a cycle is found, then the CSP part is stable. Afterwards,
the stability of the Z part is performed by determining if the composition corresponding
to the periodic trace can always be executed by the Z part.

Note that, with this approach, one can find many possibilities of property repetition,
however, the algorithm automatically discards those ones not allowed by the CSP and the
7 parts.

Regarding the stability of the Z part, it is worth explaining how this is achieved in our
approach. Recall from Section 3.4.1 that the stability of the Z part was determined by

V State, State' | conj e comp = conyj’,

where conj is a conjunction of preconditions (enabled and disabled) and comp is a schema
composition. In our approach, conj is replaced with pre comp because we are interested in
analysing the behaviour of the Z part in respect to a specific composition (comp) rather
than analysing all possible compositions enabled when conj is valid. Therefore, the above
formula becomes

V State, State' | pre comp ® comp = (pre comp)’ ,

where comp is the composition representing the probable stable trace.

We have also noticed that there is a subtle situation which is not captured by the above
formula. If one schema of comp is disabled, then pre comp is not valid and, therefore, no
change occurs (that is, (pre comp)’ is false as well). This situation can be reproduced by
rewriting the above predicate, using simple laws from First-Order Logic, and replacing pre
comp, comp, and (pre comp)’ with false: false = (false = false), which produces true
when false is expected (the system is not stable). This weakness® has motivated us to
adopt a stronger formulae

V State, State' | (pre comp = comp) e (pre comp)’

as the stability predicate of the Z part. It correctly captures the subtlety mentioned
and produces the expected result; that is, (false = false) = false evaluates to false.
Furthermore, it is worth pointing out that this is the only situation where

V State, State' | pre comp o comp = (pre comp)’ and
V State, State' | (pre comp = comp) e (pre comp)’

3This happens because = is not associative.

CHAPTER 3. CSPz; DATA ABSTRACTION 54

produce different results. Table 3.2 illustrates the comparison between the formulae. Lines
3, 4, 5 and 6 are not analysed because it does not make sense when pre comp and comp
have different values. Moreover, line 7 does not happen because (pre comp)’ must be false
when pre comp and comp are so.

pre comp | comp | pre comp’ | pre comp = (pre comp = comp) =
(comp = (pre comp)’) | (pre comp)’
1 T T T T T
2 T T F F F
3 T F T - -
4 T F F - -
5 F T T - -
6 F T F - -
7 F F T - -
8 F F F T F

Table 3.2: Values produced by the stability theorems

Execution Model

Our approach requires a more elaborate execution model than that adopted by Mota. As
the CSP part is taken into account, the new algorithm has to deal with its representation
(a LTS). Therefore, a node becomes the following structure:

Node = (State,LTS,Trace,Property,NodeSequence).

A new variable (CurrentLTS) represents the CSP part of the node being processed and,
at initialisation, the function buildInitialLTS() builds its initial LTS representation.
Moreover, we introduce a new function— fifth(Node)-which gives the fifth component of
a node. Figure 3.11 gives a graphical view of the creation of the initial node.

[SO , InitialL TS, <>, InitialProperty, <>]
| | | |

| | | |
v ¥ v
Produceb by Init v The empty trace v Empty sequence

Produced by buildInitialLTS() Produceb by extractProperty(S

Figure 3.11: The structure of Node and its initialisation

CHAPTER 3. CSPz; DATA ABSTRACTION 95

Description

Now the algorithm has to execute both parts (CSP and Z) together, considering the CSP
part as a master process.

Figure 3.12 shows the algorithm implementing our approach. The initialisation is de-
scribed from line 1 up to line 10. As Mota’s algorithm, while there are nodes to be analysed
(line 11), the algorithm takes all enabled schemas (line 14) and then checks if their corre-
sponding events are accepted by the CSP part (line 15). If so, a new child node is generated
(from line 17 up to line 23) as long as such an expansion does not lead the system to a
stable behaviour (line 16).

It is worth mentioning that, in this version of the algorithm, we deal with CSP; pro-
cesses whose CSP part produces only one following behaviour when performing an event,
that is, it must be deterministic. Therefore, nondeterministic processes, as for example,
(e > POa — @) cannot be dealt by our algorithm because it presents two possible
behaviour (P or @) after performing the event a.

The new version of the function checkStable() determines if an expansion causes
some property repetition. Now, before checking the stability of the Z part it checks if
the CSP part has a cycle performing the probable stable trace. The auxiliary function
extractProperty now returns the property of a CSPj; process (see Appendix B for its
new version).

checkStable(com op, Node){
isCspzCycle := false

State’ := com op(first(Node))
LTS’ := second(Node)/{op)
Property’ := extractProperty(State’,LTS’)

index0fRepetition := extractIndex(Property’, fifth(Node))
stableTrace := extractTrace(third(Node), indexOfRepetition)
if (index != 0)

if (checkCycles(stableTrace))

comp := the composition corresponding to stableTrace
z-theorem := V State; State' | (pre comp = comp) e pre comp'
isCspzCycle := (ask z-theorem to a theorem prover)

fi

fi
return isCspzCycle

CHAPTER 3. CSPz; DATA ABSTRACTION

O 00 ~NO O b W N =

[
o -

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

CurrentState := Init

CurrentTrace := ()

CurrentLTS := buildInitialLTS()

CurrentProperty := extractProperty(CurrentState)

CurNodeSequence := ()

CurrentNode := (CurrentState,CurrentLTS,CurrentTrace,
CurrentProperty,CurNodeSequence

VisitedNodes := {CurrentNode}

CurrentStage := {CurrentNode}

. NextStage := {}

while (CurrentStage has more nodes)
Vnode € CurrentStage
CurrentNode := node
Vcom_e enabled
if e € initials(CurrentLTS)
if not checkStable(com_e,CurrentNode)

NewState := com e(CurrentState)
NewLTS := CurrentLTS/(e)
NewTrace := CurrentTrace” (e)

NewProperty := estractProperty(NewState)

NewNodeSequence := CurNodeSequence” (CurrentNode)

NewNode := (NewState,NewLTS,NewTrace,
NewProperty,NewNodeSequence)
if NewNode ¢ VisitedNodes
VisitedNodes := VisitedNodes U {NewNode}
NextStage := NextStage U {NewNode}
fi
fi
fi
V-end
V-end
CurrentStage := NextStage
NextStage := {}
while-end

Figure 3.12: Algorithm expanding for the whole CSP; process

26

CHAPTER 3. CSPz; DATA ABSTRACTION o7

Applying this approach to Example 3.2, one can see that (a, b) is performed by a cycle
on the CSP part and the composition com_a § com_b can always be performed by the Z
part (as in the previous approach). Figure 3.13 shows the expansion according to the new
execution model.

T ., b
,,,,;i>[—1 a->b->main, <> ... Stable
Init com a com b

Figure 3.13: Expansions according to the new execution model

Calculating the Abstraction

In our approach, the abstraction technique is a simplification of the one adopted by Mota’s
approach. This happens because the CSP part filters the Z execution by rejecting some
events, even when their corresponding schemas are enabled. Moreover, the process for
calculating the abstraction is quite different from the one used in [7, 9]. Instead of building
the abstraction function h, the abstract specification is extracted from the LTS. Compar-
ing the original and the abstracted process, one can infer the abstraction function (see
Example 3.5).

Consider, for example, the LTS depicted in Figure 3.13. After performing b the system
becomes stable and accepts a again. Like the previous approach, the following nodes are
equivalent to some previous one. Here, the meaning of equivalence takes into account a
new property: the conjunction of acceptances of the whole C'SP; process.

The abstraction technique is achieved by executing the following steps:

1. Expand (symbolically) the LTS of the whole process, avoiding infinite expansions;

2. The abstract domain is determined by the union of the state variable values observed
on the nodes of the LTS. For example, 4 = {—-1} U {1} ={-1,1};

3. The state abstraction is obtained by replacing the infinite type with A:
State = [c : Al;

4. The initialisation produces the state value observed in the initial node, that is:
Init = [State' | ¢ = —1];

5. The abstractions of the operations are obtained by changing their post-conditions
when necessary: if a schema belongs to a cycle, then its post-condition produces the
values observed in the LTS after its execution. Otherwise, it remains unaltered. In
the example, the execution of com_a§com_b is periodic. Therefore, their abstractions
are, respectively:

CHAPTER 3. CSPz; DATA ABSTRACTION 58

com_a = [AState | ¢ < =1 A ' =1]
com_b = [AState | ¢ > —1 A ¢ = —1]

Building the entire abstraction, we obtain:
spec P4

chan a,b
main = a — b — main

A=={-1,1}

State = [c : A]

Init = [State' | ¢! = —1]

com_a = [AState | ¢ < =1 A ' =1]

com_b = [AState | ¢ > =1 A ¢’ = —1]
end_spec P4

Figure 3.14 shows the LTS for the above specification. Note that it is equivalent to the
one found by Mota’s approach (see Figure 3.9.b).

—|-1,a->b->main, <>] [l, b —> main, <a>}

)

a

*. initial node

- com a

Figure 3.14: LTS of the process after abstracted

Note that, comparing the above specification with the original one, the abstraction function
and the equivalence classes are implicit.

E,={c:Z|c<—-1ecrrcx2}*
Ey={c:Z|c>—-1ecr cx2}*

[=1, if(-1,z) € E,
W) _{ 1, if (1,z) € B,

The function h(z) maps state variable values to —1 or 1, depending on the equivalence
class they belong to. Although the abstract specification produced by our approach has
the same behaviour than that produced by using the definitions of A and the equivalence
classes, one can perceive we did not have to build them explicitly.

In addition, it is worth pointing out some characteristics on the Z part which simplify
the calculation. For example, when all preconditions are trivially true, the abstraction can
be extracted from the LTS of the CSP part because the Z part becomes infinitely stable
with any trace. In other words, we are free of analysing the Z part to infer the abstraction.

CHAPTER 3. CSPz; DATA ABSTRACTION 99

while(CurrentStage has more nodes) while(CurrentStage has more nodes)

Vcom_e enabled Vcom_e enabled
if e € initials(CurrentLTS)

Figure 3.15: Differences between the algorithms

Another important point concerns the superior performance of our algorithm. Figure 3.15
illustrates the main difference between our approach (left) and Mota’s (right). Following a
CSP-driven execution, our algorithm converges faster than Mota’s. This can be perceived
by observing the main difference between them. For all enabled schema, our algorithm
checks whether the corresponding event is accepted by the CSP part, whereas Mota’s ap-
proach does not. In addition, it is worth pointing out that both algorithms might never stop
when the process never becomes stable. This is regarded by the line while (CurrentStage
has more nodes). In fact, if the process is not stable, new nodes are generated continu-
ously. Therefore, there will always be nodes to be processed and the loop never terminates.
The limitations of our algorithm are explained in Section 3.6.

3.5 Examples and Comparisons

Because of considering the CSP part in the data abstraction approach, we can deal with a
wider class of C'SP; processes. In this section we present more examples of the application
of our approach, and make a brief comparison with Mota’s.

Example 3.4 Consider the following specification whose Z part is always ready to erecute
all schemas, that is, all preconditions are true:

spec P

chan a,b

main = a — b — main

State = [c¢ : Z] com_a = [AState | ¢’ = —]

Init = [State’ | ¢/ = —1] com_b = [AState | ¢! = —(c * 2)]
end_spec P

Figure 3.16 illustrates the expansions of the above process according to both abstraction
approaches. The first one is produced by Mota’s approach (a), whereas our approach (b)
recognises {a, b) as the only stable trace.

CHAPTER 3. CSPz; DATA ABSTRACTION 60

com b
TR b
2o . }/\
i O >[-1,a->b->main, <>] [1, b => main, <a> j
Na /i N\ it N o A7

R com a

@ (b)

Figure 3.16: Two LT'Ss for the same process

At the end, Mota’s approach produces the abstraction on the left and ours produces the
abstraction on the right. Note that, although the abstractions are syntactically different,
they have the same behaviour when considering the process as a whole.

spec P4 spec PA
chan a,b chan a,b
main = a — b — main main = a — b — main
State = [c : {—1}] State = [c: {—1,1}]
Init = [State’ | ¢! = —1] Init = [State' | ¢’ = —1]
com_a = [AState | ¢! = —1] com_a = [AState | ¢’ = 1]
com_b = [AState | ¢' = —1] com_b = [AState | ¢! = —1]
end_spec P4 end_spec P4

Example 3.5 This example is a CSPy specification whose CSP part can perform the
traces (a, b)" and (a) (b, a)* " (c)™ infinitely (* denotes 0 or more occurrences). However,
the Z part does not allow com_a § com_b to be performed forever.
spec P
chan a,b,c
main = a — (b - maim O pX.(c » X))
State = [n : N]
Init = [State’ | n' = 0]
com_a = [AState | n' = n + 1]
com_b = [AState | n < 5An' =n+ 2]
com_c = [AState | n >5An" =n+1]
end_spec P

The expansion according to Mota’s approach (Figure 3.17.a) detects stability at the point
where the state variable value is 7. From that point, any sequence of com_a’s and com_c’s

CHAPTER 3. CSPz; DATA ABSTRACTION

maintain the system property (pre com_a N —pre com_b A pre com_c). On the other hand,
the LTS produced by our approach (Figure 3.17.b) is a simplification of that depicted in

Figure 3.17.a.

Init com b >@ com b >@ com b >@
7 7

@ com a: coma coma ..o i coma
. coma = comia ‘
Cb com b>® com b {; com b>©
com.c
~initial node

.com_a com b com a

O O OO O U

com_a

.com_C

Figure 3.17: LTS produced by the two approaches

Mota’s approach generates the abstraction function h and the abstract specification as fol-

lows:

h(a:):{x ifr <7

7 otherwise

spec P4
chan a,b,c
main = a — (b = maim O pX.(c » X))
A=1{0,1,2,3,4,5,6,7}
State = [n : A
Init = [State’ | n' = 0]
com_a = [AState | n' = h(h(n) +1)]
com_b = [AState | n <5 A n' = h(h(n) +2)]
com_c = [AState | n > 5An" = h(h(n)+1)]
end_spec P4

In our approach, we extract the abstract domain from the LTS, that is A = {0,1,3,4,6,7}.
Afterwards, the state, initialisation and operations are abstracted. Note that, only com_c

is abstracted (com_a and com_b do not belong to a cycle).

CHAPTER 3. CSPz; DATA ABSTRACTION 62

spec P4
chan a,b,c
main = a — (b = main O pX.(c » X))
A=1{0,1,3,4,6,7}
State = [n : A|
Init = [State’ | n' = 0]
com_a = [AState | n' = n + 1]
com_b = [AState | n < 5An' =n+ 2]
com_c = [AState | n > 5An" =7|
end_spec P4

Example 3.6 This example shows a specification whose CSP part terminates:
spec P
chan a,b
main = a — b — SKIP

State = [c : Z] com_a = [AState | ¢ < —1 A ¢ = —¢]
Init = [State’ | ¢' : —1] com_b = [AState | ¢ > —1 A ' = —(c x2)]
end_spec P

Recall from Definition 2.4 that the 7 part is a recursive process which can terminate.
Therefore, there is no need to abstract the specification. Figure 3.18 illustrates the dif-
ference between applying the two approaches: in Mota’s approach (see Figure 3.18.a) the
specification is recognised as infinite and the system is abstracted, whereas in our approach
the termination is correctly captured (see Figure 3.18.b).

(a) (b)

Figure 3.18: Example with termination

CHAPTER 3. CSPz; DATA ABSTRACTION 63

Example 3.7 This example is a specification whose CSP part presents a deadlock:

spec P

chan a,b
main = a — b — STOP

State = [c : Z] com_a = [AState | ¢ < =1 A ' = —¢]
Init = [State’ | ¢ : —1] com_b = [AState | ¢ > =1 A ' = —(c *2)]
end_spec P

Mota’s approach does not capture deadlocks from the CSP part (see Figure 3.19.a), whereas
our approach does so (see Figure 3.19.b).

Init T Init : \LT
\:/ Y
[] -1,a—>b—->STOP, <
_1, <> C _ a
; com_av' la
coma : a

[1, b -> STOP ,<a>)

1, <a3 com b 5 b
com b b &—2, STOP , <a,b>

V U
Stable deadlock
(@) (b)

Figure 3.19: Example with deadlock

Example 3.8 This example is a divergent process because its CSP part executes an infinite
sequence of internal actions. After performing the trace {(a,b) its Z part waits for events
which never occur (see Figure 3.20.b). Again, Mota’s approach does not capture such a
situation (see Figure 3.20.a):

spec P

chan a,b

main = a — b — div

State = [c : Z] com_a = [AState | ¢ <OA ' = —¢]

Init = [State’ | ¢' = —1] com_b = [AState | ¢ > 0N ¢’ = —(c * 2)]
end_spec P

CHAPTER 3. CSPz; DATA ABSTRACTION 64

Init = |t Init - V
: V

‘ “1,a->b-> div,
_1 <> C ;)
com_a a

com_aﬁ a d_ !
v 1,b ?dlv ,<a>

1, <@ comb: | b
com_b b d@“’:%,bﬂ

v com_a V — loop
Stable waiting

diverging
(a) (b)

Figure 3.20: Example with divergence

Example 3.9 This example presents a CSPz process whose parts have different accep-
tances at some point:

spec P
chan a,b
main = a — a — a — b — main
State = [c : Z] com_a = [AState | ¢ < 10° A ¢’ = ¢+ 1]
Init = [State' | ¢’ : 0] com_b = [AState | ¢ > 10° A ¢’ = ¢ + 2]
end_spec P
it & | T Init \/ \LT
0, <> [0,a->a->a->b->main, <>]
com_a a com_a a
v y
[1,a->a->b->main<a>]
com a a com a a
Ty y
jﬁ- 2,2-> b —> main,]
106,<a>(10 D [i %maln g
comb | | b coma : | a
v y
[10%+1 <a>(106 - '\] [3, b -> main,<a>]
; com a : b
comb : b V
y
Stable deadlock
(a) (b)

Figure 3.21: Different acceptances of both parts

CHAPTER 3. CSPz; DATA ABSTRACTION 65

Note that, after performing {a, a, a) the Z part is ready to execute com_a, while the CSP
part accepts b. In Mota’s approach 10% + 1 expansions are executed before finding out a
stable behaviour (see Figure 3.21.a), whereas in our approach 4 steps are sufficient to detect
different acceptances of both parts and, consequently, deadlock (see Figure 3.21.b).

Example 3.10 This example is a specification with a cycle containing a same event (a)
two times. Therefore, the abstraction of the corresponding schema (com_a) has a subtlety.
spec P
chan a,b,c
main = a — b — a — ¢ — main

State = [c¢ : N]

Init = [State’ | ¢ : 0] com_a = [AState | ¢/ = ¢+ 1]
com_b = [AState | ¢! = ¢ + 2] com_c = [AState | ¢! = ¢ + 3]
end_spec P

As depicted in Figure 3.22, all schemas belong to the cycle. Note that, as the event a
happens two times in the cycle, the effect of com_a depends on the previous value of the
state variable. For example, when the state variable value is 0, com_a produces ¢' = 1 and,
when its value is 3, com_a produces ¢’ = 4.

. nodes accepting a

Figure 3.22: An event occurring twice in a cycle

CHAPTER 3. CSPz; DATA ABSTRACTION 66

At the end, the abstract specification produced by our approach is:
spec PA

chan a,b,c
main =a — b — a — ¢ — main

A=1{0,1,3,4}

State = [c¢ : N]

Init = [State' | ¢' : 0]

com_a = [AState | (c=0Ac'=1)V (c=3Ac =4)
com_b = [AState | ¢’ = 3]

com_c = [AState | ¢’ = 0]

end_spec P4

It is worth mentioning that, in all examples where the abstraction process was performed,
the abstracted operations had their postconditions replaced with an assignment producing
the value observed in a node from the LTS. In fact, when considering a cycle to be ab-
stracted, it is only required that the operation closing such a cycle must be abstracted. In
the last example, the operation com_c closes the cycle (a, b, a, ¢). Therefore, the following
specification also represents the optimal abstraction for the original process:

spec P4
chan a,b,c
main =a — b — a— ¢ — main
A ={0,1,3,4}]
State = [c : A]
Init = [State’ | ¢ : 0]
com_a = [AState | ¢! = ¢+ 1]
com_b = [AState | ¢' = ¢+ 2]
com_c = [AState | ¢/ = 0]

end_spec P4

Note that, as the two last abstract specifications have the same abstract domain (that is
A ={0,1,3,4}), their execution produce (exactly) the same behaviour. We have decided
adopting the approach to abstract all operations from a cycle for questions of implemen-
tation.

3.6 Limitations

In this section we show some limitations of our data abstraction approach through ex-
amples. The first limitation concerns cycles (periodic behaviour) that can be broken by

CHAPTER 3. CSPz; DATA ABSTRACTION 67

performing an event outside it (Example 3.11). The second limitation reveals a situation
where our algorithm does not produce any abstraction because the system never becomes
stable (Example 3.12).

Example 3.11 This example has two cycles and presents a subtle characteristic which s
not dealt by our approach (nor Mota’s one). However, one can overcome this problem by
a more detailed analysis of the LTS:

spec P

chan a,b,c

main = a — (b = main O pX.(c - X))

State = [n : N]

Init = [State’ | n' = 0]

com_a = [AState | n' = n + 1]

com_b = [AState | n' = n + 2]

com_c = [AState | n >5An" =n+1]
end_spec P

Figure 3.23.a shows the LTS. Note that, although {(a, b) is an infinite cycle, the algorithm
cannot simply stop the expansions because there is a possibility of breaking such a cycle (by
performing the event c¢). Therefore, the expansions continue up to the point where com_c
is enabled. Afterwards, the expansions corresponding to {a,b) do not continue anymore.

Stabl e

®) m.; b & eﬁom'i@ """ >KJ)

nodes accepting a

_ node accepting c:

Figure 3.23: LTS with two cycles

At the point where (a,b) is broken (the state variable value is 7), the next execution of
com_b must lead the system to a state where com_a is enabled (0, 3 or 6). One must
choose 6 because, after executing com_a at that state, com_b and com_c become enabled
(this is a behaviour observed in the LTS of the original process). Therefore, the effect of

CHAPTER 3. CSPz; DATA ABSTRACTION 68

com_b depends on the current value of the state variable, that is, the deterministic choice
(n#7An" =n+1)V(n=7An"=6) represents its post-condition. At the end, the
abstract specification is:

spec P4

chan a,b,c
main = a — (b = mainO pX.(c — X))

A=1{0,1,3,4,6,7,8}
State = [n : A|
Init = [State’ | n' = 0]
com_a = [AState | n' = n + 1]
com_b = [AState | (n ZT7TAn =n+1)V(n=T7TAn"=06)]
com_c = [AState | n > 5 A n' = §|
end_spec P4

Example 3.12 This example shows a situation where neither Mota’s algorithm nor ours
stop.

spec P

chan a,b,c

main = a — main O b — main O ¢ — main

State = [z : N|

Init = [State’ | 2’ : 1]

com_a = [AState |z < 5Nz’ =1z +1]

com_b = [AState | x > 5Nz’ =z — 3]

com_c = [AState | (t <4V z>6) Az’ =2xz]
end_spec P

Figure 8.24 illustrates the LTS of the above process (representing only the state variable
and event occurrences). Note that, before reaching © = 6, various stability predicates
are unsuccessfully checked. From that point, we can find optimal abstraction via com_c,
because the property a ¢ initials(Pcsp,) N b € initials(Pegp,) N ¢ € initials(Pgsp,) is
infinitely repeated. However, from the same point via com_b the property is not maintained.
The ezecution of com_b—in finitely many steps—changes such a property. Therefore, the
process never becomes stable and the algorithm is non-terminating.

For this example, we can find a safe abstraction—in a manual way—>by inserting non-
determinism into com_b. From the point where x = 6, its execution produces r = 3, which
validates the property a € initials(Pgsp,) A b & initials(Pcsp,) N ¢ € initials(Pesp,),
or t = 6, which validates the property a ¢ initials(Pgsp,) A b € initials(Pgsp,) A ¢ €
initials(Pcsp,) again. This idea captures—abstractly—the behaviour of com_b, however

CHAPTER 3. CSPz; DATA ABSTRACTION 69

Probable

stablestate
i Finite Part
Infinite Part
(unstable)

Figure 3.24: Example with divergence

the operation becomes non-deterministic. Operation com_a does not need to be abstracted
(it does not belong to a cycle), whereas com_c produces a stable value (x' = 6) only for all
value greater or equal to 6.

spec P4

chan a,b,c
main = a — main O b — main O ¢ — main

State = [z : N|

Init = [State' | ' : 1]

com_a = [AState | < 5Nz’ =1z +1]

com_b = [AState | > 5A (z' =2 —3V 1z =06)]

com_c = [AState | (t <4Nz'=2%z)V (z>6Az" =6)]
end_spec P4

3.7 Conclusions

State explosion is a problem which emerges naturally in model checking of CSP; processes.
The combination of abstraction and model checking has been used to overcome such a
problem. Abstraction is used to transform an infinite process into a finite behavioural
equivalent one. The work of Mota |7, 9] was an integration of the works of Lazi¢ [76] and

CHAPTER 3. CSPz; DATA ABSTRACTION 70

Wehrheim [42] towards mechanisation of data abstraction by considering only the data
part of a partially data independent CSP, specification (see Definition 3.3).

Synchronisation aspects between both parts of a CSP, specification have been studied
in this work. In this sense, we believe to have provided the following contributions:

e Application of the data abstraction technique to a more general class of problems.
Our approach deals with specifications whose CSP part has a more complex structure
than that adopted in [7, 9]. The way the expansions are performed (considering only
the Z part) is as if the CSP part accepted all events. Indeed, the only assumption
concerns trivially data independence properties and unnecessary expansions are re-
fused by the CSP part after combining both parts in parallel. As Mota’s approach
does not considers the CSP part, it is not able to capture situations like successful
termination, deadlocks and divergences. In those situations, it does not make sense
finding abstractions (see Examples 3.6, 3.7, 3.8 and 3.9);

e Reduction of the expansions caused by Mota’s approach. In our approach, we do
not have to expand all possibilities, just those which are accepted by the CSP part.
This means that our algorithm converges more quickly and more often than that of
Mota. Of course, our approach produces the same expansions when the CSP part is
an external choice of all possible events. We have provided Theorem 3.1 to state this
advantage by comparing the traces of the whole process with those produced by its
7 part;

e Simplification of the stability predicate of the Z part. It considers specific com-
positions (comp) which are possible to happen (that is, when pre comp is true).
Furthermore, we changed the Z stability theorem because the one adopted by Mota
is not strong enough to capture the problem which arises when pre comp is false (see
Table 3.2);

e Construction of the optimal abstraction directly from the LTS. The calculation of
the abstraction is based on values observed on the LTS. This means that, differently
from Mota’s algorithm, we give the abstract specification as a whole without building
neither the abstraction function nor any equivalence class. As explained at the end
of Section 3.4.2, the abstraction function h is implicit. Comparing the abstract
specification to the original one, we can infer it. We have decided to adopt this
approach because the construction of A depends on the equivalence classes found out
along the process, which are built by considering information about the Z part. In
our case, we also need information about the CSP part. We have also discovered
when all preconditions are always true, the LTS of the whole process overlaps that
of its CSP part. This is an evidence of the role of the CSP part on a CSP; process;

e We also extended some definitions in order to supply the formalisation of our ap-
proach. Corollaries 3.1 and 3.2 are extensions of Lemmas 3.1 and 3.2 from Mota [7],

CHAPTER 3. CSPz; DATA ABSTRACTION 71

respectively. We also presented a corollary establishing the traces of a CSP; pro-
cess (Corollary 3.3), and a theorem (Theorem 3.1) concerning the efficiency of our
approach over Mota’s one.

In terms of mechanisation, our approach contributes with an idea which can be imple-
mented. The works of Cleaveland and Riely [73], Sifakis et al [28] and Wehrheim [42]
are also devoted to treat the state explosion problem. Nevertheless, they do not give any
mechanised way of doing it. In the next chapter we present a tool which mechanises our
algorithm. In fact, there is no need of any user assistance with our data abstraction ap-
proach, except when proving the Z stability into a theorem prover. Moreover, the strategy
for building abstractions can be extended to deal with problems of breaking infinite cycles
during the expansions (as explained in Example 3.11).

We have also considered only simple examples, but we plan to deal with mode realistic
case studies. In the literature, we could not find works which deal with mechanising data
abstraction with real world problems. We also believe that this work can be extended to
deal with communication events as well, that is, events which involve a transmission of data
through channels. This extension will make the technique more general and applicable to
a more satisfactory class of problems.

Chapter 4

Tool Support

In the previous chapter we extended an approach which implements a technique to over-
come the state explosion problem. We proposed an algorithm which applies data abstrac-
tion to a CSPjz process, considering its CSP and Z parts (see Figure 3.12). The idea
behind avoiding infinite expansions focuses on finding out a periodic behaviour of the pro-
cess. When a specific trace is infinitely performed, the corresponding sequence of properties
is also repeated. At the moment of a property repetition, the algorithm stops the expan-
sions and performs stability tests for both CSP and Z parts. If they are really periodic
and stable (considering a specific trace) the algorithm abstracts that branch by building
a cycle in the LTS. At the end, the abstract version of the specification is extracted from
such a LTS.

The implementation of the algorithm is relatively simple. In this chapter, we present a
tool which implements our approach to CSPj; data abstraction. The tool is an extension
of a previous work |1, 2|, which simply translates a CSPy specification into an equivalent
CSPy process. We have decided using Java [27] because of our experience, the support
for writing scanners and parsers, and also because we are interested in extending an ex-
isting implementation. Furthermore, because we have used design patterns [33] and the
object-oriented paradigm, modularity, reusability, and extension facilities! were substan-
tially improved.

This chapter is organised as follows. Section 4.1 presents the tool and its main modules:
Parser, Translator, Data Independence and Data Abstraction. Section 4.2 concerns infor-
mation to the user. It shows the screens, dialogs, tool bar, menus, and explains how each
of them works. Section 4.3 gives an overview of design patterns and presents the patterns
adopted in our implementation. In Section 4.4, we show details about configuring of the
tool. Finally, in Section 4.5 we present our conclusions about this chapter and some topics
for future work.

1Please, refer to [33] for details about the improvements obtained when adopting design patterns.

72

CHAPTER 4. TOOL SUPPORT 73

4.1 The Tool

In this section we present the tool which applies the data abstraction technique presented
in the previous chapter. The tool is composed by four main modules: CSP; Parser, Trans-
lator, Data Independence and Data Abstraction (see Figure 4.1). It accepts a specification
of a CSPy process (possibly infinite) and produces a finite one by applying the data ab-
straction technique. Furthermore, both the original specification and its abstract version
can be translated into CSPy [36].

CsP, Abstract CSP,
Syntactical Proc_:e&
Data Data Syntactical Tree
Input CSP Tree i Output
—= Z Independence| Abstraction Translator ———=)
(.cspzfile) Parser (.cspfile)
Module Module

Figure 4.1: Modules of the tool

4.1.1 The CSP; Parser

As CSPy; uses CSP and Z structures, its parser must accept terms of both notations.
We have implemented a parser for CSP; by modularising it as two distinct parsers: one
for each language. Figure 4.2 illustrates the structure of the parser. It accepts a CSPy
specification written into a text file (with extension .cspz) and then splits the specification
into two distinct and smaller specifications. Both CSP and Z parts are given to their
corresponding parsers. Afterwards, the parsers make a syntactical analysis and give two
syntactical trees, which are used to compose the whole CSP; syntactical tree. The inner
parsers were implemented in Java [27] by using auxiliary libraries for scanner and parser
generation: JLex [32] and JavaCUP [80], respectively. The Z parser is an implementation
of a subset of the standard established in [43], and the CSP parser is an implementation
of the grammar used by FDR. The original Z grammar was written for Lex and Yacc [50]
and the CSP one was written for Flex [84] and Bison [19]. Like JLex and JavaCUP, those
tools are useful to build scanners and parsers from a grammar description. Naturally, the
files describing the grammars needed a few modifications to be processed by JLex and
JavaCUP.

In this work we also made some changes on the parsers. Based on the syntax accepted by
the tool [4], we removed some terms of the original Z grammar, like lambda and conditional
expressions. From the CSP parser, we eliminated indexed constructions (e.g. [J; P;) from
the CSP and adjusted channel declarations to the CSP; syntax, where local channels are
also permitted and the channel types have a different form from that in CSP. Those changes
were necessary because there were no structures representing all terms of both languages.
Furthermore, we also improved the analysis of CSP files: the specification is first loaded

CHAPTER 4. TOOL SUPPORT 74

to the memory and then the parsing is performed. The previous version analyses the
specification directly from the file system. Details about the syntax accepted by the tool
can be found in [4].

CsP
Syntactical

CSP parser Tree
\ Csy
%%‘ Syntactical
/ Tree
Z parser z

Syntactical
Tree

Input
(.cspz file)

Figure 4.2: Structure of the C'SP; parser

4.1.2 The Translator Module

The tool presented in [1, 2] implements the strategy for converting a CSP; specification
into an equivalent C'SPy process [8]. The syntactical tree produced by the parser is actually
an object representing a CSPy specification (see Figure 4.3).

' Specification \
e
synchronisationinterface /. spPart zPart
P y1 -
| Interface CSP Part ZPart

Figure 4.3: The Specification object

After receiving such a structure, the Translator module (see Figure 4.4) converts this struc-
ture into an equivalent CSP), process in a semi-automatic manner. Such a conversion raises
questions of decidability. For example, not all predicates can be transformed into CSPy,
functions; the Z structure Bag does not have any corresponding CSP,; one. Therefore,
some steps of refinement might be required before converting such a structure. These
questions are dealt with, for example, by Borba and Meira [65].

The generated .csp file contains the description of a CSP, process, which can be
analysed by the FDR [36] tool. Furthermore, we have also implemented some functions

CHAPTER 4. TOOL SUPPORT 75

”””” Mapping). CSR, Ussful
Handler : Functions (.csp file)
A

|
!
|
!
|
|
Syntactical ——= Translator |~ csp, Process
!
|
!
|
!
|

: . uses
CSR ‘ :

|
Tree (.cspfile)

,,,,,,,,,,,,,

Figure 4.4: Translator module

representing the most used Z operators. For example, if the original specification contains
the expression {s} C §, it is translated into subset({s},S). The definition of such a
function is put into an auxiliary file produced by the MappingHandler component. In this
case, it is defined as follows:

subset(S1,S82) =
if((card(diff(S2,S1)) > 0) and (card(diff(S1,S2)) == 0)) then
true
else
false

The tool also provides support for editing such a definition.

4.1.3 The Data Independence Module

Recall from the previous chapter that the data abstraction technique proposed in this work
can only be applied to partially data independent CSPj specifications (Definition 3.3),
that is, specifications whose CSP part is trivially data independent (Definition 3.2). The
abstract version of the original specification (possibly infinite) has the same properties and
can be verified by using the FDR [36] tool.

In the implementation of Mota |7, 9] the CSP part is assumed to be trivially data
independent. Therefore, no check is performed before applying data abstraction. The
Data Independence module eliminates this assumption by verifying the accordance of the
CSP part with Definition 3.2. Therefore, if such constraint is satisfied, this module assures
that the input corresponds to a partially data independent CSPj; process. Otherwise, it
produces an error and the abstraction process is not performed (see Figure 4.5).

4.1.4 The Data Abstraction Module

After assuring that the original CSPy specification is partially data independent, the data
abstraction technique can be applied. The Data Abstraction module—the most complex
part of the tool—applies the algorithm proposed in this work.

CHAPTER 4. TOOL SUPPORT 76

CSP, Data CSP,
Syntacticd ——=| Independence |——= Syntactica
Tree Module Tree
(guaranteed to be
\L partially data
Error independent)

Figure 4.5: Data Independence module

Recall from Section 3.4.2 that our approach also considers the CSP part of a C'SPz speci-
fication. Therefore, in our algorithm, both parts (CSP and Z) must execute together, that
is, they must synchronise on all events from the interface. To accomplish this task, we
had to implement two animators: one for Z and another for CSP. Before giving a detailed
explanation about them, we present the general structure of the Data Abstraction module
(see Figure 4.6).

The module contains a CSP; animator, which is composed by three components: Spec-
ification Abstractor, Stability Plugin Factory, and Expansion Engine. Based on a syntacti-
cal tree of a partially independent CSPj process, this module creates an execution tree as
an input to a CSPz; animator and then executes the algorithm presented by Figure 3.12.

CSP, Animator

!

!

!

|

|

! - Stability Plugin
| [Spe(:lflcatlon Abstractor]
|

|

|

|

|

!

Expansion Engine

!

|

|

|

!

|

|

|

!

|

|

| |

Partially Data CSP, - — Pl
Independent —+———= Execution ——=r cse Stéb'“ty z Stabﬂny : |
CSP, tree Tree : Plugin Plugin]
i z o

. . I

|

|

!

|

|

|

!

|

CsP)
Animator Animator

’CSP Environment ‘ ’Z Environment ‘

Figure 4.6: Data Abstraction module

After receiving an execution tree, the C'SP; Animator component instantiates two internal
animators, CSP and Z, and configures their environments (with definitions of processes and
schemas, respectively) in order to start the execution of both parts. Afterwards, the initial

CHAPTER 4. TOOL SUPPORT 7

node is built and the expansion of the whole process takes place. The CSP; Animator acts
as an execution controller, managing the expansions and analysing the stability of the whole
process. When a property repetition is found, it tries to determine the stability property
of both parts. This is achieved by obtaining two stability plugins from the Stability Plugin
Factory component, and requesting to them such an analysis separately. If the repetition
really occurs, then the animator does not generate a new node; otherwise, the expansion
continues. After all nodes have been processed, the Specification Abstractor component
analyses the resulting LTS, calculates the abstract domain, and builds the abstract versions
of each schema. Afterwards, a new specification containing these abstract structures and
the original CSP part is produced.

In the following, we give a brief explanation about the structure of the CSP; Animator
component.

4.1.4.1 The Expansion Engine

This component is responsible to give support for executing the expansions. Both CSP
and Z parts must be executed in a step-by-step manner. Therefore, each of its internal
components has a specific purpose.

The Z Animator

This component gives support for executing Z schemas based on a state. First of all, its
environment is configured with the definitions of the state, initialisation and operations.
After that, it becomes ready to execute schemas based on a current state. Furthermore,
this component is able to verify if the precondition of a specific schema is satisfied in a
given state.

The main functions of this component are listed below:

e configure - receives all definitions of schemas and then configures the execution
environment. This consists of putting all definitions into the environment.

e initialise - initialises the animator by performing the schema Init.

e canExecute - given a state and a schema name, determines whether its precondition
is valid.

e execute - executes a given schema in a given state. Note that, according to the
blocking view of CSPy (Section 2.5.1), if the precondition is not valid, the execution
does not produce changes in the state.

It is worth mentioning that the tool is able to animate a subset of the Z language. Con-
sidering a state with one component defined as an integer, the following expressions can
be evaluated by the animator:

e Relational expressions — expressions involving the operators <, >, <, >, =.

CHAPTER 4. TOOL SUPPORT 78

e Arithmetic expressions — expressions with the simple arithmetic operators +, —, , /, %
(modulus).

e Logic expressions — expressions involving the operators A, V, —.

e Assignments — assignments applied to the state variable.

The CSP Animator

Analogously to the Z animator, this component gives support for executing CSP processes.
First of all, the environment is configured by putting all process definitions into it. The
component also contains the synchronisation interface and is able to make a process perform
a specific event. Moreover, this component also gives the initial acceptances of a process.
Below, we present its main functions:

e configure - receives all definitions of processes and put them into the environment.
The processes are identified by a name.

e initials - returns the initial acceptances (initials) of a process.
e canPerform - determines if a given process can perform a given event.

e perform - returns the next behaviour of a given process by performing a given event.
Note that the next behaviour of a process is also a process.

The CSP animator also presents some limitations. In this version, it is able to animate
some constructs like prefixing, external choices, STOP and SKIP. Furthermore, external
choices cannot produce nondeterministic behaviour, that is, the performance of an event
in an LTS must produce only one following behaviour.

The CSP Stability Plugin

This component is responsible for determining if there is a cycle in the CSP part which
repeats a specific property. For example, if before and after performing a trace s, a CSPy
process has the same property, then this repetition can be a stable behaviour. Therefore,
one has to check if there is a cycle on the CSP part whose transitions correspond to the trace
s. To accomplish this task, we implemented a cycle analyser which performs such a check-
ing for deterministic CSP processes. This component does not analyse non-deterministic
processes because they require a more elaborate CSP execution engine. Indeed, in those
processes, a single transition can produce more than one following behaviour, which must
be analysed.

CHAPTER 4. TOOL SUPPORT 79

The Z Stability Plugin

As we have already mentioned in the previous chapter, the stability of the Z part is de-
termined by theorem proving, such that a property representing the stable behaviour is
built and then checked into an theorem prover. Recall from Section 3.4.2 that the stability
property is described as the following logical formula:

V State, State' | (pre comp = comp) e pre comp’,

where comp is the composition of schemas whose execution causes a CSPz property repe-
tition.

In the current implementation this component simply builds the above theorem and
requests to the user for checking it into the theorem prover Z-Eves [60].

4.1.4.2 Stability Plugin Factory

The role of this component is supplying the animator with specific implementations of com-
ponents to analyse the stability of both parts (CSP and Z). Its implementation follows the
pattern Abstract Factory (see Section 4.3) in order to provide flexibility for implementing
different stability plugins. That is, our tool can interact with different theorem provers and
model checkers. The default implementation of the Stability Plugin Factory component
creates two default plugins that work as explained below:

e Default CSP Stability Plugin - is a component which receives a trace and then
checks if the CSP part has a cycle performing it. The provided implementation only
works with specifications whose CSP part is deterministic, in the sense that it cannot
behave differently when performing the same event. For example, a processes like
(e > POa — @) cannot be analysed by this component. Furthermore, it is not
able to deal with traces performed by combinations of cycles. For example, consider
a CSPy process whose LTS for its CSP part is illustrated by Figure 4.7. Therefore,
the performance of (a, b, ¢) is a stable behaviour of the CSP part.

£
F

[

Figure 4.7: A CSP LTS with two cycles

e Default Z Stability Plugin - is a component which receives a trace and then
checks if the Z part executes the corresponding schema composition forever. The
default implementation of this plugin builds a temporary file containing the necessary
schemas and the stability theorem (V State, State’ | (pre comp = comp) e pre comp').
After that, the user has to check the validity of such a theorem into Z-Eves [60], and
give the result (true or false) to the plugin.

CHAPTER 4. TOOL SUPPORT 80

Once we use the Abstract Factory pattern, the user can provide its implementation by
supplying a new factory which instantiates two new stability plugins. For example, the
stability of the Z part can be requested to another theorem prover like ACL2 [59] or
PVS [63], and the stability of the CSP part can be analysed by interacting with the
FDR [36] tool. Refer to [4] for details about implementing other stability factories.

4.1.4.3 Specification Abstractor

After the expansions have been done, the tool has to determine the abstract domain and
build the abstract version for all operations.

Recall from Example 3.5 that the abstract domain is determined by taking the value
of the variable of the state from all nodes of the LTS, and the abstract version of an
operation—as explained in Section 3.4.2—is obtained by observing the following items:

e If the operation belongs to a cycle, then its post-condition must produce the value
observed on the next node.

e If the operation does not belong to a cycle, there is no need to abstract it, that is,
its abstract version is identical to the original one.

The Specification Abstractor component achieves this task. It analyses the LTS generated
by the expansion engine, and then builds the abstract domain and the abstract versions
for all operations.

4.2 Screens, Dialogs and Components

In this section, we present all screens and dialogs which the user can interact with. More-
over, we give an explanation about their functionalities.

Main Screen

It represents the first view of the tool. Three components permit to interact with the tool:
a menu bar, a tool bar and an editor panel (see Figure 4.8). We explain each of them
separately.

Menu Bar

The Menu Bar presents options for manipulating files, configuring the tool, and accessing
help.
Menu File contains the following options:

e New — creates a new CSPj specification with the basic structure accepted by the
tool. The specification contains an empty CSP part and the schemas State and Init.

CHAPTER 4. TOOL SUPPORT 81

=] =101 x|
Menubar ————— File Options Heip

P s - - - r
Tool bar [Mew 7 open [™] Save =] Convert 0] Abstract)] Exit
:__.-----—---—-_ o T L — —
spec Clock S S
chan tick, tack
main = cick -> tack -> main
Z-FPART
\begin{=schema) {State)
Editor panel—— 5k \aAT

end{ schema}

‘\begin{=schema)} {Init}
State'

‘“where
n'=0

‘end{ schema}

hecin schemal {coml _ tickl

Figure 4.8: Main screen

= oven [

[0

(a) Menu File (b) Menu Options (c) Menu Help

Figure 4.9: Menu Bar

Open — loads a specification from the file system.

e Save — saves the current specification into a file.

Save as — saves the specification into a file chosen by the user.

Ezxit — closes the application.
Menu Options presents the following functionalities:

e Background — permits the user to change the background colour of the editor panel.
e Text — permits the user to change the text colour of the editor panel.

e Tab Placement — permits the user to change the placement of the tabs of the editor
panel. They can be: top, right, left or bottom.

CHAPTER 4. TOOL SUPPORT 82

e Look and Feel — permits the user to change the appearance of the graphical interface
of the tool by changing the look and feel supported by the platform. The tool provides
three defaults look and feel: metal, motif and windows.

e Functions Templates — exhibits a dialog which permits the user to write (or modify)
simple functions that are used by the final CSP;,. Figure 4.10 shows such a dialog.
To modify the definition of a function, the user must choose one item from the list
on left and press the button Edit. The panel on right and the text fields on the top
become editable. After the change is made, the user must press the button Accept.

i
Function: first
Short description: First of a Ordered Pair

CSP name: first

Proper subset | firsr (X1, X2)) = KL

[First of a Ordered Pair
Second of 3 Ordered Pair
Dormain of a relation
Range of a relation
Relational Camposition
Backward Relational Compo siti
Domain restriction ‘
Range restriction

Figure 4.10: Dialog for editing functions

Menu Help presents permits the user access the system help:

e About — shows a dialog containing information about the tool.

Tool Bar

It is a component which permits the user to interact with the tool without accessing menus.
Furthermore, some functionalities like abstracting a CSP; specification or generating its
CSPy code are not accessible from menus (see Figure 4.11).

The functionalities of the buttons are listed below:

e New — creates a new basic specification.

CHAPTER 4. TOOL SUPPORT

D New| =] Open Save Convert Ahstract

| Exit

Figure 4.11: Tool Bar

e Open — opens a specification from the system file.

e Save — saves the current specification.

33

Convert - converts the current CSP, specification (original or abstract) into CSPy.

Note that, if one of the CSP; tabs is selected, this button is enabled; otherwise it is

disabled.

Abstract — this option is enabled only for the original CSP; specification. It applies

the data abstraction technique. First of all, the tool performs a syntactical analysis
and then checks whether the specification is partially data independent or not. After-
wards, it abstracts the process by applying the technique explained in the previous
chapter. Recall from Section 4.1.4 that, when determining the stability property,
the tool uses two auxiliary plugins. Based on the trace causing the property repeti-
tion, the default plugin for the CSP part determines if there is a cycle performing it,
whereas the default plugin for the Z part builds a theorem and the user has to analyse
it into a theorem prover. Figure 4.12 shows the dialog box presented to the user, who
has to copy and paste the content into a file, and then analyses the theorem named

ZStability into Z-Eves [60]. Depending on the answer from the theorem prover, the
user press Yes or No, informing whether the Z part is stable or not, respectively.

EZ stability check

[remeee

\end{schema}

| ‘Dbelta State
\where

| n'=n+1
|\end{=schema}

\begin{schema) {com',_tack}

[\begin{schema) {com'_tick}

| wbelta State
l\where
| n'=n+1

\end{schema}

\begin{zed)

preComp ‘defs \pre (com_tick \semi com_tack) ‘also

comp Ydefs com_tick ‘semi com)_tack

vend{zed}

end{theorem}

\begin{theoren} {Z8tability) i
| VEorall State;Stace' | (preComp ‘implies comp) @ preComp'ﬁ

N

[«

Figure 4.12: Dialog for the stability of the Z part

CHAPTER 4. TOOL SUPPORT 84

Ezxit — closes the application.

Editor Panel

This component provides support for editing all files involved in the analysis of an in-
finite C'SP; specification: the original specification, the abstract specification and their
corresponding generated CSPy; codes (see Figure 4.13). It also provides popup menus for
saving, checking the syntax, converting to CSP),, abstracting, and editing specifications.

|
\zpec Clock

chan tick, tack

BALY ettty ain

|Z-PART Syntax check
Conmvert to CSPM

Yhegi Abstract
n:E

vend{ Insert Schema

\begin{schema)} {Init}
State’

where|
n'=0

\end!schemal

| iheminischemallcoml tickl —

Figure 4.13: Editor panel

The options of Popup Menu are:

Save — saves the current specification. This option is enabled for all tabs.

Syntaz check — parses a CSPz specification (original or abstract). This option is
enabled only for C'SP; specification. If some error occurs during this task, the editor
panel shows a message panel on the bottom (see Figure 4.14), with an information
about the error, and selects the corresponding line in the specification (if such an
error concerns syntax).

Convert to CSPy — translates a CSPjz specification into CSPj,. If the original
specification is selected, this action sets the content of the Original CSPy, tab with
the resulting CSP) code. The conversion of the abstract specification sets the content
of the Abstract CSPy; tab with its corresponding CSPy, code. This option is enabled
only for CSPy specification tabs.

Abstract — applies data abstraction technique similarly to the action of pressing the
button Abstract on Tool Bar.

Insert Schema — inserts a schema in the original specification from the point where
the cursor is on. The definition of a schema, in BTEX [58], is inserted.

CHAPTER 4. TOOL SUPPORT 85

spec Clock
chan tick, tack
main = tick -> tack -> main

Z-PART

f o]
i

“begin{=schema)3tate}
n @ jnat
Yvend{ schema }

‘“begin{schema} {Init}
State’
Ywhere

a—

syntax error near tokem ytate in line 7

Figure 4.14: Error messages

4.3 Design Patterns

In order to provide a more reusable and flexible structure for the tool, we have adopted
some design patterns [33]. A design pattern names, abstracts, and identifies the key aspects
of a common design structure that make it useful for creating a reusable object-oriented
design. In this section, we give an overview of the classification of design patterns and
present, those ones adopted in our implementation.

According to [33], design patterns for object-oriented structures are classified as follows:

e Creational patterns — abstract details about creation, composition and representation
of objects. These patterns give flexibility in what gets created, who creates it, how
it gets created, and when.

e Structural patterns — concerned with how classes and objects are composed to form
larger structures.

e Behavioural patterns — concerned with algorithms and the assignment of responsibil-
ity between objects. They also describe patterns of communication between them.
Moreover, they simplify the complex control flow, which is difficult to follow at run-
time.

In the following we present the patterns used in our tool. For a detailed view of them and
other patterns, refer to [33].

CHAPTER 4. TOOL SUPPORT 86

Abstract Factory

It is a Creational pattern which provides an interface for creating families of related or
dependent objects without specifying their concrete classes. In other words, it makes
implementations flexible by fixing its functionalities which will be accessed by clients.
Moreover, it is applicable in the following cases:

e A system should be independent of how its products are created, composed, and
represented.

e A system should be configured with one of multiple families of products.

e Providing a class library of products by revealing just their interfaces, not their

implementations.
Abstract Factory
createObject()
b
Factory Implementation 1 Factory Implementation 2 Factory Implementation N
createObject() createObject() createObject()

Figure 4.15: Abstract Factory pattern

Figure 4.15 illustrates this pattern. The Abstract Factory is a class containing the signature
of the method to be implemented by any factory. The actual implementations must provide
their specific manner of creating objects.

This pattern was used in our implementation to provide flexibility for interacting with
different theorem provers. Recall from Section 4.1.4 that, when determining the stability
property, the CSP; Animator component requests the Stability Plugin Factory to instan-
tiate two plugins. As this component follows the Abstract Factory pattern, the user is
free to implement different kinds of stability plugin factories. It is required only that such
an implementation have to implement two methods: createCSPStabilityPlugin() and
createZStabilityPlugin(). Furthermore, Section 4.4 explains how to choose a specific
factory.

Mediator

Although partitioning a system into many objects generally enhances reusability, the large
number of interconnections tends to reduce it again by causing functional dependence (one
object requires the support of others). Worrying about concentrating these interactions

CHAPTER 4. TOOL SUPPORT 87

into one component, the pattern Mediator defines an object which encapsulates how a
set of objects interact. Therefore, it promotes a loose coupling by keeping objects from
referring to each other explicitly, and permits to vary their interaction independently. It
is applicable in the following cases:

e A set of objects communicating in well defined but complex manners. The interde-
pendencies are unstructured and difficult to understand.

e Reusing an object is difficult because it refers to and communicates with many other
objects.

The Mediator pattern establishes a central component which achieves all communications
when necessary (see Figure 4.16). Instead of making each component directly refer to the
others, all interconnections are maintained into Mediator, which is responsible for notifying
all components involved in the communication.

Component 1

Mediator

\ / Component 3
Component 2 / \ Component 4

Figure 4.16: Mediator pattern

In our tool, this pattern was employed in a component called GUI Manager in order to
avoid mutual references into some graphical components (Menu Bar, Tool Bar, Editor
Panel and Popup Menu). For example, when editing the abstract CSPj specification,
button Abstract from the Tool Bar and option Abstract from the Popup Menu must be
disabled. GUI Manager holds all communications between components and changes their
states when necessary (see Figure 4.17).

FormwEditorPanel GUIManager FomnwToolBar
(from panel) S S—— {from gui) [<—= (from toolbar)

$

MenuBar
{from menu)

Figure 4.17: The use of the Mediator pattern

CHAPTER 4. TOOL SUPPORT 88

Observer

This pattern describes how to establish relationships such that objects (observers) have to
be notified when some event or change happens in a source component (subject). Unlike
the Mediator pattern, Observer defines a one-to-many dependency between objects so that
when one object changes the state, all its dependents are notified and updated automati-
cally. Figure 4.18 illustrates a simple example of a HTML editor, where two viewers of the
same structure are provided: a HTML viewer and a source viewer. If the content changes
by editing the source, the other viewer should be notified (and vice-versa).

observers

HTML Viewer Text Viewer

——= requests, modifications
------=> change notification

subject

Figure 4.18: Observer pattern
The Observer pattern is applicable in the following situations:

e When a change to one component requires changing others, and we do not know how
many objects need to be changed.

e When an object should be able to notify other objects without making assumptions
about who these objects are.

The accordance of the Event Model of Java with this pattern made its use rather straight-
forward. It is employed between the GUI Manager, the main graphical components (Menu
Bar, Tool Bar, Editor Panel and Popup Menu), and the File Manager component. We have
created events for establishing relationships between these components. When an event
happens in Editor Panel (for example, the tab “Original CSP;” is chosen), Tool Bar and
Popup Menu must activate the option for abstracting and converting to CSPj;. As the
communications are delegated to GUI Manager, it must be an observer of specific events
happening in the Editor Panel. Figure 4.19 illustrates the use of this pattern. GUI Man-
ager is a listener of events happening in several components. When such events happen, it
is automatically notified.

Facade

This pattern is intended to provide a unified (higher level) interface to a set of interfaces
in a subsystem, that is, instead of accessing a system through its several components, the
facilities are grouped in one component which represents the whole system.

A good example of a system which makes use of this pattern is a compiler. It contains
several components that provide the complex task of generating a program from a source

CHAPTER 4. TOOL SUPPORT 89

FileManager ‘

[fro_m util}
¥
notify() addListenner()
notify() | y | . notify()
FormmwEditorPanel |— =) GUIManager |=— FormwToolBar
ffrom panel) e | (from gui) | - (from toolbar)

| addListenner()- | addListenner()
addL istenner() notify()
LS
MenuBar
{fram menu)

Figure 4.19: The use of the Observer pattern

code. Figure 4.20 illustrates the structure of a simple compiler. The Scanner and the Parser
components are responsible for achieving the lexical and syntactical analysis, respectively.
The Type Checker is useful to analyse semantical properties concerning type, and the Code
Generator is used to produce a description (possibly a program) into a target language.

Compiler
compile()
Scanner Parser Type Checker Code Generator

Figure 4.20: Facade pattern

The method compile() from the Compiler component executes the complex analysis which
encompasses scanning, parsing, type checking and code generation. These facilities are not
accessed separately. Instead, a component provides a method which simplifies the use of
all components involved along the compilation.

The use of this pattern in our tool is straightforward. The facilities of animating
and abstracting a CSP; specification are performed by a unique component, the CSP,
Animator (see Figure 4.21).

Singleton

Some applications require the existence of exactly one instance of a class, providing a
global access point to it. The Singleton pattern defines a manner of achieving this idea.

CHAPTER 4. TOOL SUPPORT 90

CSPZ Animator

animate()
applyDataA bstraction()

CSP, Parser Specification Stability Plugin | | z Animator | | CSP Animator
Abstractor Factory

Figure 4.21: The use of the Facade pattern

Although it establishes a unique object to deal with many requests, it is suitable for
implementing activities as concurrency control and consistency maintenance. Figure 4.22
shows an example. The component implementing the pattern must provide a manner to
recover the unique instance of it (getInstance()). Clients that wish to interact with such
an instance, must first request it from the singleton component.

Client \ Singleton / Client
Client |— | getinstance) F—_|

Client

Figure 4.22: Singleton pattern

The use of this pattern is justified by defining a unique instance of the GUI Manager and
File Manager components. Furthermore, the CSP; Animator also follows this pattern
because the execution environment must be unique (see Figure 4.23). Instead of providing
environments for different specifications loaded by the translator, the animator cleans its
environment and configures it again. This makes the implementation simpler because it
avoids the management of different animators and environments.

GUIManager || FileManager CSF'E&mmah:r
if ram gui) | (from util) | ifrom cepz)
get I nstance() get | nst ance() get | nst ance()

Figure 4.23: The use of Singleton pattern

CHAPTER 4. TOOL SUPPORT

91

4.4 Configuration

The tool also permits the user configuring some parameters. This is achieved keeping such
parameters into a property file. Table 4.1 shows the properties used by the tool and gives
a brief explanation about them.

The tool was designed using Rational Rose [71], and implemented with JBuilder [18].
Table 4.2 shows the number of classes for the main modules of the tool. Furthermore, the
whole source code contains 34,982 lines. Excluding the parsers and scanners, it remains

20,582 lines.

| Property Name

Description

mappingFileName

Indicates the name of the file containing the functions used
by the generated C'SP,;. Those functions are recorded using
Java Serialisation [27]. The default value of this property is
mapping.serial. We do not advise changing this property.

cspmFunctionsFileName

Indicates the name of the CSP) functions library file. Its
default value is functions.csp.

stabilityPluginFactory

The name of the stability plugin factory. The user can change
this property as long as the other factory is provided. The
property value must be the name of a Java class. Its default
value is formw.factory. DefaultStability PluginFactory .

specificationTemplate

The path of a template file containing the basic con-
tent of a CSPj; specification. Its default value is re-
sources/specification.tpl. Its content is put into the editor
panel when the button New is pressed. The user can provide
another template file or change its content.

backgroundColorRed
backgroundColorGreen
backgroundColorBlue

Indicates the background colour of the Editor Panel. Each
of them contains a number between 0 and 255 and can be
configured directly from the menu Options — Background.

textColorRed
textColorGreen
textColorBlue

Indicates the text colour of the Editor Panel. Each of them
contains a number between 0 and 255 and can be configured
directly from the menu Options — Text.

tabPlacement

Indicates the position of the Editor Panel tab. It can be
configured directly from the menu Options — Tab Placement.

Table 4.1: Properties of the tool

CHAPTER 4. TOOL SUPPORT 92

‘ Module ‘ Number of Classes ‘
Data Independence 2
Data Abstraction 117
CSP; Parser 12
Translator 223
GUI components 24

‘ Total ‘ 378 ‘

Table 4.2: Further information

4.5 Conclusions

In the previous chapter, we presented a mechanised manner of applying the data abstraction
approach to infinite CSPy specifications, considering its behavioural part as well. Such an
approach focuses on finding out a periodic behaviour of the whole process, that is, a
behaviour in which the CSP and the Z parts perform the same sequence of events forever.
Providing supporting tools for formal techniques is a decisive contribution for their
adoption in software development. Not only the supported technique must be well con-
solidated, it is crucial to provide a friendly user interface as well. In general, the user
is interested in the results instead of the technique itself. In this chapter we presented
a tool for our data abstraction approach?. The adoption of Design Patterns [33| during
its development brought some advantages to the implementation: modularity, reusability,
maintenance and extension facilities. We have adopted the patterns Factory, Mediator,
Observer, Facade and Singleton. Particularly, the Factory pattern makes our implementa-
tion flexible to interact with several tools like FDR [36], Z-Eves [60], ACL2 [59], SMV [55]
or PVS [63]. In this version we provide two components for determining the stability prop-
erty: one for the CSP part and another for the Z one. The former analyses the LTS of the
CSP part without interacting with FDR. In [3] we have proposed a manner of finding out
a stable behaviour of the CSP part by using refinement between processes (verified into
FDR). On the other hand, the stability component for the Z part interacts with Z-Eves by
using a file-based strategy. Although the stability theorem is automatically built by the
tool, the user has to save it into a file and then analyse it using the theorem prover. The
tool also provides support for converting a CSPj specification into an equivalent CSPy,
process. Furthermore, a configurable library of C'SP,, functions is also provided.
Naturally, the tool presents some points to be improved. The most important among
them concern the enrichment of the syntax accepted by the parsers and the execution of
more complex terms of C'SPz. In this version, the tool is able to execute only simple Z
terms like relational and arithmetic expressions, and assignments. The CSP animator also
presents some restrictions: it is not able to execute neither nondeterministic processes nor

2The tool is available for download at http://www.cin.ufpe.br/~acf.

CHAPTER 4. TOOL SUPPORT 93

indexed constructs. Furthermore, the tool is not able to deal with C'SP; cycles which can
be broken during the expansion by performing an event outside the cycle (see Example
3.11). As future work we intend to eliminate these limitations in order to make the tool
able to support a larger class of specifications. Moreover, the treatment of problems like
Example 3.11 requires a more sophisticated analysis of cycles and stability, which can be
solved in future versions of the tool.

The main goal of the tool is CSP; data abstraction and model checking. The translation
from CSPy into CSPy, is an elegant manner of extending the CSP model checking to CSP,
an integrated theory. However, some class of problems (infinite processes) cannot be dealt
by this approach, because they present a large (or infinite) number of states—the state
explosion problem. Therefore, Mota [7, 9] proposed applying data abstraction, a technique
of compression based on inverse refinement?, considering only the data part of a CSPy
specification. We extended this approach by considering the behavioural part as well, and
implemented a supporting tool. Therefore, we believe that the tool plays an important role
in concurrent system development. Using a conversion strategy, it gives support for model
checking; and using a compression technique (data abstraction) before the conversion, it
permits to transform untreatable problems into feasible ones, in a mechanised manner.

Although the user assistance is required, the tool achieves CSP; data abstraction as
automatically as possible. Furthermore, we have not found examples of tools implementing
data abstraction for concurrent systems development. The work of Mota [7, 9] provided a
prototype in Haskell [72] without a friendly user interface. The specification must be writ-
ten using a format accepted by the prototype. There is also an intention of implementing
the work of Lazié¢ [76] into FDR. In general, the problem is abstracted by hand and then its
abstract version is analysed by formal tools. Therefore, we believe that our tool represents
an important practical contribution to concurrent systems development.

3A concrete type is replaced with an abstract one, while still preserving the properties of the system.

Chapter 5

Conclusions

The central contribution of this work is in the field of model checking [8, 10| and data
abstraction |7, 9| for CSP; specifications. Model checking for CSP, processes originates
from a strategy proposed by Mota and Sampaio [8] for converting a CSP; specification
into a pure CSP [36, 13| process, thus allowing the use of FDR [36]—the standard CSP
model checker—for analysing CSPj as well. In [1, 2] we report on an implementation of
this strategy.

The state explosion problem—intrinsic to model checking—limits the class of problems
to which the technique can be applied; several systems cannot be automatically verified be-
cause their state spaces are too large. Hence, impressive efforts focus on applying auxiliary
compression techniques before applying model checking |7, 30, 75, 76, 34, 82, 28, 55, 69|:
elimination of symmetry, abstraction, symbolic verification, partial order methods, lo-
cal analysis, data independence, integration of tools. For CSPj, the approach used by
Wehrheim [42| and Mota |7, 9] was data abstraction, a technique which permits to trans-
form an infinite process into a finite one, while still preserving most of its properties.
Wehrheim used this approach assuming informally that the CSP part cannot influence the
Z one. However, Mota |7] observed—based on the work of Lazié¢ [76]—that this assumption
must be stated formally. The reason is rather simple: suppose that the CSP part is not
completely free of data manipulation (that is, some data requirements are needed). There-
fore, data abstraction on the Z part might affect the CSP one, and then some properties
of the whole process are lost. Mota tackled this problem by using a combination of two
theories: data independence [76] on the CSP part, and abstract interpretation [66, 67| on
the Z one. The algorithm presented in [7] builds an abstract (finite) representation of an
infinite CSP; process, based on the behaviour of the Z part. Further, Mota also cited the
analysis of the CSP part as an important point for searching abstractions.

Our work has investigated this idea further and presented another data abstraction
approach for CSP;. Recall from Chapter 3 (more precisely Definition 2.4) that the normal
form of a CSP, process, after translation, suggests the CSP part as a master process—
responsible for achieving control flow—and the Z part as a slave process—responsible for
achieving data manipulation. This view permits to apply distinct techniques to these
parts (see Figure 5.1). As the approach of Mota [7], ours abstracts a process by replacing

94

CHAPTER 5. CONCLUSIONS 95

Data Independence Data Refinement based on
Theory Abstract Interpretation
CSPPart | full Z Part
(control flow) synchronisation (data manipul ation)

Figure 5.1: The use of distinct theories in CSP; data abstraction

infinite and stable (or periodic) behaviour with finite equivalent ones. The main difference
concerns the CSP part. While our approach captures specific situations (like termination,
deadlock and divergence), the other generates all possible stable traces of the Z part (even
those refused by the CSP part), Therefore, our technique is more elaborate and thus can
be applied to a larger class of problems; naturally, it requires a slightly more complex
execution model.

In this work we have proposed an algorithm for our data abstraction approach. It is
worth noting that our results coincide with those produced heuristically (see the ad hoc
abstraction of Example 3.2). Like Mota’s approach, the abstract domain produced by our
approach is a subset of the original one, as well as the abstract process becomes easy to
generate: only postconditions are modified (when necessary). However, our strategy for
calculating schema abstraction is simpler because we build neither the abstraction function
nor equivalence classes.

The way of building the equivalence classes used by Mota is not adequate in our ap-
proach. Because he uses a conjunction of preconditions, acceptances of the CSP part
are not captured. Although we tried to use equivalence classes in our abstraction pro-
cess, we reached a point where the user assistance was required to build them. Therefore,
we adopted another notion of property of a CSP; process (see Section 3.4.2), which has
brought the following advantages:

e Reduction of the expansions. As the CSP part is also considered, fewer possible
abstraction are examined (instead of exploring all possibilities accepted by the Z
part). The formal comparison is presented by Theorem 3.1.

e Generalisation of the property. We have observed that the property used by
Mota is a simplified form of ours. Indeed, when the CSP part accepts all events

from the Z one, our property reduces to Mota’s one (see a detailed explanation in
Appendix B.1).

Another contribution concerns convergence. Our algorithm is more efficient than Mota’s
one because it has a CSP-driven execution (only traces permitted by the CSP part are
explored). Furthermore, it stops as soon as it discovers successful termination, divergence
or deadlock on the CSP part.

CHAPTER 5. CONCLUSIONS 96

Concerning periodic behaviour, our work follows the ideas of Pnueli [87] and Shankar [82]
where model checking and theorem proving are viewed as complementary verification tech-
nologies. The former is effective for control-dominated systems, whereas the latter is suit-
able for data-dominated verification where the state spaces can be large or unbounded.
During our data abstraction approach, theorem proving is used to guarantee the existence
of periodic behaviour, whereas model checking is employed to analyse the resulting finite
process.

It is worth pointing out that, although requiring user interaction to determine periodic
behaviour through theorem proving!, our data abstraction strategy discards any assistance
when building the abstract process.

To give support for analysis of infinite CSP specifications, we have developed a tool in
Java [27] which implements our data abstraction approach. The tool is user friendly and
also gives support for translating a CSP specification into an equivalent C'SPy, process [8];
it only requires knowledge of C'SP; and user intervention when interacting with a theorem
prover. The user writes the original specification and both its abstract version and its cor-
responding CSP); code are generated automatically?. Furthermore, the adoption of Design
Patterns [33] in the architecture of the tool provides flexibility for developers to implement
components which interact with other tools (model checkers and theorem provers).

In summary, we have hopefully contributed to the state-of-the-art of the analysis of
(possibly) infinite processes by extending a mechanised strategy, and to the application of
formal techniques in concurrent systems development by providing tool support.

5.1 Related Work

In terms of techniques and formal approaches, there are several researchers focused on
tackling this attractive challenge—controlling the state explosion problem. Many of them
combine other techniques rather than abstraction and model checking. In the following, we
list a few works that have similar directions to this one (under the viewpoint of abstraction).

e Data abstraction for CSP;. This work was strongly influenced by the work of Mota
[7, 9], which proposes techniques for controlling the state explosion problem. The data
abstraction approach presented in that work is based on two powerful theories—data
independence [76] and abstract interpretation [66, 67]—and completely automatic.
However, its data-driven characteristic (only the Z part is taken into account) limits
its application to a specific class of problems, as already explained. Because our
approach deals with the behavioural part as well, it is applicable to a larger class of
problems.

e Data abstraction for CSPy;. Wehrheim [42] proposed a similar way for abstracting
CSPoy specifications, however no consideration about data independence is made.

"When non-decidable logics [47] are used.
2During the conversion, the tool generates statements between $, indicating points of non-decidability.
The user must edit those statements by hand.

CHAPTER 5. CONCLUSIONS 97

Furthermore, her work does not present an algorithm to implement the strategy.
The efforts of building the abstracted system is left to the user. In our approach
we consider data independence aspects and present an automatic way of abstracting
CSP; process.

e Process abstraction based on value abstraction. Cleaveland and Riely [73]
have investigated a way of abstracting processes based on the abstraction of the
values exchanged by them. To accomplish this, they defined a language similar to
CSP [13]| and presented their approach based on the semantics of that language.
Although they mention their approach can be mechanised, neither algorithms nor
tool support is provided.

e Decomposition, abstraction and compositionality. The work of Stahl [56]
presents a strategy to overcome state explosion by using the data independence the-
ory by Wolper [70], abstraction and compositionality. First, the original system—
expressing global properties—is broken into subsystems—expressing local properties.
Then, each subsystem is abstracted individually. Afterwards, these smaller parts are
composed in order to build the whole abstraction. Although they use auxiliary tools
(the SPIN model checker |38] and the PVS [63]| theorem prover), the application of
the strategy is not mechanised.

e Predicate Abstraction. A similar abstraction technique comes from the work of
Graf [81]. With predicate abstraciton, the concrete states of a system are mapped
to abstract states according to their evaluation under a finite set of predicates. The
central idea of that work is building a boolean program abstraction, a program that
has identical control structure to the original program, but contains only boolean
variables. The results of this work have been used into the SLAM project®, where a
tool is employed to build abstractions of C programs.

Regarding tool support, we could not find, until the moment of writing, tools implementing
techniques for abstracting processes. Although many works use auxiliary tools during the
process, the user has to provide the inputs to them. Therefore, a great deal of experience
and knowledge is strongly required from the user.

Mota [7] has presented a prototype in Haskell [72] implementing his approach. However,
the user has to write the behavioural (CSP) and the data (Z) parts using a specific format
accepted by the prototype. The implementation of a tool supporting the data abstraction
strategy defined for CSP; was mentioned by Wehrheim [42] as future work. However, no
implementation seems to have been provided yet. We believe that our tool represents an
important contribution concerning automatic support to model checking.

3Details about the project can be found at http://research.microsoft.com/slam.

CHAPTER 5. CONCLUSIONS 98

5.2 Future Work

Providing a complete formalism and tool support for dealing with analysis of infinite sys-
tems requires an exhaustive and continuous effort. The automatic strategy and the tool
support for CSPj; presented in this work have some limitations. Therefore, we classify
future work in two categories: improvements to the technique and enrichment of the tool.

Improvements to the Technique

Although our data abstraction approach has proved promising, it can be improved in
several directions.

e Treatment of multiple cycles. As we have mentioned in Chapter 3 (more precisely
in Example 3.11), when a cycle can be broken by performing an event outside it, the
algorithm cannot abstract that cycle immediately. Instead, the expansions should
continue until the sequence of properties along that cycle becomes stable. We have
observed that this analysis requires a more elaborate study about the influence of
the schemas inside the cycle upon schemas outside the cycle. Furthermore, we have
also noticed influence of the initialisation: depending on the initial value of the state,
a cycle can be broken or not. We therefore believe that this problem can be solved
by theorem proving, where a stronger theorem should capture the possibilities of
breaking cycles after initialisation.

e Analysis of unstable processes. The algorithm presented in Figure 3.12 achieves
CSPz data abstraction for processes which exhibit periodic behaviour. For processes
which never stabilises, the algorithm is non-terminating. We solved this problem
by inserting (manually) non-determinism into the abstracted system. The natural
extension of our approach in this case is to consider safe abstractions as well, in order
to increase the class of analysable problems.

e Communication. The problem of dealing with communication events increases
drastically the complexity of the data abstraction approach. For example, ¢?z can
represent an infinite set of events, depending on the type of z (see Figure 5.2). This
requires new notions of property and equivalence between nodes in order to establish
another concept of stability. This feature represents the biggest challenge for the
technique because most of the real world problems involve communication.

Enrichment of the Tool

Apart from implementing the improvements suggested above, the support through the
tool presented in Chapter 3 can be substantially improved. The following items certainly
represent important contributions to make the tool more attractive to practical use.

CHAPTER 5. CONCLUSIONS 99

x:{1,2,3} x:{12,..}

Figure 5.2: Explosion of communication events

e Syntax enrichment. Both Z and CSP parsers implements a subset of those lan-
guages. Therefore, they can be extended to accept a larger range of constructs.
In particular, the Z parser presents limitations concerning precedence of operators
(for example, + and * have the same precedence). Further details about suggested
extensions to both parsers can be found in [4].

e Type checking and error handling. The current version of the tool does not
apply any strategy to recover from errors. It only shows them in a message panel.
Furthermore, the type checking would increase substantially the quality of the tool
because most of the semantic errors concern typing problems.

e Animators enrichment. In this version, it is possible to animate specific CSP pro-
cesses and Z constructs. This improvement would permit the user to write specifica-
tion with a richer structure (internal choice, domain/range restriction/subtraction,
quantified expressions, lambda expressions etc).

e Stability plugins library. The flexibility for interacting with different formal tools
is another aspect to be further explored. Instead of providing two plugins, the use of
a library of plugins for interacting with model checkers (like FDR, [36] and SPIN [38])
and other theorem provers (like ACL2 [59], SMV [55] and PVS [63]|) would make the
tool more attractive.

e Debugging facilities and graphical viewer. Debugging is an essential facility in
systems development. It permits to inspect internal structures and discover subtle
errors occurred during execution. This idea can be used to inspect the nodes gener-
ated during the expansion—in a step-by-step manner—of the process. Additionally,
a graphical viewer can also be coupled to the tool in order to provide a more intuitive
view of the expansion at runtime.

e Support for dealing with local analysis. Mota [7] has not only defined an auto-
matic abstraction technique for CSPz; processes, but also a strategy for decomposing
large specifications into smaller ones, such that some properties like deadlock and live-
lock can be performed more efficiently. The support theory for such a strategy was
investigated by Roscoe [25]. Martin [48] has also investigated techniques for analysing
networks of processes interacting among themselves. Moreover, he has provided an

CHAPTER 5. CONCLUSIONS 100

implementation in Java (the Deadlock Checker [49]) which interacts with FDR. The
first change in our tool is to support many CSP; specifications. Afterwards, the
integration with the Deadlock Checker can be made by a plugin which converts all
(smaller) specifications into the notation accepted by that tool. Certainly, the pos-
sibility of dealing with smaller specifications (local analysis) is an important feature
to be implemented.

Bibliography

[1] A. Farias, A. Mota and A. Sampaio. Um Conversor da Notacdo CSPj; para CSP).
Revista Eletronica de Inicia¢iao Cientifica, Brazilian Society of Computing (SBC),
August 2001. Available at: http://www.sbc.org.br/reic.

[2] A. Farias, A. Mota and A. Sampaio. De CSP; para CSP);: uma Ferramenta Trans-
formacional Java. In Proceedings of IV Workshop on Formal Methods (WMF2001),
pages 1 - 10.

[3] A. Farias, A. Mota and A. Sampaio. Efficient Analysis of Infinite CSP; Processes. In
Proceedings of V- Workshop on formal Methods (WMF2002), pages 113 — 128.

[4] A. Farias. A Support Tool for CSPy; Data Abstraction: reference guide. Federal Uni-
versity of Pernambuco, Brazil, 2002. Available at: http://www.cin.ufpe.br/~acf.

[5] A. Galloway. Integrated formal Methods with Richer Methodological Profiles for the
Development of Multi-Perspective Systems. PhD thesis, University of Teesside, School
of Computing and Mathematics, 1996.

[6] A. Mota. Formaliza¢iao e Andlise do SACI-1 em CSP-Z. MSc dissertation. Federal
University of Pernambuco, Brazil, 1997.

[7] A. Mota. Model Checking CSP z: Techniques to Overcome State Explosion. PhD thesis.
Federal University of Pernambuco, Brazil, 2002.

[8] A. Mota and A. Sampaio. Model-Checking CSP-Z: strategy, tool support and indus-
trial application. Science of Computer Programming, 40: 59 — 96. Elsevier, 2001.

[9] A. Mota, A. Sampaio and P. Borba. Mechanical Abstraction of CSP; Processes. In L.
Erikson and P.A. Lindsay, editors, FME 2002: Formal Methods — Getting IT Right,
volume 2391 of Lecture Notes in Computer Science, pages 163 — 183. Springer-Verlag,
2002.

[10] A. Mota and A. Sampaio. Model-Checking CSP-Z. In Proceedings of the Europe Join
Conference on Theory and Practice of Software, volume 1382 of LNCS, pages 215-220.
Springer-Verlag, 1998.

101

BIBLIOGRAPHY 102

[11] Annual Proceeding of the Computer-aided Verification (CAV) Conference, Springer
LNCS.

[12] Annual Proceeding of the Computer-aided Deduction (CADE) Conference, Springer
LNAL

[13] A. Roscoe. The Theory and Practice of Concurrency. Oxford University, 1998.

[14] A. Roscoe. Model Checking CSP. In A.W. Roscoe (Ed.), A Classical Mind: Essays in
Honour of C.A.R Hoare. Prentice-Hall, 1994.

[15] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge Math-
ematical Textbooks, 1992.

[16] B. Scattergood. The Semantics and Implementation of Machine-Readable CSP. PhD
thesis, University of Oxford, 1998.

[17] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.
|18] Borland. JBuilder Reference Guide. Available at: http://www.borland.com.

[19] C. Donnelly and R. Stallman. Bison: the YACC-compatible Parser Generator. Version
1.25. 1995. Available at: http://dinosaur.compilertools.net/bison/manpage.html.

[20] C. Fischer. Combining CSP and Z. Technical Report, University of Oldenburg, 1996.

|21] C. Fischer. CSP-OZ: a combination of object-Z and CSP. In 2nd IFIP Internat. Conf.
on Formal Methods for Open Object-based Distributed Systems (FMOODS’97), Chap-
mam & Hall, London, 1997.

[22] C. Fischer. How to Combine Z with a process algebra. In A. Fett, J. Bowen, M.
Hinchey, editors, ZUM’98 The Z Formal Specification Notation, volume 1493 of Lecture
Notes in Computer Science, pages 5 — 23. Springer-Verlag, 1998.

[23] C. Fischer. Combination and Implementation of Processes and Data: from CSP-OZ
to Java. PhD thesis, Fachbereich Informatik Universitdt Oldenburg, 2000.

[24] C. Fischer and H. Wehrheim. Model-Checking CSP-OZ specifications with FDR. In
K. Araki, A. Galloway, K. Taguchi, editors, Proc. 1st Internat. Conf. on Integrated
Formal Methods (IFM), pages 315 — 334. Springer-Verlag, 1999.

[25] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
|26] C. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall, 1998.

[27] C. Horstman and G. Cornell. Core Java 2. Sun Microsystems Press, volumes I and II,
2000.

BIBLIOGRAPHY 103

[28] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani and S. Bensalem. Property Preserving
Abstractions for the Verification of Concurrent Systems. In Formal Methods in System
Design, volume 6, pages 11 — 44. Kluwer Academic Publishers, Boston, 1995.

[29] D. A. Schmidt. Abstract interpretation of small steps semantics. In Proceedings of the
5th LOMAPS Workshop on Analysis and Verification of Multiple-Agent Languages,
volume 1192 of Lecture Notes in Computer Science, pages 76 — 99. Springer-Verlag,
1997.

[30] D. Dams. Abstract Interpretation and Partial Refinement for Model Checking. PhD
thesis. Faculteit der Wiskunde en Informatica, Technische Universiteit Eindhoven,
1996.

[31] D. Gries and F. B. Schneider. A logical approach to discrete math. Springer-Verlag,
1993.

[32] E. Berk. JLex: A lexical analyser generator for Java. Version 1.2. Departament of
Computer Science, Princeton University, 1997.
Available at: www.cs.princeton.edu/~appel/modern/java/JLex/current/manual . html.

[33] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1998.

[34] F. Levi. A symbolic semantics for abstract model checking. Science of Computer Pro-
gramming, 39: 93 — 123, 2001.

[35] F. Moller and P. Stevens. The Edinburg Concurrency Workbench User Manual (7.1).
Laboratory for Foundations of Computer Science, University of Edinburgh, July 1999.

[36] Formal Systems (Europe). FDR2 User’s Manual, 1997.
[37] Formal Systems (Europe). PROBE User’s Manual, version 1.25, 1998.

[38] G. J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineer-
ing, 23(5): 279-295, 1997.

[39] G. Booch, J. Rumbaugh and I. Jacobson. The Unified Modeling Language User Guide.
Addison Wesley, 1999.

[40] G. Smith. A semantic integration of Object-Z and CSP for the specification of con-
current systems. In J. Fitzgerald, C.B. Jones, P. Lucas, editors, FME’97: Industrial
Applications and Strenghtened Foundations of Formal Methods, volume 1313 of Lecture
Notes in Computer Science, pages 62-81. Springer-Verlag, Berlin, 1997.

[41] H. Ehrig, W. Fey, and H. Hansen. ACT ONE: An algebraic specification language
with two levels of semantics. Technical Report 83-01, Technische Universitit Berlin,
1983.

BIBLIOGRAPHY 104

[42] H. Wehrheim. Data Abstraction for CSP-OZ. In J. Woodcock and J. Wing, editors,
FM’99 World Congress on Formal Methods, volume 1709 of Lecture Notes in Computer
Science, pages 1028—-1047. Springer-Verlag, 1999.

[43] 1. Toyn. Z Notation: Consensus Work Draft 2.1. Z Standards Panel, 1999.

[44] ISO. Information technology - Programming languages, their environments and system

software interfaces - Vienna Development Method - Specification Language. Interna-
tional Standard ISO/IEC 13817-1, 1996.

[45] ISO. Information Processing Systems - Open Systems Interconnection - LOTOS -
A Formal Description Technique based on the Temporal Ordering of Observational
Behaviour. International Standard ISO/IEC 8807, 1989.

[46] J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi and J. P. Jouannaud. Introducing
OBJ. Software Engineering with OBJ: algebraic specification in action. Edited with
Grant Malcolm, Kluwer, 2000, ISBN 0-7923-7757-5.

[47] J. G. Larrecq and I. Mackie. Proof Theory and Automated Deduction. Kluwer Aca-
demic Publishers, 1997.

[48] J. Martin. The Design and Construction Of Deadlock-Free Concurrent Systems. PhD
thesis. University of Buckingham, 1996.

[49] J. Martin and S. A. Jassim. A Tool for Proving Deadlock Freedom. WOTUG-20, 1997.

[50] J. R. Levine, T. Mason and D. Brown. Lexz & Yacc. O’Reilly & Associates, Paperback,
2nd edition, 1992.

[51] J. Woodcock and A. Cavalcanti. The Semantics of Circus. In Didier Ber, Jonathan P.
Bowen, Martin C. Henson and Ken Robinson, editors, ZB 2002: Formal Specification
and Development in Z and B, volume 2272 of Lecture Notes in Computer Science,
pages 184 — 203. Springer-Verlag, 2002.

[52] J. Woodcock and J. Davies. Using Z Specification, Refinement, and Proof. Prentice-
Hall, 1996.

[53] K. Apt and D. Kozen. Limits for Automatic Verification of Finite-State Concurrent
Systems. In Information Processing Letters, 22 (6): 307-309, 1986.

[54] K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.

[55] K. L. McMillan. Getting started with SMV. Cadence Berkeley Labs, 1999.
Available at: http://www-cad.eecs.berkeley.edu/~kenmemil.

[56] K. Stahl, K. Baukus, Y. Lakhnech and M. Steffen. Divide, Abstract and Model Check.
SPIN, pages 57-76, 1999.

BIBLIOGRAPHY 105

[57] L. Freitas. JACK: a process algebra implementation in Java. MSc dissertation. Federal
University of Pernambuco, Brazil, 2002.

[58] L. Lamport. BTEX: a Document Preparation System. User’s Guide and Reference
Manual. Addison-Wesley, 1995.

[59] M. Kaufmann and J. Moore. An Industrial Strenght Theorem Prover for a Logic
Based on Common Lisp. IEEE Transactions on Software Engineering, 23(4): 203 —
213, 1997.

[60] M. Saaltink. The Z-Eves System. In ZUM’97: the Formal Specification Notation,
volume 1212, LNCS, Springer, 1992.

[61] M. Hennessy and H. Lin. Symbolic Bissimulations. Theoretical Computer Science 138
(2):353-389, 1995.

[62] M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International, 1992.

[63] N. Shankar, S. Owre, J.M. Rushby, D. W. J. Stringer-Calvert. PVS Prover Guide.
Version 2.4, 2001. Available at: http://pvs.csl.sri.com.

[64] O. Grumberg, E. Clarke and D. Peled. Model Checking. The MIT Press, Cambrige,
MA, 1999.

[65] P. Borba and S. Meira. From model-based specifications to functional prototypes.
IEEE TENCON’91 Session on Rapid Prototyping with Functional Programming Lan-
guages, August 1991.

[66] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Con-
ference Record of the 6th ACM Symp. on Principles of Programming Languages, Au-
gust, 1991.

[67] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Computation, 2(4): 511 — 547, 1992.

|68] P. Kruchten. The Rational Unified Process, An Introduction. Addison Wesley, 2000.

[69] P. Wolper and P. Godefroid. Partial-order methods for temporal verification. In Proc.
CONCUR’93, volume 715 of Lecture Notes in Computer Science, pages 233 — 146.
Springer-Verlag, 1993.

[70] P. Wolper. Expressing interesting properties of programs in propositional temporal
logic. In Thrirteenth POPL, pages 184-193. ACM, 1986.

[71] Rational Software. Rational Rose Reference Guide. Available at:
http://www.rational.com.

BIBLIOGRAPHY 106

[72] R. Bird. Introduction to Functional Programming Using Haskell. Second Edition. Pren-
tice Hall, 1998.

[73] R. Cleaveland and J. Riely. Testing-based abstractions for value-passing systems. In
J. P. B. Jonsson, editor, CONCUR’9/, volume 836, pages 417 — 432. Spring-Verlag,
Berlin, 1994.

[74] R. Duke, G. A. Rose and G. Smith. Object-Z: A specification language advocated for
the description of standards. Computer Standards and Interfaces, 17: 511 — 533, 1995.

[75] R. Giacobazzi and F. Ranzato. Making abstract interpretations complete. Journal of
the ACM, 47(2): 361 — 416, 2000.

[76] R. Lazi¢. A Semantic Study of Data Independence with Applications to Model Check-
ing. PhD thesis, Oxford University, 1999.

[77] R. Milner. A Calculus of Communicating Systems. In Lecture Notes in Computer
Science, volume 92. Springer-Verlag, 1980.

[78] R. Milner. An Algebraic definition of simulation between programs. In Proceedings of
the Second International Joint Conference on Artificial Intelligence, pages 481 — 489.
BCS, 1971.

[79] R. Pressman. Software Engineering: a practitioner’s approach. 4™ edition. McGraw
Hill, 1997.

|80] S. E. Hudson. CUP User’s Manual. Georgia Institute of Technology, 1999.
Available at: http://www.cs.princeton.edu/ ~appel/modern/java/CUP.

[81] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV 97:
Computer-Aided Verification, LNCS 1254, pages 72-83. Springer-Verlag, 1997.

[82] S. Rajan, N. Shankar and M. K. Srivas. An integration of model checking with
automated proof checking. In Pierre Wolper, editor, Computer-Aided Verification
(CAV’95), volume 939 of Lecture Notes in Computer Science, pages 84 — 97. Springer-
Verlag, 1995.

[83] The RAISE Language Group. The RAISE Specification Language. BCS Practitioner
Series, Prentice-Hall, 1995.

[84] V. Paxson. Flex: a faster scanner generator. Version 2.5. 1995.
Available at: http://dinosaur.compilertools.net /flex /manpage.html.

[85] W. J. Toetenal. Model-Oriented Specification of Communicating Agents. PhD thesis,
Faculty of Mathematics and Informatics, 1992.

[86] W. Reisig. Petri Nets: An Introduction. In EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, 1985.

BIBLIOGRAPHY 107

[87] Y. Kesten, A. Klein, A. Pnueli and G. Raanan. A Perfecto Verification: Combining
Model Checking with Deductive Analysis to Verify Real-Life Software. In J. J. M.
Wing and J. Davies editors, FM’99-Formal Methods, volume 1078 of LNCS, pages
173-194. Springer-Verlag, 1999.

[88] Y. Gurevich. Sequential Abstract State Machines Capture Sequential Algorithms.
ACM Transactions on Computational Logic, 1(1):77-111, 2000.

Appendix A
CSP and CSPy,

In this section we put some important definitions used along this work and the main terms
of CSP and CSP),. For a detailed of this language, please refer to [13, 36].

A.1 Process Expressions

CSP CSPy Explanation

SKIP SKIP Successful Termination
STOP STOP Deadlock

a— P a->P Simple Prefix

alr — P a?x -> P Input Prefix

altr - P alx -> P Output Prefix

a?z?y: Alv - P a?x?y:Alv -> P Multiprefix

POQ P[Q External Choice
PnQ P [7]Q Internal Choice

P\A P\ A Hiding

PL£b> @ if b then P else Q Conditional Choice
P£b>$ STOP b &P Boolean Guard

Pll@Q P Il Q Synchronous Parallelism
Pl @ PIIIQ Interleaving

P, @ P [XIIY] Q Alphabetized Parallelism
PlQ P [IXI]1 Q Generalized Parallelism
P;XQ P;Q Sequential Composition
P>>Q P [c <->¢’] Q Piping

P(s) P(s) Parameterisation

P; P(i) Parameterisation
Chaos(A) CHAOS (A) Chaos Process

div div Divergent Process
P(f(s)) let s’=f(s) whithin P(s’) Local Declaration

108

APPENDIX A. CSP AND CSPy 109

A.2 Sets

{1,2,3}
{m..n}
{m..}
union(a,b)
inter(a,b)
diff(a,b)
Union(A)
Inter(A)
member (x,a)
card(a)
empty (a)
set (s)
Set(a)
Seq(a)

{x1,...,xn | x<-a,b}

A.3 Sequences

<>, <1,9>
<m..n>
<m..>

s”t
#s,length(s)
null(s)
head(s)
tail(s)
concat (S)
elemen(x,s)

<x1l,...,xn [x<-s, b>

Set literal

Closed ranges (from integer m to n inclusive)
Open range (from integer m upwards)

Set union

Set intersection

Set difference

Distributed union

Distributed intersection (A must be non-empty)
Membership test (x belongs to a)

Cardinality

Check for empty set

Convert a sequence to a set

Powerset of a set

Set of sequences over a set (infinite if the set is not empty)
Set comprehension

Sequence literals

Closed ranges (from integer m to n inclusive)
Open range (from integer m upwards)
Concatenation

Length of a sequence

Tests if a sequence is empty

The first element of a non-empty sequence
s = <head(s)>"tail(s)

Join together a sequence of sequences
Tests if an element occurs in a sequence
Sequence comprehension

APPENDIX A. CSP AND CSPy 110

A.4 Booleans

true, false Boolean literals
bl and b2 Boolean and
bl or b2 Boolean or
not b Boolean negation
b1==b2, b1!=b2 Equality operations
bi<b2, bi>b2, b1<=b2, bi>=b2 Ordering operators
if b then el else e2 Conditional operator
A.5 Extra
(5,<1>,{3}) Tuple
let... within ... Local definitions
\x1,...,xn @ e Lambda definition
Int, Bool Simple types
nametype n=e Abbreviation
datatype n=el|...|en Free type
A.6 Traces

The traces of a process is a set containing all possible sequence of events performed by a
process. In the following we present some simple definitions of traces for the main CSP
constructs.

A.6.1 traces(STOP) ={()}

A.6.2 traces(a — P)={()}U{(a) " s |s € traces(P)}
A.6.3 traces(PO Q) = traces(P) U traces(Q)

A.6.4 traces(P N Q) = traces(P) U traces(Q)

A.6.5 traces(P € b3 Q)= {

traces(P), if b evaluates to true
traces(Q), otherwise

traces(P), if b evaluates to true

A.6.6 traces(b& P) = traces(P € b 3 STOP) = { {0} otherwise

A.6.7 traces(pp.(a — p)) ={(a)" | n € N}
A.6.8 traces(div) ={()}

The traces of a process present some important properties:

APPENDIX A. CSP AND CSPy 111

e traces(P) is non-empty: it always contains the empty trace ()

e traces(P) is prefix-closed: if s”t is a trace performed by P then at some earlier time,
the trace s was also performed by P

A.7 Initials

The initials of a process is defined as the set of the events accepted by it in a specific
context.
Definition A.1 (Initials of a CSP Process)

initials(P) = {a | {(a) € traces(P)}
¢

The following items are results from the application of the of the above definition to the
main CSP constructs:

A.7.1 initials(STOP) = {}

A.7.2 initials(a — P) = {a}

A.7.3 initials(P O Q) = initials(P M Q) = initials(P) U initials(Q)
A.7.4 initials(P || @) = initials(P) N initials(Q)

initials(P), if b evaluates to true
initials(Q), otherwise

A.7.5 initials(P € b ¥ Q) = {

initials(P), if b evaluates to true

A.7.6 initials(b & P) = initials(P € b 3 STOP) = { { otherwise

A.7.7 initials(up.F(p)) = initials(F (p)[F (p)/p])
A.7.8 initials(div) = {}

Appendix B
CSPy,

This section contains proofs of some lemmas used in this work and a formal explanation
about the comparison between the property of our approach and that one adopted by
Mota. Moreover, it also contains the auxiliary functions used by our algorithm.

B.1 Property Generalisation

The property used by our approach is a generalisation of that proposed by Mota. To show
this affirmation, we use the case where our approach produces the same expansions as that
of Mota; that is, the CSP part accepts all events performed by the Z part. Therefore,
initials(Pcsp) = I, where [is the synchronisation interface. Recall from Section 3.4.2 that
the property of our approach is a conjunction of all acceptances and refusals of the whole
process, that is

(/\eUGEacc €Vq € initia’ls(PCSPz)) A (/\evreref €V ¢ init”;a’lS(PCSPz))a

where acc and ref denote the acceptances and refusals of Pggp,, respectively, accNref = @
and acc U ref = 1.

Because initials(Pgsp,) includes information about the CSP and the Z parts (see
Lemma 2.1), the expression ev € initials(Pcsp,) can be rewritten to ev € initials(Pcsp) A
pre com_ev. Therefore, the whole expression becomes

(Aevacace (eva € initials(Pesp)Apre com_ev,))A(A ey, erep —(€vr € initials(Pcsp) Apre com_ev,)).

Note that expressions ev € initials(Pcgp) are trivially true because initials(Pgsp) = 1.
Then, simplifying the above formula we have

(Aev, cace (true A pre com_ev,)) A (/\eUTETef —(true A pre com_ev,)).
Now using simple rules from Propositional Logic the final result is

(Aevacace Pre com_evy) A (Aey,crep TPTE COM_eEV,).

The above expression is exactly the property adopted by the previous approach, which
considers only the Z part.

112

APPENDIX B. CSPy4 113

B.2 Proofs

Proof of Lemma 2.1

The proof is based on the normal form of a CSPj; process. In order to simplify it, we
present an auxiliary lemma stating the initial acceptances of the Z part of a CSPz; process
and then the initial acceptances of the whole process.

Lemma B.1 (Initials of the Z part of a CSP; Process) Let Py be a process repre-
senting the Z part of a CSP; process whose synchronisation interface is I. Then,

initials(Pz) = Ug.er{ai | pre com_a;}. &

Proof. The proof is based on the form of Py and definitions of initials presented in
Appendiz A.

pre com_ay & ¢y — P

O pre com_as & ay — P

1. initials(Pz) = initials [by Definition 2.4]

D pre com_ay, & a, — PZ""
The external choice can be rewritten to an indexed form:
2. [©]initials(Py) = initials(Og, ey pre com_a; & a; — P;™")
Applying the definition of initials to the indexed form o Py we have:
3. [elinitials(Pz) = Uq, ¢ tnitials(pre com_a; & a; — P7™™")

According to Appendiz A, initials(b& P) = initials(P), such that b evaluates to true, and
{} otherwise. Applying this definition to step 3 and adjusting the result to the set notation
we have:

4. [elinitials(Pz) = U,.¢; initials(a; — P7™™), such that pre com_q;

5. [e]initials(Pz) = Ug,er{ai | pre com_a;}

O
Now, we can really construct the proof of Lemma 2.1.
Proof. (Of Lemma 2.1)
1. initials(Pcsp,) = initials(Pz || Pcsp) |by Definition 2.4)
I

2. [©initials(Pgsp,) = initials(Pyz) N initials(Pesp) |by Lemma 3.9

APPENDIX B. CSPy4 114

3. [e]initials(Pcsp,) = (Ug,er{ai | pre com_a;}) N initials(Pcsp) [by Lemma B.1]
In the following steps we apply simple set operations:

4. [elinitials(Pesp,) = (Uger{ai | pre com_a;}) N initials(Pegp)

5. [<:>]zmtmls Pesp

(=
(2) = Ua.cr({ai | pre com_a;} Ninitials(Pcgp,))
(=

(

6. [elinitials(Pcsp,) = Ug.er{ai | pre com_a; A a; € initials(Pcsp)}

)
)
)
)

7. [elinitials(Pesp,) = Ua.cr{ai | pre com_a; A a; € initials(Pcsp)}

Proof of Lemma 3.3

Recall from Definition 2.4 that a Pcsp, process can be viewed as a generalised parallelism of
two smaller processes. The process representing the CSP part (Pgsp) can be any (trivially
data independent) CSP process and the process representing the Z part (Pz) is an external
choice of expressions, where each of them are guarded by its respective schema precondition.
Moreover, recall from Corollary 3.3 that the progress of the whole process depends on the
initial acceptances of P; and Pggp. If they offer the same event (for example, e, such
that e € initials(Pz) and e € initials(Pcsp)), then both perform it. Otherwise, the whole
process deadlocks.

We build the proof based on the analysis of Pggp (it plays a major role and can be any
CSP process). Instead of applying the proof on the structure of Pggp, we apply induction
on its initial acceptances as follows.

Proof. (Of Lemma 3.3)

Base Case: initials(Pgsp) = @. This is the case when the whole process does not produce
any visible event (that is, traces(Py || Pcsp) = {{)}). In fact, we cannot distinguish if
I

the CSP part has successfully terminated, is deadlocked or diverging (they have the same
trace). We use one of these possibilities (Pcsp = STOP) to prove the base case.

1. traces(Pyz || Pcsp) = traces(STOP)
I

2. [e|traces(Py |1| Pecsp) = {()} [by definition of STOP in T]

From Section 2.1.4 we have that, for all process P, traces(P) always contains the empty
trace. Therefore, traces(P) N{{)} = {{)}. This permits us to rewrite the previous step to:

3. [&]traces(Py |1| Pcsp) = traces(Pz) N {{)} [because () € traces(Pz)]

5. [&]traces(Py || Pcsp) = traces(Pyz) N traces(Pegp) [because initials(Pesp) = 9|
I

APPENDIX B. CSPy4 115

Inductive Case: let us consider initials(Py) # &, initials(Pcsp) # @, e1 € initials(Pcsp),
and ey € initials(Pz). Note that, if e # es, the whole process deadlocks and, thus, the
proof is similar to the base case. On the other hand, if e, = es we need to assume that
the lemma holds to processes P, and Pugp, and try to prove for Py and Pcsp, such that
PZ = e — PIZ 5 PCSP = €y — PICSP'

1. traces(Pyz || Pcsp) = traces(z : I — Py || Prgp) [by Corollary 3.3]
I I

N

. [©]traces(Py U Pesp) ={(}U{z " s | s € traces(Py, U Plep)}

[by Definition A.2.2]

w

. [©]traces(Pz || Pcsp) = {()}U{z " s | s € traces(Py) Ntraces(Pygp)} [inductive step|
I

Iy

. [&]traces(Py |1| Pcsp) = {()}U

{z ™ s |s € traces(Py) N s € traces(Ppgp)} by set theory|

)]

. [©]traces(Py U Pesp) ={()} U ({z " s | s € traces(P})} N
{z " s|s € traces(Ppgp)}) [by set theory]

(=]

. [©ltraces(Py |1| Pesp) = {()}U
(traces(z — Py) N traces(z — Ppgp)) by Definition A.2.2]

Because we have assumed that P; = e; — Py and Pgsp = eo — Ppgp and e; = ey, Step 6
can be rewritten to:

7. [©]traces(Pz || Pesp) = {{)} U (traces(Pz) N traces(Pcsp)) [by assumption)]
I

8. [&|traces(Py || Pesp) = traces(Pyz) N traces(Pesp) [by set theory]
I

O

B.3 Auxiliary Functions

In this section we present some auxiliary functions used by the data abstraction algorithms
(Figures 3.8 and 3.12).

APPENDIX B. CSPy4 116

extractProperty(State)

e State - the state used to evaluate the preconditions.

This function extracts the property used by the algorithm of Mota |7, 9], which considers as
property a conjunction of enabled and dizabled preconditions. The function eval evaluates
a precondition considering the given state.

extractProperty(State){
result := true
Vcom op:Schema
if (eval(pre com op))

result := result A pre comp_op
else
result := result A —pre comp_op
V-end
return result

extractProperty(State, LTS)

e State - the state used to evaluate the preconditions.

e LTS - a CSP LTS used to discover the acceptances of the CSP part.

This function extracts the property used by our algorithm, which considers as property a
conjunction of the acceptances of the whole process in a context (initials(Pcsp,)). The
function eval evaluates a precondition considering the given state.

extractProperty(State, LTS){
result := true
Vcom op:Schema
if (eval(pre com op) A op € initials(LTS))

result := result A op € initials(Pgsp,)
else
result := result A op ¢ initials(Pgsp,)
V-end
return result

extractIndexOfRepetition(Property, NodeSequence)
e Property - a property.

e NodeSequence - a sequence of nodes.

APPENDIX B. CSPy4 117

This function returns the index of a given property in a sequence of nodes, where a node is
the structure (State, LTS, Trace, Property, NodeSequence). The i** element os a sequence
s can be accessed by applying the sequence s to the integer ¢ (that is, s 7).

extractIndexOfRepetition(Property, NodeSequence){

index := 0
i := #NodeSequence
notFound := true

while (i > 0 A notFound)
if (fourth(NodeSequence i) = Property)
index := i
notFound := false
fi
while-end
return index

extractTrace(Trace, i)

e Trace - a trace.

e index - the index from which the subtrace is extracted.

This function returns a subtrace of a trace from a specific index. As a trace is a sequence
of events, the i element of a trace t is denoted by ¢ i.

extractTrace(Trace, index){
Trace result := ()
while (index < #Trace)
result := result” (Trace index)
while-end
return result

Appendix C
Z-Eves Proofs

This section contains proofs of stability checked by Z-Eves [60]. The specifications corre-
spond to the Z part of the examples from Chapter 3. Note that some predicates were not
trivially reduced to true or false, however we give a comment in order to infer the final
result.

Specification 1

The following specification corresponds to the Z part of Example 3.2, where (a, b) is in-
finitely performed by the whole process:

State = [c¢ : Z \ {0}]

Init = [State' | ¢! = —1]

com_a = [AState | ¢ < —1A ¢ = —¢]

com_b = [AState | ¢ > —1A ' = —(c x2)]
Stability: ¥ State; State' | (pre comp = comp) e pre comp’, where comp = com_a § com_b
Result: c e ZN' €ZN-c=0AN-¢=0A(c<-1=c=2%x¢)=c <-1

Comments: Concentrating on the term (¢ < —1 = ¢/ = 2% ¢), one can see that, when
¢ < —1 the composition is enabled and its effect produces ¢’ = 2 * ¢, that is, values on the
range ¢’ < —2. Therefore, ¢’ < —1 is also (and ever) valid.

Specification 2

The following specification corresponds to the Z part of Example 3.4, where com_a and
com_b are enabled all the time:

State = [c¢ : Z \ {0}]

Init = [State' | ¢/ = —1]

com_a = [AState | ¢/ = —|
com_b = [AState | ¢’ = —(c % 2)]

118

APPENDIX C. Z-EVES PROOFS 119

Stability: ¥ State; State' | (pre comp = comp) e pre comp’, where comp = com_a § com_b
Result: true

Comments: no comments.

Specification 3

The following specification corresponds to the Z part of Example 3.5, where (a b) is not a
stable trace because of the Z part, and the trace (c) is stable:

State = [n : N]

Init = [State’ | n' = 0]

com_a = [AState | n' = n + 1]

com_b = [AState | n <5An' =n+2]

com_c = [AState | n >5An" =n+1]
Stability 1: V State; State' | (pre comp = comp) e pre comp’, where comp = com_agcom_b.
Result 1: n € ZAn' €ZAn>0AN>0N(1+n<5=>n"=34+n)=1+n"<5.
Comments: Let us simplify the term (1+n <5=n"=3+n) to (n <4=n'=3+n).
Note that, when n < 4 the composition is enabled and its effect produces n’ = 3+ n, that

is, values on the range n’ < 7. Comparing this result with n' < 4 (the simplified form of
1+ n' <5), one can see that n’ < 4 is stronger than n’ < 7. Therefore, the result is false.

Stability 2: V State; State' | (pre comp = comp) e pre comp’, where comp = com_c.
Result 2: true

Comments: no comments.

Specification 4
The following specification corresponds to the Z part of Example 3.11, where both {a, b)
and (c) are stable traces:

State = [n : N]

Init = [State’ | n' = 0]

com_a = [AState | n' = n + 1]

com_b = [AState | n' = n + 2]

com_c = [AState | n >5An" =n+1]
Stability 1: V State; State' | (pre comp = comp) e pre comp’, where comp = com_agcom_b.
Result 1: true
Comments: no comments.
Stability 2: V State; State' | (pre comp = comp) e pre comp’, where comp = com_c.
Result 2: true

Comments: no comments.

