

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

DISSERTAÇÃO DE MESTRADO

Estudo dos Efeitos do Iniciador n-Butil Lítio, do Agente de Terminação 1,2-Butadieno e da Temperatura sobre a Polimerização do 1,3-Butadieno em Solvente Apolar

Luciano André Pedrosa Vieira

Recife - PE Dezembro de 2003

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

Estudo dos Efeitos do Iniciador n-Butil Lítio, do Agente de Terminação 1,2-Butadieno e da Temperatura sobre a Polimerização do 1,3-Butadieno em Solvente Apolar

Dissertação de Mestrado apresentada por Luciano André Pedrosa Vieira, ao Programa de Pós-Graduação em Engenharia Química como parte dos requisitos necessários para a obtenção do Grau de Mestre em Engenharia Química.

Área de Concentração: Reatores Químicos e Catálise

Orientador: Prof. Dr. Mohand Benachour

Recife - PE Dezembro de 2003

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA QUÍMICA

Dissertação de mestrado apresentada por Luciano André Pedrosa Vieira ao Programa de Pós-Graduação em Engenharia Química como parte dos requisitos necessários para obtenção do grau de Mestre em Engenharia Química

DEFENDIDA PUBLICAMENTE EM 05 (cinco) DE DEZEMBRO DE 2003, DIANTE DA BANCA EXAMINADORA:

Professor Dr. Mohand Benachour Orientador

Professor Dr. Sebastião José de Mello

Professor Dr. Sérgio Lucena

Este trabalho é dedicado a Deus, por minha gratidão para com Ele, a minha mãe Marlene Vieira, por tudo que ela representa na minha formação, e a minha esposa Andréa Vieira, pelos momentos de ausência dedicados à realização deste trabalho.

AGRADECIMENTOS

- A Deus, pelo dom da vida;
- A minha mãe, Marlene, pela dedicação em sempre me oferecer as melhores condições de educação, acima de tudo;
- A minha esposa, Andréa, pela paciência e compreensão pelos tantos dias de ausência, dedicados a realização deste trabalho;
- Ao meu orientador, professor Dr. Mohand Benachour, pela amizade, pelos ensinamentos indispensáveis a minha formação e pela fundamental participação no desenvolvimento deste trabalho;
- À coordenação de pós-graduação em engenharia química, em nome do professor
 Nelson Medeiros;
- Aos professores do Departamento de Engenharia Química, em especial à professora
 Maria de Los Angeles Perez Palha, que por tantas vezes me incentivou nos momentos
 difíceis desta caminhada;
- A Petroflex Ind. e Com. S.A, em nome do gerente da fábrica Marconi Madruga;
- Aos meus colegas de turma, em especial aos amigos José Martins Palha Júnior e
 Antonio Fernando Britto, por tantos dias dedicados a uma causa comum;
- Ao José Edson da Silva, pelos tantos esclarecimentos estatísticos que contribuíram para os resultados deste trabalho;
- A todos aqueles que direta ou indiretamente contribuíram para o atingimento deste objetivo.

SUMÁRIO

ÍNDICE DE TABELAS	iii
LISTA DE FIGURAS	v
NOTAÇÕES	vii
RESUMO	xii
ABSTRACT	xii
1- INTRODUÇÃO	01
2 – REVISÃO DA LITERATURA	05
2.1 – Polibutadieno	05
2.2 – Polimerização aniônica em solução	06
2.3 – Cinética de polimerização	08
2.4 – Auto acoplamento	17
2.5 – Agente de terminação	20
3 – ASPECTOS TEÓRICOS	23
3.1 – Planejamento de experimentos	23
3.2 – Análise de variância (ANOVA)	25
3.3 – Modelagem da cinética homogênea	30
4. MATERIAIS E MÉTODOS	33
4.1 – Materiais	33
4.1.1 – Matéria prima	33
4.1.2 – Insumos	33
4.1.3 – Equipamentos	33
4.2 – Métodos	35
4.2.1 – Preparação das matérias primas	35
4.2.2 – Modo operacional	36
4.2.3 – Determinação da relação entre as variáveis manipuladas e as	
respostas estudadas	38
4.2.4 – Análise da viscosidade Mooney	40
4.2.5 – Análise da viscosidade em solução	41
4.2.6 – Análise da recuperação Williams	43
4.2.7 – Determinação dos sólidos totais	44

	4.2.8 – Análise cromatográfica do solvente	45
5.	RESULTADOS & DISCUSSÕES	46
	5.1 – Avaliação das variáveis significativas	47
	5.1.1 – Viscosidade Mooney	48
	5.1.2 – Viscosidade em solução	57
	5.1.3 – Recapitulação Final	66
6.	MECANISMO REACIONAL E AVALIAÇÃO DE PARÂMETROS	
Cl	NÉTICOS	68
	6.1 – Mecanismo reacional e lei cinética	68
	6.2 – Avaliação dos parâmetros cinéticos	73
7.	CONCLUSÕES E PERSPECTIVAS	77
	7.1 – Conclusões	77
	7.2 – Perspectivas	78
ъı	EFERÊNCIAS BIBLIOGRÁFICAS	QΛ

ÍNDICE DE TABELAS

Tabela 1 -	Valores das constantes de velocidade de polimerização de alguns	
	monômeros, realizadas em diferentes solventes e temperaturas,	
	sendo as cinéticas de segunda ordem em relação ao monômero, R =	
	k[M] ²	12
Tabela 2 -	Valores da velocidade inicial de polimerização de alguns	
	monômeros, para diferentes concentração de BuLi (iniciador) e	
	solventes, a temperatura de 50°C	13
Tabela 3 -	Constante da velocidade inicial $r_i = K_i[BuLi][M]$	13
Tabela 4 -	Medida da velocidade de propagação aparente da polimerização do	
	1,3-butadieno inicializada por alquil-lítio em etilbenzeno. Dois	
	valores foram assumidos para ordem parcial referente à	
	concentração "end lives" (1/2 e 1/4)	15
Tabela 5 -	Ordem cinética para iniciadores alquil lítio em solventes	
	hidrocarbonetos	16
Tabela 6 -	Tabela ANOVA para o ajuste do modelo, pelo método dos mínimos	
	quadrados	29
Tabela 7 -	Especificações das matérias-primas e insumos	35
Tabela 8 -	Níveis dos fatores do Planejamento Fatorial estudado	38
Tabela 9 -	Matriz de planejamento experimental, utilizada durante a execução	
	dos ensaios	40
Tabela 10 -	Tamanho do viscosímetro em relação à faixa de viscosidade	42
Tabela 11 -	Resultados dos experimentos do planejamento experimental da	
	Tabela 9, para as respostas estudadas: ML4 e viscosidade em	
	solução	47
Tabela 12 -	Análise de Variância dos experimentos, para viscosidade	
	Mooney	48
Tabela 13 -	Estimativa dos efeitos e dos coeficientes para o parâmetro	
	viscosidade Mooney (unidades codificadas)	49

Tabela 14 -	Análise de Variância dos experimentos, para viscosidade em	
	solução	58
Tabela 15 -	Estimativa dos efeitos e dos coeficientes para o parâmetro	
	viscosidade em solução (unidades codificadas)	59
Tabela 16 -	Valores de conversão, determinados por análise de sólidos totais, na	
	saída do reator	74
Tabela 17 -	Valores de conversão, determinados por análise cromatográfica do	
	solvente, para determinação de monômero não reagido, na saída do	
	reator	75

LISTA DE FIGURAS

Figura 01 –	Possíveis configurações da estrutura molecular do polibutadieno:	
	(a) configuração "cis", (b) configuração "trans", (c) configuração	
	vinil	05
Figura 02 –	Esquema da etapa de iniciação	07
Figura 03 –	Esquema da etapa de propagação	07
Figura 04 –	Esquema da etapa de terminação	08
Figura 05 –	Efeito do solvente sobre velocidade de iniciação da polimerização	
	do 1,3-butadieno	09
Figura 06 –	Velocidade de polimerização do butadieno em função da	
	concentração inicial de butil-lítio, em três diferentes solventes	10
Figura 07 –	Velocidade de polimerização do butadieno em função da	
	concentração inicial de butil-lítio, em ciclohexano	10
Figura 08 –	Velocidade de polimerização, em ciclohexano, em função de	
	$[M]^2$	11
Figura 09 –	Mecanismo de termólise e metalação do polibutillítio, formando o	
	polidieno e o politrienillíto (VIOLA, 1996)	18
Figura 10 –	Mecanismo proposto para a reação de auto-acoplamento do	
	polibutillítio, resultando numa cadeia com o dobro do peso	
	molecular inicial (VIOLA, 1996)	19
Figura 11 –	Mecanismo proposto para a reação de auto-acoplamento do	
	polibutadienil, resultando numa cadeia com o triplo do peso	
	molecular inicial (VIOLA, 1996)	19
Figura 12 –	Mecanismo de auto-acoplamento do polibutadienillítio por	
	decomposição térmica (MONROY, 2003)	20
Figura 13 –	Mecanismo reacional do BD-1,2 na polimerização do butadieno	
	iniciada pelo butil-lítio em solvente apolar, sugerido por Adams et	
	al (1965)	21
Figura 14 –	Mecanismo reacional do BD-1,2 na polimerização do butadieno	
	iniciada pelo butil-lítio em solvente apolar (ciclohexano), sugerido	
	por Puskas (1993)	21

Figura 15 –	Representação do balanço material no reator	32
Figura 16 –	Esquema do sistema reacional, escala industrial	34
Figura 17 –	Diagrama simplificado das etapas do processo de polimerização	
	do 1,3-butadieno em solução	3′
Figura 18 –	Representação cúbica dos experimentos, tendo como resposta a	
	viscosidade Mooney	48
Figura 19 –	Diagrama de Pareto dos efeitos padronizados sobre a viscosidade	
	Mooney	50
Figura 20 –	Curvas representando os efeitos principais sobre a viscosidade	
	Mooney	5
Figura 21 –	Gráfico dos efeitos das interações duplas sobre a viscosidade	
	Mooney	53
Figura 22 –	Análise dos resíduos: (a) Teste de distribuição normal	
	("Normalidade"), (B) Análise de dispersão e (c) Histograma dos	
	resíduos	5:
Figura 23 –	Valores experimentais em função dos valores previstos pelo	
	modelo	5'
Figura 24 –	Representação cúbica dos experimentos, tendo como resposta a	
	viscosidade em solução	58
Figura 25 –	Diagrama de Pareto dos efeitos padronizados sobre viscosidade	
	em solução	60
Figura 26 –	Curvas representando os efeitos principais sobre a viscosidade em	
	solução	6
Figura 27 –	Gráfico dos efeitos das interações duplas sobre viscosidade em	
	solução	62
Figura 28 –	Análise dos resíduos: (a) Teste de distribuição normal	
C	("Normalidade"), (B) Análise de dispersão e (c) Histograma dos	
	resíduos	64
Figura 29 –	Valores experimentais em função dos valores previstos pelo	-
6	modelo	60
Figura 30 –	Esquema do mecanismo reacional da etapa de iniciação da	٠,
.0	polimerização do 1,3-butadieno	68
	r	0

Figura 31 –	Esquema do mecanismo reacional da etapa de propagação da	
	polimerização do 1,3-butadieno	70
Figura 32 –	Esquema do mecanismo reacional da etapa de terminação da	
	polimerização do 1,3-butadieno	71
Figura 33 –	Esquema simplificado da reação de auto acoplamento	72

NOTAÇÕES

• Letras latinas

```
C = Concentração;
j = Número de repetições;
k = Constante de velocidade da reação ou polimerização, L/(mol•min);
K<sub>D</sub> = Constante de equilíbrio de dissociação da etapa de iniciação;
K<sub>DP</sub> = Constante de equilíbrio de dissociação da etapa de propagação;
k = Número de níveis do fator;
k<sub>i</sub> = Constante de velocidade da etapa de iniciação;
k_{iapp} = Constante de velocidade aparente da etapa de iniciação, <math>L^m/(mol^m \cdot s);
k_{p,app} = Constantes de velocidade aparente da etapa de propagação, L^n/(mol^n \cdot s);
K_i = Constante da velocidade inicial, L/(mol•min);
k<sub>p</sub> = Constante de velocidade da etapa de propagação;
M = Monômero;
m = Grau de agregação do organolítio na etapa de iniciação;
n = Grau de agregação do organolítio na etapa de propagação;
p = Número de parâmetros do modelo;
R = Velocidade de polimerização, mol/(L•min);
R^2 = Coeficiente de determinação do modelo;
r<sub>A</sub> = Velocidade de consumo do componente A, mol/(L•min);
r<sub>i</sub> = Velocidade inicial de polimerização, mol/(L•min);
t = Tempo;
x = Variáveis de entrada ou variável controlada;
x_1, x_2, ...., x_n = \text{Codificação das variáveis naturais } x_1, x_2, ...., x_n, obtidas pela subtração da
média do valor da variável e dividir o resultado pela metade da amplitude de variação;
X = Conversão, %;
y = Variáveis de saída ou variável de resposta;
y = Resposta média global;
y_i = Valor previsto;
y_i = Respostas observadas;
```

• Letras Gregas

 $x_1, x_2,, x_n$ = variáveis de entrada ou controladas. São geralmente chamadas de variáveis naturais porque são expressas nas unidades naturais das medidas;

e = fontes de variações não expressas pelo modelo;

 $b_0, b_1, b_2, \dots b_n$ = parâmetros ou coeficientes do modelo de primeira ordem;

 $b_{11}, b_{22}, b_{33}, \dots$ = parâmetros ou coeficientes do modelo de segunda ordem;

 b_{12}, b_{13}, b_{23} = parâmetros ou coeficientes das interações entre as variáveis do modelo;

Abreviações

```
BD-1,2 \text{ ou } 1,2-BD = 1,2-butadieno;
```

BD-1,3 ou 1,3-BD = 1,3-butadieno;

BR = Polibutadieno, *Butadiene Rubber*;

Blend B = Mistura de 1,3-butadieno em solvente, a 35% em massa;

BuLi ou n-BuLi ou RLi = n-butil-lítio, iniciador;

Bu-M⁻Li⁺ ou BuMLi = Poli(estiril)lítio ou poli(butadienil)lítio;

[BuLi] ou [RLi] = Concentração de iniciador, mol/L;

C_A = Concentração de "A", mol/L;

C_B = Concentração de "B", mol/L;

cm = centímetros;

Cemento = Mistura reacional, devendo ser formada por polímero, solvente e, às vezes, monômero não reagido, dependendo do tempo de reação;

cP = Centipoise;

DIC = Detetor de ionização de chama;

DOE = Planejamento de experimentos, *Design of Experiments*;

EA = Etil acetileno;

EALi ou LiEA = Acetileto de lítio;

 E_P = Efeitos principais (unidades codificadas);

 E_D = Efeitos das interações duplas (unidades codificadas);

```
E_T = Efeitos das interações triplas (unidades codificadas);
E<sub>P</sub>' = Efeitos principais (unidades não codificadas);
E<sub>D</sub>' = Efeitos das interações duplas (unidades não codificadas);
E<sub>T</sub>' = Efeitos das interações triplas (unidades não codificadas);
F = Teste F-Snedcor;
F_{Mo} = Fluxo molar de monômeros na entrada do reator, mol/s;
F_M = Fluxo molar de monômero na saída do reator, mol/s;
FT = Totalizador mássico, Kg;
g = gramas;
GL<sub>R</sub> = Números de graus de liberdade da média quadrática devido à regressão;
GL<sub>r</sub> = Números de graus de liberdade da média quadrática residual;
GPC ou SEC = Cromatografía permeação em gel;
IR = Espectroscopia infravermelho;
Kg = quilogramos;
LE = Polímeros vivos, live ends;
LiBD-1,2 = 1,2-butadienillítio;
LiH = Hidreto de lítio;
LG = Indicador de nível;
LIE = Limite inferior de especificação;
LSE = Limite superior de especificação;
Mj = Polímero formado por j monômeros;
mL = micro Litro;
mL = mili Litros;
[M] = Concentração de monômero, mol/L;
ML4 = Viscosidade Mooney;
MQ = Médias quadráticas;
min = minutos:
mm = milímetros:
P = Cadeia polimérica;
ppm = Partes por milhão;
QM<sub>R</sub> = Média quadrática devido à regressão;
QM_r = Média quadrática residual;
```

 $Q_S = Vazão volumétrica, L/s;$

RW = Recuperação Williams, mm;

s = segundos;

SBR = Copolímero 1,3-butadieno-estireno, *Styrene-Butadiene Rubber*;

SQ = Soma quadrática;

SQ_{faj} = Soma quadrática devido à falta de ajuste;

SQ_{EP} = Soma quadrática do erro puro;

SQ_R = Soma quadrática devida à regressão;

 $SQ_r = Soma quadrática residual;$

SQ_T = Soma quadrática em torno da média;

TI = Indicador de temperatura, °C;

Ton = toneladas;

TT = Transmissor de temperatura;

TR = Borracha termoplástica - *Termoplastic Rubber*;

UV = Espectroscopia ultravioleta;

VISC. SOL. = Viscosidade em solução, cP;

 $V_R = Volume reacional.$

RESUMO

As indústrias de produção de borracha sintética constituem um dos importantes setores da indústria petroquímica. O polibutadieno, um dos produtos oriundos deste setor, é o segundo elastômero sintético mais produzido no mundo. Verifica-se, todavia, que, apesar dos diversos trabalhos já publicados, existem muitas controvérsias a respeito da influência de fatores operacionais na velocidade de reação deste elastômero. Nestas investigações, também não são identificados modelos que prevejam o comportamento dos atributos de valor do polímero final, frente às perturbações causadas nos diversos fatores de entrada do reator. Este trabalho tem como objetivo o estudo dos efeitos da concentração inicial do n-butil-lítio, da concentração inicial do 1,2-butadieno e da temperatura do meio reacional, sobre a configuração estrutural do polímero formado, fruto da polimerização do 1,3-butadieno, em meio a um solvente apolar. Para isso adotou-se um planejamento fatorial de experimentos, com dois níveis e três fatores, sendo os três fatores citados acima variando, respectivamente, da seguinte forma: (320,5 e 337,5) \times 10⁻⁶ mol de iniciador / mol de 1,3-butadieno, (844 e 1012) \times 10⁻⁶ mol de 1,2butadieno / mol de 1,3-butadieno e (138 e 140)°C. As variáveis dependentes escolhidas para o estudo foram a viscosidade Mooney e a viscosidade em solução, do produto formado. Também pretende-se neste trabalho propor um mecanismo reacional capaz de interpretar os resultados experimentais obtidos, bem como, a elaboração de um modelo cinético da polimerização do 1,3-butadieno permitindo a quantificação da velocidade da reação. O n-butil-lítio demonstrou-se como o fator de grande significância em relação aos parâmetros estudados. Com base nos experimentos, foi possível propor um modelo estatístico que expressasse a variável de saída em função das perturbações causadas para cada um dos fatores manipulados. Estes modelos apresentaram coeficiente de correlação de 0,989 para viscosidade Mooney e 0,976 para viscosidade em solução. A proposição do mecanismo reacional apresentada para elaboração da equação da velocidade da reação, a partir dos resultados experimentais obtidos, não permitiu avaliar os parâmetros cinéticos, devido ao sobre dimensionamento do reator utilizado, impossibilitando uma quantificação via análise do monômero residual.

Palavras-chave: 1,3-butadieno, viscosidade Mooney, viscosidade em solução.

ABSTRACT

The synthetic rubber production industries form one of the important sectors in petrochemical industry. The polibutadiene, one of the products originated from this sector, is the synthetic elastomer second-most produced worldwide. However, it has been notice that, regardless of the many papers already published about this subject, there are still many controversies regarding the influence of operational factors in the rate of reaction of this elastomer. In those investigations, it has not been identified models that predict the behavior of the properties of the end product, in face of the perturbations caused by many reactor input factors. This paper focused on the study of the effect of n-butyllithium's initial concentration. In addition, on the initial concentration of 1,2-butadiene and the reactional environment's temperature. Finally, on the structural configuration of the polymer, resulting from the polymerization of the 1,3-butadiene in a non-polar solvent medium. In order to achieve these objectives, this work adopted a Design of Experimental, whit two levels and three factors, having the three aforementioned factors varying as follows: $(320.5 \text{ and } 337.5) \times 10^{-6} \text{ of initiator}$ mol / 1,3-butadiene mol, (844 and 1012) \times 10⁻⁶ of 1,2-butadiene mol / 1,3-butadiene mol and (138 to 140)°C. The dependent variables chosen for study were Mooney viscosity and viscosity in solution of the end product. This work also intended to propose a reactional mechanism, which would be able to interpret the experimental results obtained, as well as elaborate the kinetic model of the polymerization of the 1,3butadiene. The experiments showed that the n-butyllithium is a factor of great significance regarding the parameters studied. Based on the experiments it was possible to propose a statistical model that expressed the output variables related to the perturbation caused for each of the factors handled. The model showed correlation coefficient of 0.989 for viscosity Mooney and 0.974 for viscosity in solution. The proposition of the reactional mechanism presented for the elaboration of the reaction rate equation, obtained the experimental results, did not permit an evaluation of the kinetic parameters, due to the over dimensioning of the reactor employed, thus preventing a quantification by analysis of the residual monomer.

Keywords: 1,3-butadiene, Mooney viscosity, viscosity in solution.