

Pós-Graduação em Ciência da Computação

 “Conceptualisation of an Environment
 for the Development of Simulators

 based on the Finite Element Method”

 Por

 Maria Lencastre P. Menezes e Cruz

 Tese de Doutorado

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE, FEVEREIRO/2004

 ii

 Universidade Federal de Pernambuco

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MARIA LENCASTRE PINHEIRO DE MENEZES E CRUZ

“CONCEPTUALISATION OF AN ENVIRONMENT FOR THE
DEVELOPMENT OF SIMULATORS BASED ON THE FINITE

ELEMENT METHOD”

ESTE TRABALHO FOI APRESENTADO À
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO DO
CENTRO DE INNFROMÁTICA DA UNIVERSIDADE
FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENÇÃO DO GRAU DE DOUTOR EM
CIÊNCIA DA COMPUTAÇÃO

 ORIENTADOR: Prof. Jaelson Brelaz Castro

CO- ORIENTADORES: Prof. Felix C. Guimarães Santos
 Prof. João Araújo

RECIFE, FEVEREIRO/2004

 iii

To my parents
and

to my daughters Isabel and Beatriz

“Os donos do futuro são aqueles que conhecem o poder da cooperação,
trabalham em equipe, armam seus times antes de realizar um projeto e lutam até
alcançar os seus sonhos”

(Roberto Shinyashiki)

 iv

Abstract

In this work we address the conceptualisation of a Simulation Environment for the
development of multi-physic simulators based on the Finite Element Method (FEM).
Simulators are economical means of understanding and evaluating the performance of
abstract and real-world systems. Our simulation perspective is the class of simulations
for phenomena represented by a set of functions distributed in space and possibly in time,
whose behaviour is based on the FEM. The importance of these simulators has to do with
the effectiveness of the FEM, a general-purpose numerical method, which can easily be
developed to analyse and solve various kinds of problems frequently found in human
daily life, and in its power to provide accuracy and reliability in the solution of partial
differential equations. FEM Simulations consider systems of possibly millions of
algebraic equations, numerical integrations, mesh generations, matrix and vector
manipulations, solutions of linear and non-linear systems, and so on. These features
undoubtly justify the development of a specific computational environment. This work
emphasizes the adaptation of software engineering practices and methodologies for
organizing and reusing the specific domain of simulators formulated using the FEM. The
work defines an environment and its architecture for the development of simulators. It
also proposes some specific patterns for solving relevant problems of our domain of
knowledge, and describes their application through a case study.

Key words: Modelling and Simulation, Framework, Patterns, Finite Element Method,
Problem Frames, Requirements Analysis and Knowledge Domain.

 v

Resumo

Este trabalho tem como principal objetivo a conceitualização de um ambiente de
simulação para o desenvolvimento de simuladores multi-física, baseados no
Método de Elemento Finito (MEF). Os simuladores são meios econômicos de
compreender e de avaliar o desempenho de sistemas abstratos e do mundo real.
Nossa perspectiva de simulação é a classe das simulações para os fenômenos
representados por um conjunto de funções distribuídas no espaço e possivelmente
no tempo, cujo comportamento é baseado no MEF. A importância destes
simuladores tem a ver com a eficácia do MEF, um método numérico de propósito
geral, que é facilmente desenvolvido para análise e resolução de vários tipos de
problemas encontrados freqüentemente na vida diária, e devido ao seu poder de
fornecer exatidão e confiabilidade na solução de equações diferenciais parciais.
As simulações baseadas no MEF consideram sistemas possivelmente de milhões
de equações algébricas, de integrações numéricas, de geração de malhas,
manipulações de matrizes e vetores, solução de sistemas lineares e não lineares, e
assim por diante. Estas características justificam, sem dúvida, o desenvolvimento
de um ambiente computacional específico. O trabalho realizado enfatiza a
adaptação de práticas e de metodologias da tecnologia de programação para
organizar e permitir o reuso do domínio específico dos simuladores formulados
usando o MEF. O trabalho define um ambiente e a sua arquitetura para o
desenvolvimento de simuladores. O trabalho também propõe e define padrões de
modelo e de projeto específicos para a solução de problemas relevantes no
domínio do conhecimento sendo tratado. A aplicação destes padrões foi realizada
através de um estudo de caso.

Palavras chave: Modelagem e Simulação, Framework, Padrões, Método do
Elemento Finito, Problem Frames, Análise de Requisitos e Domínio do
Conhecimento.

 vi

Summary

1. Introduction 1

1.1 Motivation 2
1.2 Contribution 5
1.3 Organization of this Work 8

2. Simulation of Coupled Multi-physic Systems using Finite Element Method 10

2.1. Introduction 11
2.2 FEM Concepts 15
2.3 Coupled Phenomena 26
2.4 Issues in the Development of FEM Simulators 28
2. 5 Related Work 31
2.6 Final Considerations 33

3. Analysing and Describing FEM Simulators with Problem Frames 35

3.1. Introduction 36
3.2. Problem Frames Technique 37
3.2.1. Indicative and Optative Moods 38
3.2.2. Phenomena 38
3.2.3. Domains 40
3.2.4. Problem Frames Diagrams 40
3.2.5. Context Diagram 42
3.2.6. Repertory of base Problem Frames 43
3.3. Locate and limit the scope of the Problem in the world (Indicative) 44
3.3.1 Plexus Indicative Domain 46
3.3.2 Real World Domain 47
3.3.3 Problem Domain 48
3.3.4 Pre-Processor Domain 49
3.3.5 Simulator Domain 49
3.3.6 Simulation Domain 50
3.3.7 Visualization Domain 50
3.3.8 Users Domain 50
3.4. Proposed Environment for the Development of FEM Simulators (Optative) 51
3.4.1 The Plexus System 52
3.4.2 The Plexus Context Diagram 54
3.4.3 Real World Domain 55
3.4.4 Plexus User Domain 55
3.4.5 Knowledge Base Domain 56
3.4.6 Simulator Domain 60
3.4.7 Pre-processor Domain 62
3.4.8 Simulation Domain 62

 vii

3.4.9 Visualization Domain 62
3.4.10 Classification of Plexus concepts according to Problem Frames 63
3.4.11 Plexus Machine Structuring 64
3.5. The Plexus Problem Frames 65
3.5.1 Simulator Builder Problem Frame 65
3.5.2 Pre-processor Problem Frame 67
3.6. Problem Frames Evaluation 69
3.7. Final Considerations 71

4. Plexus Simulation Environment Architecture 72

4.1 Introduction 73
4.2 Plexus Architectural Structure 74
4.2.1 Knowledge Management Subsystem 75
4.2.2 Simulator Builder Subsystem 78
4.2.3 Simulator Configurator Subsystem 78
4.2.4 Pre-processor Subsystem 79
4.2.5 Simulator Subsystem 82
4.2.6 Viewer Subsystem 85
4.2.7 Pre-processed Problem Data 85
4.2.8 Plexus Interface Subsystem 85
4.2.9 Repository Manager Subsystem 85
4.3 Plexus Architectural Behaviour 86
4.4 Plexus Architectural Evaluation 88
4.5 Final Considerations 89

5. Plexus Simulation Environment Abstractions 91

5.1 Introduction 92
5.2 Computational Phenomenon Pattern 96
5.2.1 Pattern Name 96
5.2.2 Context 97
5.2.3 Problem 97
5.2.4 Forces 98
5.2.5 Solution 99
5.2.6 Example of Usage 105
5.2.7 Consequences 110
5.3 FEM Simulator Skeleton Pattern 111
5.3.1 Name 111
5.3.2 Context 111
5.3.3 Problem 112
5.3.4 Forces 112
5.3.5 Solution 113
5.3.6 Applicability 116
5.3.7 Example of Usage 116
5.3.8 Considerations 119

 viii

5.3.9 Example of Simulator Applicability 119
5.3.10 Consequences 120
5.3.11 Negative Consequences 121
5.3.12 Forces unsolved by the pattern 121
5.3.13 Related patterns 121
5.3.14 Known uses 122
5.4 GIG-Pattern (Generic Interface Graph) 122
5.4.1 Pattern Name 123
5.4.2 Context 123
5.4.3 Motivation Example 123
5.4.4 Problem 125
5.4.5 Forces 125
5.4.6 Solution 127
5.2.8 Collaborations 128
5.4.7 Implementation Issues 130
5.4.8 Variants 131
5.4.9 Example 131
5.4.10 Consequences 133
5.4.11 Related patterns 135
5.4.12 Known uses 135
5.5 Final Considerations 135

6 Conclusion 138

6.1 Objectives of this Work 139
6.2 Contributions 140
6.3 Limitations 142
6.4 Comparison between Plexus and other approaches 143
6.5 Final Remarks 145
6.6 Future Work 146

Bibliography 147

Appendix A Examples of Coupled Multi-physic Phenomena Problems 155

A.1 A Simulator Description 156
A.1.1 Example 1 157
A.1.1.1 Exact Mathematical Models 158
A.1.1.2 Differential-algebraic system of equations 160
A.1.1.3 Global Algorithm for the Problem 160
A.3 Example 2 163
A.4 Example 3 164

 ix

Appendix B Approaches for Simulation Software Development 166

B.1. Simulation Software Approaches 167
B.2. Simulation Environments 168

Appendix C The Plexus Simulation Environment Interface 170

C.1. Introduction 171
C.2 Plexus Environment Interface 172
C.3 Plexus Use Cases 173
C.4 Plexus System Windows 175

List of Figures

Figure 1-1 Basic entities of a simulation model development 3
Figure 1-2 Simulation Environment Conceptualisation 6
Figure 2-1 Example of an Engineering Problem 11
Figure 2-2 Cycle of engineering analysis process 11
Figure 2-3 Input and Output of a Simulation Based on the FEM 13
Figure 2-4 Vector Field Examples 14
Figure 2-5 Example of a Behaviour Law represented by a Differential Equation 14
Figure 2-6 Summary of FEM concepts 16
Figure 2-7 Typical FEM process 17
Figure 2-8 Reference Finite Element Geometry 18
Figure 2-9 Mesh example used in the algebraic system generation 19
Figure 2-10 Example of Vector Field 19
Figure 2-11 Shape Functions 20
Figure 2-12 Abstraction of a Geometric Element and its Nodes 20
Figure 2-13 Approximate Vector Field 21
Figure 2-14 Approximate Vector Field simplification 21
Figure 2-15 Shape functions for the example 21
Figure 2-16 Exact Weak Form 22
Figure 2-17 Discrete Weak Form for each element 23
Figure 2-18 Transformation to the Algebraic Linear System of equations 24
Figure 2-19 Examples of Coupled Differential Equations 27
Figure 2-20 Phenomena Relationship 27
Figure 2-21 General Problem Identification – Existing reality 30
Figure 2-22 Objectives towards an improvement in Simulation Environments 31
Figure 3-1 The Environment - Problem and the Solution 37
Figure 3-2 Generic Problem Frame Diagram 41
Figure 3-3 Context Diagram 42
Figure 3-4 Conventional FEM Analysis Process 45
Figure 3-5 Plexus Indicative Mood (Problem domains and their interaction) 46
Figure 3-6 Real World Domain 47

 x

Figure 3-7 Non-functional Requirements 51
Figure 3-8 Solutions Decomposition 52
Figure 3-9 Plexus Environment -Desired Machine 52
Figure 3-10 Simulator Building and Simulation -Problem Definition and Solution 53
Figure 3-11 Plexus Context Diagram 55
Figure 3-12 Designer, User and Administrator Domain 56
Figure 3-13 Knowledge Base Domain 56
Figure 3-14 Basic Knowledge Domain 56
Figure 3-15 Simulator Knowledge Domain 57
Figure 3-17 Configuration Domain 59
Figure 3-18 Problem Knowledge Domain 60
Figure 3-19 Simulator Domain 60
Figure 3-20 Business Process Workflow controlled by the Simulator Kernel 61
Figure 3-21 Pre-processor Domain 62
Figure 3-22 Simulation Domain 62
Figure 3-23 Visualization Domain 63
Figure 3-24 Problem's decomposition – Plexus Sub-machines 65
Figure 3-25 Simulator Builder Problem Frame 66
Figure 3-26 Indicative Mood – Simulator Builder Problem Domain 66
Figure 3-27 Optative Mood: Simulator Builder Specification Phenomena 67
Figure 3-28 Optative Mood: Simulator Builder Requirement Phenomena 67
Figure 3-29 Problem Frame Pre-processing 68
Figure 3-30 Indicative Mood: Pre-Processor Problem Domains 68
Figure 3-31 Optative Mood: Pre-processing Requirement Phenomena 68
Figure 3-32 Optative Mood: Pre-processing Specification Phenomena 69
Figure 4-1 Plexus Architecture 75
Figure 4-2 Pre-processing Input 77
Figure 4-3 Data Transformation 79
Figure 4-4 Dynamic Structure Building 80
Figure 4-5 Pre-Processor Control Structures 81
Figure 4-6 Geometry and Phenomena Manager 82
Figure 4-7 Overview of Plexus Workflow Perspective following WfRM 83
Figure 4-8 Simulator Component 84
Figure 4-9 Plexus Functioning 87
Figure 5-1 Plexus Pattern Language 93
Figure 5-2 Frameworks supported with patterns 94
Figure 5-3 Plexus Simulator Framework 95
Figure 5-4 Plexus Computational Phenomena Framework 96
Figure 5-5 Geometry Participants (Brep graph) 101
Figure 5-6 Phenomena Participants 102
Figure 5-7 Mesh Participants 103
Figure 5-8 Sequence diagram for Computational Phenomenon 105
Figure 5-9 Whole domain of example 106
Figure 5-10 GeomGraph of the whole example geometry 109
Figure 5-11 Simulation Regions and their phenomena 109
Figure 5-12 Example of a PhenEntity 110

 xi

Figure 5-13 Participants of the Simulator Pattern 113
Figure 5-14 Global Algorithm Skeleton 117
Figure 5-15 Block Skeleton for any Block 118
Figure 5-16 Mesh Generation Algorithm 124
Figure 5-17 Mesh Generation Graph 124
Figure 5-18 Application of the GIG structure in Mesh generation algorithm 125
Figure 5-19 Participants of the GIG-pattern 128
Figure 5-20 Sequence diagram for GIG building 129
Figure 5-21 Class diagram for a variant of an AlgthmNode 131
Figure 5-22 FEM Simulator and GIG classes 132
Figure 5-23 Block Algorithm Skeletons 133
Figure 5-24 Global Alg.Skeleton graph Block Alg.Skeletons graphs 133
Figure 5-25 Future Plans for the Plexus Framework 137
Figure 6-1 Summary of the Proposed Solutions 140
Figure A-1 Simulator specification (global scenario) 156
Figure A-2 Coupled Multi-physic - Example 1 158
Figure A-3 Coupled Multi-physic Example 2 164
Figure A-4 Coupled Multi-physic Example 3 165
Figure C-1 Simulation Process for Problem Solving 171
Figure C-2 System Overview (Administration) 172
Figure C-3 Plexus System Overview (Simulation Components) 173
Figure C-4 Existing Actors 173
Figure C-5 Simulator Construction Use Case 174
Figure C-6 Simulation Running Use Case 174
Figure C-7 Problem Creation 174
Figure C-8 Plexus Main Window 175
Figure C-9 Phenomena Registration (basic data) Window 176
Figure C-10 Phenomenon-Weak Form Registration 176
Figure C-11 Simulator Register 177
Figure C-12 Global Scenario 178
Figure C-13 Global Skeleton Code 178
Figure C-14 Group Definition 179
Figure C-15 Geometry Registration Window 180
Figure C-16 Simulator Scenario Window 181
Figure C-17 Simulation Problem Phenomena Window 181

List of Tables

Table 4-1 Summary of the Architecture Evaluation 88
Table 6-1 Summary of the Architecture Evaluation 145

1

Introduction

This chapter presents the main motivation for this work; describes the importance
of simulators, the impact of computational mechanics and the use of the Finite
Element Method on several contexts. Then, it details the contribution of this work,
which is the conceptualisation of a Simulation Environment for the specification
and control of simulation models for coupled multi-physics phenomena. The target
users of this proposed environment are the developers of numerical programs,
academics and researchers. Finally, the organization of this work is presented.

Chapter

 1

2

1.1 Motivation

We can guess that in the future computers will properly fade into the background in at
least two ways – into appliances that play some part in our lives, and into simulations
that present us with intriguing environments in which we interact. Such environments
range from the fanciful worlds of science fiction, interactive games and animation to
engineered simulations of complex systems that exist only in the mind; and to
environments in which individuals can learn and groups can be trained as teams
[KWD99].

In this work we will focus our attention on simulation, which is a highly relevant
method for solving many real world problems. Simulation is used to describe and
analyse the behaviour of a system, ask what-if questions about real systems and aid in
their design. Both real and conceptual systems can be modelled and simulated.
Simulators provide an economical means of understanding and evaluating the
performance of both abstract and real-world systems. Unfortunately, the design and
implementation of simulators is almost as complex as the systems being simulated.
Therefore, in order to be efficient, simulators must be able to adapt to an ever-
increasing system complexity.

Modelling is an important and perhaps the primary tool for studying the behaviour of
large complex systems [BAJ98]. In physical sciences, models are usually developed
based on theoretical laws and principles. These models may be scaled up to physical
objects (iconic models), mathematical equations and relations (abstract models), or
graphical representations (visual models). The usefulness of models has been
demonstrated in describing, designing, and analysing systems. In [BAJ98], one can
find some principles of modelling:
§ Conceptualising a model requires system knowledge, engineering judgment and

model-building tools.
§ The secret of being a good modeller is the ability to remodel.
§ The modelling process is evolutionary. The resulting correspondence between the

model and the system not only establishes the model as a tool for problem solving
but also provides system familiarity for the modellers and act as a training vehicle
for future users.

Developing a validated simulation model involves three basic entities: real/conceptual
world system under consideration, a theoretical model of the system, and a computer
based representation of the model. The activity of deriving the theoretical model from
the real world system can be referred to as simulation modelling, and the activity
whereby the computer based representations derived from the model can be referred to
as simulation programming [GV95] (see Figure 1-1).

3

Figure 1-1 Basic entities of a simulation model development

Scientists and engineers write most of their own technical software. It is not likely that
someone from another field could write a program from what they found in numerical
analysis journals, because those papers are very mathematical [GR02]. It could be
speculated that numerical analysis specialists would be dispersed among the sciences;
so maybe those people are doing the programming. If so the development of numerical
analysis software is even more of a concern. This happens, because most software
engineering techniques do not emphasize specific development methodologies to
support these types of developers. Therefore, numerical analysts are required to go
deeper in the computer world, spending time developing proper abstractions and
having to deal with problems not of their specific area and interest.

When a designer defines a computational model for a mathematical formalism, he/she
has to deal with model complexities used to limit the assessment of their correctness
(model verification). Usually, the designer produces restricted documentation about
the generated code, and does not provide or use high levels of abstraction. Thus, the
experiments with those models can hardly be replicated without access to the entire set
of numerical models and solution techniques. Hence, the issue of information reuse
goes beyond the support provided for restricted communities of researchers.

This work describes a method for improving the development of simulators in the
specific domain of Computational Mechanics. Computational Mechanics has had a
profound impact on science and technology over the past three decades. The
Computational Mechanics software industry moves several billions of dollars per year.
However, in many aspects, it applies software engineering development techniques
related to the seventies. The success of Computational Mechanics is due to its
effectiveness in solving problems that interest society and in providing deeper
understanding of natural phenomena (physical facts like motion and heat transfer) in
engineering systems. We can define Multi-physics as a qualifier for a set of interacting
phenomena, in space and time. These phenomena are usually of a different nature
(deformation of solids, heat transfer and electromagnetic fields) and may be defined in
different scales of behaviour (macro and micro mechanical behaviour of materials).

Reality (nature) Real World System

Simulation modelling

Simulation programming

Humankind comprehension
about nature Theoretical Model of the System

Computer based representation

A paradigm for the computational
representation of interacting

complex phenomena. Ex: Finite
Element Method

4

Sometimes a multi-physics system is also called a coupled phenomena system. As an
example of multi-physic analyses, one may consider:
§ Analysis of air conditioning (environment thermal comfort): evaluation of

temperature distribution, and air movement inside a room.
§ Analysis of air resistance, considering the airflow around cars and airplanes in

movement.
§ Thermal stress analysis: engineers can simulate gradual or rapid temperature

changes and predict deflections or stresses occurring in an object, whose resistance
to mechanical efforts depends on temperature.

The enormous success of Computational Mechanics resides in its predictive power,
making possible the simulation of complex physical events and the further use of these
simulations in the design of engineering systems. This is done through the so called
computer modelling: the development of discretized versions of the theories of
mechanics, which are amenable to digital computation, together with complex
processes of manipulating these digital representations to produce abstractions of the
way real systems behave [TO95]. The Finite Element Method (FEM) has been
frequently used in the field of Computational Mechanics, which has come to rely
heavily on this technique. Gradually the FEM is becoming the most popular analysing
procedure within various fields of design [VM02].

The FEM is a way of obtaining a numerical approximation of a mathematical theory,
which describes physical behaviour. This method is considered a powerful
computational technique for the solution of differential and integral equations that
arise in various fields of engineering and applied science [COR95]. There is an
important feedback in developing simulators using the FEM due to its great
applicability in making previsions in several contexts, such as:
§ Systems involving fluids, which can range from simple fluids like water up to more

complex ones such as blood, air or petroleum.
§ Damage evolution mechanisms, for example, describing damage arising and the

development in materials (from airplanes to biological organs).
§ Heat Transfer Systems, involving conduction, convection and/or radiation.
§ Solid Systems such as vehicles parts, civil construction, biologic organs.
§ Chemical Reactions: (i) In the environment: water quality (biologic environment

where chemical reactions occur); air quality; pollutant dispersion; (ii) Reactors
(industrial reactions).

This work is part of the Plexus1 project, whose objective is the development of a
computational environment to help the design, implementation, validation and
verification of a simulation software for coupled phenomena based on FEM [LSA01].

1 Plexus’s catchy name came from the involved complexity treated in the project.

5

The work focuses on the simulation of chemo-thermo-mechanical interactions, which
occur inside a given system, and between this system and its surrounding environment.
Our case studies are based on applications related to Petroleum (damage evolution in
pipeline networks conveying fluids) and Medicine (integration of image acquisition
systems and simulation systems) that are parts of current research projects carried out
in the Mechanical Engineering Department, UFPE, Brazil.

The simulation perspective, used in this thesis, deals with the class of simulations for
phenomena represented by a set of functions distributed in space and possibly in time,
which are applied to part of a specific domain of Computational Mechanics - the
Simulation of Coupled Multi-physic Systems - using the FEM. This work investigates
ways to support flexible techniques to help the construction of these types of
simulations.

The method to be developed should be: (i) adaptable to new technologies and trends
(such as: intelligent systems, distributed simulation, cooperative work, and open
systems), (ii) extensible and flexible to incorporate new knowledge in the form of new
models and solution algorithms.

The next section describes the major contributions of this thesis.

1.2 Contribution

The use of some paradigms and the extension of modern software engineering
solutions represent some of the aspects that make possible the achievement of new
degrees of attained satisfaction and gains in FEM simulators conception and project
development. The important idea of domain-oriented reuse is stressed in this work. In
fact, in order to be effective, reuse has to be performed at a high level of abstraction,
that is, at the domain level [NEI84, LJ99]. In this work we explore the FEM domain.

The objective of this work is to reduce the gap between software engineering solutions
and the way our specific domain of knowledge (the FEM domain) has been
conceptualised up to now.

Thus, we propose a Simulation Environment, called Plexus, which takes into account
existing expertise and facilitates improvement of software features through use of
valuable scientific methods and techniques. By definition FEM is deeply polymorphic,
which means that highly versatile FEM based-simulators may be produced. Such
generality does not exist in classical analytical methods [COR95, RG00]. Hence, we
describe a domain specific proposal to detail the systematic way to define, organize
and implement the FEM data and processes.

The main contributions of this thesis are presented in Figure 1-2:

6

§ Exploration and adaptation of some software engineering techniques, such as
Problem Frames [JAC01], emphasizing the importance of a good description and
analysis of the problem domain, increasing the problem completeness and
comprehension, independently of the proposed solution strategies.

§ The analysis and indication of domain specific ways for FEM representation and
implementation, decreasing the difficulty, time spent and development costs of
FEM simulators. This is realized through the definition of:
§ The Plexus Simulation Environment architecture for the domain being

considered; focusing on process reuse. It specifies an abstract process for the
solution of coupled phenomena simulators, based on pre-defined scenarios. It
supports a framework for the construction of semi-complete simulators; which
can be further configured for the definition of more specific ones.

§ Specific patterns2 applied to the Plexus architecture, such as the ones intended
to: (i) guide the development of simulators models based on FEM; (ii) define
and control simulator process flows, taking into account some specific
requirements of the domain being treated, assisting in the design and reuse of
programs, (iii) encapsulate simulators low level and complex procedures and
relationships, which are very specific to the FEM model of single phenomenon
behaviour laws.

§ Development of case studies, to validate the proposal.

Figure 1-2 Simulation Environment Conceptualisation
Our thesis includes:

§ The use of object-oriented simulation as a basic paradigm. The FEM mathematical
representation already has many properties, which are directly linked to object-
oriented concepts [ZL97], such as: abstraction, polymorphism, encapsulation, and
modularity.

2 Patterns describe ideas and perspectives [FAY99]. A pattern is a small collection of atomic units and a
description of their relationships. To be relevant, a pattern must express a general recurrent theme that has
proven to be useful.

+

Investigation of theories, such as application
Frameworks and Adaptive Object Models.

+

+

+

FEM description,
issues in the

development of
FEM simulators,

related work
Chapter 2

Evaluation of a
technique for

problem domain
analysis/

modelling
Chapter 3

Systematic way

Proposal of
architecture to
improve FEM

simulators
development

Chapter 4

Frameworks
and Patterns

definition

Chapter 5

+
Examples
of FEM

simulation
problems

Appendix-A

Simulation
software
develop-

ment
approaches
Appendix-B

Some
Interface
Windows

Appendix-

+

Systematic way to organize and implement FEM simulators process and data.

7

§ Adoption of well-known software engineering techniques such as: Frameworks
[FJL01], Adaptive Object Models [YJ02], and Workflow [MAN01]. They seem to
be relevant and suitable to improve the architectural definition of FEM simulators.

§ Definition of a collection of patterns for FEM, to be used to describe abstractions
for the conception of simulators, and the main complex steps and solutions for a
simulation process definition. This improves the way in which software
components can be developed.

This proposal covers from requirements engineering up to the design of a simulator
engine, which is part of our specific domain of Computational Mechanics. The results
of this work point to simulator architecture, implemented by a specific framework,
which supports more flexible and rich computational solutions for the development of
FEM simulators. Our focus is on software quality, reuse of models and data, pattern
definition, and process improvement.

We can summarize and distinguish the different and interdisciplinary areas involved in
our work:
a) Computer Science, specifically in the following sub-areas:
§ Simulation Modelling: to study and model simulations, which involve a set of

dependent and distributed functions (that develop over time or not).
§ Software engineering: explored for a specific Domain of Knowledge. The

conclusions obtained might also help other domains of knowledge that have similar
characteristics, increasing the relevance of the achieved results:
§ Development and evaluation of a method for modelling and analysing

requirements in a complex domain of knowledge [LCS03].
§ Development of a specific architecture (framework) that focus on quality

attributes such as process reuse and system flexibility [LSR02b].
§ Proposal of new patterns, for the specific domain of computational mechanics

considered [LSR02a], which could be further applied to similar domains. This
includes: the definition of abstract processes and structures [LSA02b], giving
support to specific simulator components development; workflow analysis in
our specific domain [LSV03a].

b) Computational Mechanics, where the final users will gain more powerful and
specific abstractions and techniques for the development of FEM simulators.

The next section describes the organization of this thesis.

1.3 Organization of this Work

This chapter presents the main motivation for this work, which is related to the power
of simulators in multi-physics systems, within the field of Computational Mechanics.
The thesis contribution was also presented, giving a brief description of the involved

8

solutions and research areas. The remainder of the work is organized in the following
way.

Chapter 2 provides a background for simulations of coupled multi-physics
phenomena using the FEM. It details the processes and concepts involved. This leads
to the identification of some important issues that allowed for a better understanding of
the design of finite element programs. Generic requirements for the development of
FEM simulators are presented. Finally, related work illustrating what is currently being
developed is shown.

Chapter 3 investigates a suitable description technique for the specific domain of
mechanics, that is, the FEM simulators development for coupled multi-physics
phenomena. It considers the Problem Frames technique to improve the description of
the Plexus Simulation Environment. The main characteristic of Problem Frames
technique is that it separates the domains into problem and solution domains. The
problem is not at the computational interface – it is routed inside the world, further
away from the computer.

Chapter 4 presents the Plexus Simulation Environment architecture for supporting the
simulation of coupled phenomena, based on FEM solutions. The chapter presents
architectural components and the interaction between them and their functionalities.
This architecture gives a clear perspective of the whole environment and the control
required for its development, and tries to reflect some system requirements and quality
attributes such as reuse, modularity and flexibility.

Chapter 5 describes some architectural abstractions, such as frameworks and domain
specific patterns, whose purposes are the specification of domain solutions (features
and structural characteristics) to be used in the Plexus Simulation Environment. The
patterns include: a Computational Phenomena Pattern (a pattern which standardizes
the complex model of a phenomenon and makes intuitive and easier the representation
of data sharing and dependence between different phenomena); a FEM-Simulator
Skeleton Pattern (a pattern for modelling FEM simulators based on algorithm
skeletons for coupled phenomena), a GIG-Pattern (a pattern based on a Generic
Interface Graph for process control). A case study is presented and applied during the
description of these patterns.

Chapter 6 summarizes the objectives and contributions of this work in the
conceptualisation of a Simulation Environment, it describes some identified
limitations, future activities and contains some final remarks.

Appendix A presents three different examples of problems involving coupled multi-
physics phenomena. First we give a description of a simulator that can be used to solve
two of the given problems (example 1 and 2). In addition, in the first example (number

9

1) we present extra details about exact mathematical models, the differential-algebraic
system of equations, and the global algorithm for the problem. These details can help
on a more complete understanding of FEM patterns

Appendix B presents several ways to develop simulation systems, including some
examples of general-purpose languages, simulation languages and simulation
environments (specific and general purpose).

Appendix C gives a brief explanation about Plexus system and also shows its
interface.

10

Simulation of Coupled Multi-physic Systems
using Finite Element Method

This chapter provides a background for simulations of coupled multi-physics
phenomena using the FEM. It details the processes and concepts involved. This
leads to the identification of some important issues that allows a better
understanding of the design of finite element programs. Generic requirements for
the development of FEM simulators are presented. Finally, related work illustrating
what is currently being developed is shown.

Chapter

 2

11

2.1. Introduction

Real physical systems are highly complex encompassing several factors. The
modelling of such systems chooses the most relevant variables to be represented,
reducing their complexity. Sometimes, the translation of the “domain” of the problem
into a different one may be convenient. This is the case whenever one wants to model
structures of complex (and irregular) shapes. The FEM simplifies the modelling by
splitting the original surface into small regular pieces, which “cover” the whole object
to be modelled. This technique may provide the answers to some interesting questions,
for an example see Figure 2-1.

Figure 2-1 Example of an Engineering Problem

The visualization technique, used in conjunction with engineering analysis, tries to
provide the most meaningful way for engineers to view both “input” and “output”. The
complete process is described by a sequential cycle composed of the following steps:
build a model, analyse it, view results, review its behaviour, then, change the model
and repeat the cycle until a satisfactory result is obtained, see Figure 2-2.

Figure 2-2 Cycle of engineering analysis process

The functions, which take place before and after analysis, are often described as “pre-
processing” (it takes real data and generates data in the form accepted by the models)
and “post-processing” (that takes analysis output and generates data required by the
user in the form accepted by the viewer).

Many models applied to engineering and applied science problems are governed by
differential or integral equations. The solutions to these equations would provide an

A complex structure like a helicopter can be
simulated on a computer so that the helicopter's
physical properties can be studied to determine how
well the design will perform under real world
conditions. The computer models permit the design
team to examine a wide range of options to detect
design flaws long before the prototype stage.

Modelling

Analysis

Visualization

Done

no

yes

12

exact solution to the particular model of the problem being studied. However,
complexities in the geometry, material properties and in boundary conditions - that are
seen in most real world problems - usually mean that an exact solution is not available.
For such classes of problems, where the analytical solutions are not available,
computational solutions have a great impact on the way the search for solutions occurs
and in the way engineering projects are made.

Many typical modern engineering and analysis techniques used in computational
solutions are based upon discretizing a problem domain into small pieces or elements.
For each element an approximate function is used to represent the behaviour of the
element in terms of unknown solution variables. These variables are gathered into
large systems of equations and then solved on a computer. The results of this, permits
the definition of the desired approximate solution. Engineers try to find convergence in
the approximate solution, considering that if errors can be estimated and models can be
adapted, then results can be improved. In particular, we are interested in methods,
which are used in the development of approximate procedures that can be applied in a
general context, inside the limits of the acceptable precision of the engineering
problem taking into account reasonable use of time and money.

The FEM has been considered as one of the major methods for finding approximate
solutions to systems of coupled partial differential equations. One of the main
advantages of the FEM is that it allows the development of computational systems
aimed at solving various classes of problems [YB96]. The FEM proposes to solve
complex problems modelled as phenomena that occur in continuous media represented
as vector fields defined in these media. By continuum we mean a body of matter or
simply continuous region of space in which a particular phenomenon is occurring. This
can be a piece of metal subjected to a difference of temperature, a region of space
under a magnetic field or a fluid subjected to a mechanical load. In any case, we are
after the distribution of the field variable resulting from imposed conditions and
behaviour laws.

The FEM has been extensively used in the analysis of structural designs for over three
decades. This method has become the de facto industry standard for solving multi-
disciplinary engineering problems that can be described by Integra-algebraic-
differential equations. Its influence cuts across several industries by virtue of the
applications – solid mechanics (civil, aerospace, automotive, mechanical, biomedical,
and electronic), fluid mechanics (geophysics, aerospace, electronic, environmental,
hydraulics, biomedical, and chemical), heat transfer (automotive, aerospace, electronic,
and chemical), acoustics (automotive, mechanical, and aerospace), and
electromagnetism (electronic and aerospace), etc.

13

The usual method for developing and making the required analysis is to select or
derive a mathematical model, appropriate for the physical problem in mind, which can
accept as input the geometry, material properties, known restrictions, initial conditions
and other pieces of data. Typically the mathematical models produced by this process
are systems of partial differential equations, see Figure 2-3.

Figure 2-3 Input and Output of a Simulation Based on the FEM

The construction of a geometric model describing the problem geometry is used to
create the geometric data needed for the analysis. The same analysis model can
conceivably be used to solve a number of states of behaviour (e.g. different loads and
initial states) in different geometries.

The FEM solves the problem through an approximation method, where it computes the
solution of an algebraic system of equations. The solution to that system is a vector of
coefficients of a linear combination of known functions, which is the approximate
solution. Thus, the produced outputs are the approximate vector field and desired
response variables computed over the geometric domain and based on that
approximate solution.

The Exact Problem

The planning of a simulation should consider, from the beginning, the definition of all
physical phenomena and respective vector fields. A physical phenomenon can be
abstractly defined as a fact or occurrence, which can be described by a certain finite
number of pieces of information, which, in turn, have to obey a set of behaviour laws.
For example, fluid flows and heat transfer.

An exact problem definition includes:
§ Exact Geometry where the phenomenon is defined;

Simulator
Based on FEM

Approximate solutions
to systems of coupled
partial differential
equations.

Problem Discretization

Exact Problem: engineering
problems represented by
systems of coupled partial
differential equations

14

§ Vector Field, which denotes a vector-valued function that describes a phenomenon,
defined over the exact geometry. In Figure 2-4 there are some examples of vector
fields.

§ Phenomenon Behaviour Laws is an exact mathematical formulation of a
phenomenon, comprised of a system of Integra-algebraic-differential equations,
which governs the behaviour of the phenomenon vector field. There is one
behaviour law for each vector field. Restrictions may be applied to the vector field
such as boundary conditions and others. There is an equivalent way of describing
the behaviour laws, which is called the exact weak form. The latter is the form
used by the FEM.

Figure 2-4 Vector Field Examples

Differential equations are, for example, the ones that describe the displacement of a
material body and temperature distribution. Figure 2-5 shows an example of a
behaviour law, which can be used for one-dimensional linear elasticity and heat
transfer. It includes the boundary conditions 0)1(,0)0(== uu . These laws will be
applied later, in this section, for the representation of phenomena occurring on a
geometry (a curve), represented in Figure 2-9.

Figure 2-5 Example of a Behaviour Law represented by a Differential Equation

This chapter is organized in the following way. Section 2.2 details the major FEM
concepts. Section 2.3 introduces coupled phenomena and provides some application
examples. Section 2.4 presents the identification of the major issues and requirements
for the development of FEM-based simulators for coupled multi-physics phenomena
is. Furthermore, some related works are described in section 2.5. Finally, some
considerations are presented in section 2.6.

 10,2

2

<<=+− xxu
dx

ud

 0)1(,0)0(== uu

Elasticity: u (x,t)

Heat generation: g (x,t)

 Phenomenon Vector Field

Heat Generation by
cyclic deformation
(thermo-mechanics)

Heat transfer by conduction: T (x,t)

Context

(x,t)

f (x,t)

x

 f

t

15

2.2 FEM Concepts

Classically speaking, almost all the FEM variants have a lot in common, for instance:
§ A specific way to describe the behaviour laws of the involved phenomena (the so

called exact weak form).
§ A geometry where phenomena are defined (exact geometry).
§ A discretization of the exact geometry into a collection of simple geometric forms

(the geometric mesh). Those simple geometric forms are called finite elements.
§ Definition of special functions based on a given mesh (shape functions).
§ Use of shape functions for the definition of the basis for two finite dimensional

spaces of functions: the discrete trial set and the discrete test space.
§ Definition of the approximate solution as a member of the discrete trial space,

through a linear combination of the components basis (the coefficients are the
unknowns of the problem and may be time dependent or not).

§ Definition of the discrete behaviour law (discrete weak form) based on the exact
weak form, of the approximate solution (discrete vector field) and on the discrete
test space. The discrete weak form may still be modified for reasons related to
numerical stability and/or solution method requirements.

§ If the problem is not time-dependent, the final result of the discrete behaviour law
is either a linear or non-linear system of algebraic equations, whose unknowns are
the coefficients used in the definition of the approximate solution.

§ If the problem is time-dependent, the final result of the discretization is either a
linear or non-linear system of ordinary differential equations (the so called semi-
discrete equations), whose unknowns are the time-dependent coefficients of the
approximate solution. For time-dependent problems, a scheme for discrete (in
steps) time progression is defined in order to compute the state of the problem at
each time instant, starting from a given initial state.

§ The solution of a system of non-linear/linear algebraic equations.
§ Auxiliary methods, which execute specific processes such as: mesh generation,

numerical integration at the finite element level; a posterior error estimations for
the discretization and models; adaptations of discretization and of models; and
solvers for non-linear and linear systems of algebraic equations; etc.

We can summarize by saying that a system of algebraic equations is the result of a
process, which involves the discrete sets of shape functions (trial and test), the discrete

16

weak form, the discrete vector fields, the geometric mesh and other data (see Figure 2-
61).

Test Space

Discrete Test Space

related to

System of Algebraic Equations Matrices and Vectors)

Exact Weak Form

requires

Discrete Trial Space

Discrete Weak Form
requires

equivalent to

based on

Trial Space related to

Shape Functions

used to define

used to define

Discrete Vector Field

belongs to

requires

Behaviour Law equivalent to

Vector Field

owner

belongs to

approximation of

Exact Geometry

defined on

defined on

Geometric Mesh based on

defined on

approximation of

Figure 2-6 Summary of FEM concepts

In the next subsection we will detail the description of what composes the approximate
(discretized) problem. Also we will consider the algorithm for the solution of the
system of algebraic equations, which is obtained by the discretization process.

2.2.1 The Approximate Problem

By the discrete formulation of a phenomenon we mean the system of algebraic
equations (either linear or non-linear) obtained through the application of a finite
element discretization technique (discretization process) to the exact formulation.

A discretization process involves the approximation of the problem geometry (mesh of
finite elements), the approximation of the phenomenon vector field and the
approximation of the respective behaviour laws (see Figure 2-7). The most used
method for storing the required information of the system of algebraic equations is
using vectors and matrices. If the problem is time-dependent, a time progression

1 This figure represents a UML class diagram which objective is only to represent the association

between the major FEM concepts.

17

numerical scheme should be applied and the result is again a system of algebraic
equations. If an algebraic system is linear, the vector-matrix symbolism is K.d = r,
where d is a vector of unknowns (coefficients of the trial shape functions in the
discrete vector field), r is a known vector, and K is a known matrix.

Figure 2-7 Typical FEM process

Even when a system of algebraic equations is non-linear, its solution frequently uses a
solution of linear systems of algebraic equations, e.g. when using solution algorithms
related to the Newton-Raphson method [ZP00]. Therefore, the explanation about the
processes involved in solution algorithms for the FEM can be restricted to the
assembling and solution of linear systems of algebraic equations. For those types of
systems, a typical FEM program performs the following tasks:
i) Generates a mesh for the given geometry;
ii) For each finite element from a given mesh:

§ Compute a specific matrix (element matrix);
§ Compute a specific vector (element vector);
§ Assemble the element matrix in a large given matrix (global matrix);
§ Assemble the element vector in a large given vector (global vector);

iii) Solve the linear system of algebraic equations with the matrix as the global
matrix and the global vector as the right-hand side of the eqaution.

Below each involved concept is detailed. As an example, we will consider the one-
dimensional example defined in Figure 2-5.

 Finite
Element

Typical FEM process:
1. Approximate a geometry with a
collection of many geometric pieces of
simple form (mesh generation);
2. Compute the phenomenon
contribution (matrices and vectors)
on each piece (finite element) to
the discrete behaviour laws
(system of algebraic equations);
3. Assemble those contributions from all
elements together into an algebraic
system of equations;
4. Solve that system.

18

a) Discretized Geometry

The exact geometry is composed of geometric entities, which could be 0-D (point), 1-
D (curve), 2-D (surface) or 3-D (volume), embedded in spaces of either equal or higher
dimensions. A phenomenon can be defined in any of these geometric elements.

The exact geometry is approximated by the union of simple geometric parts (geometric
finite elements), with disjoint interiors. The set of all those finite elements is called the
geometric mesh. Those geometric finite elements can be represented by edges,
triangles, quadrilaterals, and tetrahedrons or hexahedrons, etc. In the example
presented in Figure 2-8 the triangular geometric element is used to build the mesh.
These elements can have distinct sizes and orientations, adapting themselves to the
features of the original geometric domain. The so-called mesh generator automatically
generates a mesh. There are several methods available for building a geometric mesh
given a geometric domain. In order to look for the best numerical methods among the
many techniques used to implement the FEM, it is very important for a simulation
environment to be able to shift from one mesh generation method to another.

The geometry of an element is mapped into a known Geometric Reference Finite
Element (GRFE), which is the same for a large set of those elements (usually, for all
of them). The GRFE is defined with respect to a certain local coordinate system, and is
responsible for providing data to important calculations. See Figure 2-8

Figure 2-8 Reference Finite Element Geometry

One example of the important calculations on the GREF is the numerical integration
process, which is used to compute element matrices and vectors. The integration is
originally defined over each finite element. However, it is transformed to the local
coordinate system of the GRFE. Therefore, since the GRFE is fixed, the integration
points and weights are independent from the finite element where the process was
originally defined. Other pieces of data, important for numerical integration, are the
inverse of the Jacobean matrix and the Jacobean, which depends on the mapping that
map the finite element onto the GRFE. Those functions should be evaluated at the
integration points. The GRFE is also important because it allows for the definition of

Reference Finite Element
(GRFE) with a local
coordinate system

Finite
Element
 •x

•?

19

shape functions independently of a specific finite element. Therefore, the only pieces
of data, which actually depend on a specific finite element are those related to the
Jacobean matrix, as already mentioned. This approach simplifies tremendously the
computation of matrices and vectors for each finite element.
In our one-dimensional problem, the considered geometry is a curve. The geometric
finite element is represented by segment of a curve, that is, just an interval inside the
geometric domain defined by the interval (0,1). For instance, we consider a mesh
composed of three finite elements, as shown in Figure 2-9.

Figure 2-9 Mesh example used in the algebraic system generation

b) Approximate Vector Field

The discrete vector field means a vector field, which is a linear combination of the
components of the known basis for the discrete trial space. Its coefficients are
determined requiring that it should satisfy a certain discretized version of the exact
behaviour law. The approximation of the phenomenon vector field is obtained using
trial shape functions defined over a geometric mesh (see Figure 2-10 and Figure 2-11).
They are built in such a way that it is possible to define a polynomial vector space of a
specific order over each geometric finite element. High order shape functions can be
used whenever a higher accuracy is desired.

Figure 2-10 Example of Vector Field

The mesh definition is very important for the definition of the spaces of shape
functions used in the approximation of the exact solution. When an order of
approximation is given for a finite element of a given shape, the definition of the shape
functions should be immediate. Relating the shape functions to vertices, edges, faces
and volumes of the reference finite element does this. For instance, there will be shape
functions related to the vertices, to the edges (which should vanish on the vertices), to

∑
=

=
n

i
iih xuxu

1

)()(ψ

elem #1 elem #2 elem #3

X1 = 0 X2 = 1/3 X3 = 2/3 X4 = 1

U1 U2 U3 U4

nodes nodes

20

the faces (which should vanish on the edges) and to the volumes (which should vanish
on the faces). It is possible to prove that in this way one can obtain a basis for the
polynomial space of the required order.

Figure 2-11 Shape Functions

As can be seen, there is a set of pieces of information, which is related to each shape
function: the coefficient, which is called the nodal value and its dimension; the index
of the shape function (indicating its order inside its associated geometric entity, i.e.,
vertex, edge, face or volume) and its connectivity (a number, which is important for
the assembling of element matrices and vectors). All those pieces of information we
relate to the notion of node. Thus for each shape function there will be a node carrying
the correspondent data inside. The dimension of the nodal value is called the number
of nodal degrees of freedom2. The sum of all the nodal degrees of freedom corresponds
to the system dimension.

Figure 2-12 Abstraction of a Geometric Element and its Nodes

2 By degree of freedom we mean the largenesses that will be user

1

6

5

4

3 2
7

Example of linear shape functions:

ii

i

xx
xx

x
−
−

=
+

+

1

1
1)(ψ

ii

i

xx
xx

x
−

−
=

+1
2)(ψ

for x in between of ix and 1+ix

Associate one and only one node to each vertex of the elements. Associate to each node one and only one
shape function. Each shape function ? i, of node i, satisfies the following properties:
1. 0)(=ji xψ if i ? j and 1)(=ji xψ if i = j;

2.)(xiψ is different from zero only on the finite elements linked to node i;

3. In the present case iψ is continuous and coincides with an affined function inside each finite element.

4. The sum of all shape functions is unity, that is the variable uh (in Figure 2-10),can represent a constant

solution within the element: 1)(
2

1

=∑
=i

i xψ

 1 2 3 4 5
Geometric Mesh and shape functions

 ψ1 ψ2 ψ3 ψ4 ψ5

21

Figure 2-12 shows an example of nodes represented in a triangle finite element (7
nodes are identified). Therefore, the polynomial space defined in this triangle is of
order 2, plus an extra third order shape function, which is the seventh one.

Now, provided the shape functions are continuous over the whole domain, finite
elements should share nodes whenever they share vertices, edges and faces,
respectively. As can be seen, there is a one-by-one correspondence between the nodes
and the shape functions. All the nodes of a mesh are numbered (connectivity) without
missing any intermediate number. In this way the connectivity number defines the
position in global matrices and vectors, related to the coefficient of the associated
shape function.

In our example, the discrete trial and discrete test spaces will have dimension 4,
because there are four nodes and the dimension of the nodal value is 1, see Figure 2-9.
The approximation uh is shown in Figure 2-13. However, if the boundary conditions
are taken into consideration, we can conclude that a1 = 0 and a4 = 0. Therefore, the
discrete trial and discrete test spaces can be restricted to a subspace of dimension two,
spanned by ? 2 and ? 3. As a consequence, the discrete vector field culminates as shown
in Figure 2-14. Those spaces can be restricted assuming the boundary condition
described before in Figure 2-5.

Figure 2-13 Approximate Vector Field

Figure 2-14 Approximate Vector Field

The two functions, which span the two discrete spaces, are shown in
Figure 2-15, which are equivalent to the ones presented in Figure 2-11.

Figure 2-15 Shape functions for the example

)()(3322 xaxauh ψψ += , where 2a and 3a are unknown constants to be determined

)()()()(44332211 xaxaxaxauh ψψψψ +++= , where 1a , 2a , 3a and 4a are unknown
constants to be determined

0

3
1

0 ≤≤ x

3x-1,
3
2

3
1

≤≤ x

,33 x− 1
3
2

≤≤ x

=)(3 xψ

=)(2 xψ

x3
3
1

0 ≤≤ x

2-3x,
3
2

3
1

≤≤ x

,0 1
3
2

≤≤ x

22

Phenomenon mesh is a set of data distributed over a given geometric mesh, which
describes the approximation order of the discrete vector field on that mesh. It is
comprised of a set of phenomenon finite elements – on a one-to-one relationship with
the geometric finite elements - and related phenomenon nodes. Those nodes are related
to the trial set of functions - which also have a corresponding meaning for the test
space - of the phenomenon being considered. Each phenomenon finite element (of a
phenomenon mesh) represents the order of approximation of the discrete vector field
on that element.

In the example, the phenomenon mesh only indicates the polynomial order equal to 1
in each finite element.

c) Approximate Behaviour Laws

As an example, we consider the problems described in Figure 2-5. An equivalent
formulation for the phenomenon behaviour laws is provided by the exact weak form,
which are integral (see Figure 2-16) forms obtained from the (possibly Integra-
algebraic) differential equations (see Figure 2-5). In the approximation method for this
behaviour law, the first step is to select discrete trial and test spaces and assume an
approximate solution uh(x) (discrete vector field) in the discrete trial space, which
depends on unknown coefficients to be determined and will substitute the exact
solution u(x). Once the approximate solution is defined, we substitute it into the weak
form, which should be satisfied for all functions wh(x) replacing w(x) in the discrete
test space (see Figure 2-16). The accuracy of an approximate solution is dependent
upon the proper selection of the discrete trial and test spaces. A discrete weak form
represents the discrete behaviour laws for the discrete vector field.

Figure 2-16 Exact Weak Form

Since the approximate solution depends on a finite number of unknown nodal values
(coefficients) and since the test space is a finite dimensional, the result is a system of
algebraic equations, which is solved for the nodal values. Note that the last term on the
left side of Figure 2-16 represents values at the boundary of the geometric domain.
Those values are defined by the boundary conditions, which should be prescribed for
each simulation using the same behaviour law.

[] 0´
1

1

0

1i

=−





 −+= ∑ ∫

=

+n

i

x

xi

wudxxwwu
dx
du

dx
dw

I

23

If what is to be solved is just a linear system – which happens to be the case - and the
solution method does not require different auxiliary systems to be solved, the simulator
may just assemble the matrix and the right-hand side of the system and apply a given
method to solve it. However, it is very important to note that the solution method is the
piece of information that defines which matrices and vectors are to be assembled, what
system is to be solved and what information is to be used to carry out the processes.
Thus, it is the solution algorithm, which will define what contributions a weak form
should provide at each finite element.

Let us explain the above process with more details. Figure 2-16 shows the exact weak
form, where u and w represent the exact solution and a generic test function,
respectively. In this case, the discrete weak form is obtained by the substitution of the
trial and test spaces by the discrete trial and test spaces, respectively, keeping the
whole structure of the exact weak form. So, a member of the discrete trial space, the
discrete vector field, substitutes the exact solution uh. A generic member of the discrete
test space, wh, substitutes the test function w.

As we have seen in our example, the basis of the discrete test space has two functions
? 2 and ? 3. Since the dependence of the weak form with respect to the test function is a
linear one, the discrete weak form can be defined by using only the components of the
basis of the discrete test space. The consequence is that the discrete weak form can be
represented by two equations, as shown in Figure 2-17, obtained by the substitution of
functions ? 2 and ? 3, respectively.

Figure 2-17 Discrete Weak Form for each element

Figure 2-18 shows the transformation of the discrete weak form into an algebraic
system of equations, by substituting the expression of uh into the relations of Figure 2-
17. Figure 2-18 shows the integration decomposed into a sum of integrals of each
finite element. Thus, it illustrates the fact that one can build the same system of
algebraic equations adding up contributions that come from each one of the finite
elements.

0
1

0
22

2
1 =






 +−−= ∫ dxxu

dx
du

dx
d

I h
h ψψ

ψ
 0

1

0
33

3
2 =






 +−−= ∫ dxxu

dx
du

dx
d

I h
h ψψ

ψ

1

0

~















dx
ud h

iψ
is omitted i = 2, 3, because ? 2(0) = ? 2(1) = ? 3(0) = ? 3(1) = 0, due to the prescribed

boundary conditions.

24

∫ ∫∫ +−+−+−−−+−+++−−=
3
2

3
1

1

3
2

332233

3
1

0
221 0)]32()332)(32()33(3[)]3()3(3)3(3[dxdxxxaxaxaaxaadxxxxaxaI

= -6.222 2a + 2.9444 3a + 0.1111=0

∫ ∫∫ −+−−−−+−+−+−−−+−+=
3
2

3
1

1

3
2

333332232

1

3
2

2)]33()33)(33()3(3[)]13()332)(13()33(3[0 dxxxxaaxadxxxaxaxaaxaadxI

= - 2.9444 2a -6.222 3a + 0.2222 = 0

Figure 2-18 Transformation to the Algebraic Linear System of equations

Whenever the solution algorithm asks for the solution of a system of algebraic
equations, a loop is made over all the finite elements from its phenomenon mesh. The
required vector and matrix quantities are calculated for each finite element. Those
element wise matrices and vectors are assembled into the global matrix and vector.
Afterwards the solution of the system can be solved for the nodal values (coefficients).

2.2.2 Algorithm for the Solution of Algebraic Systems

There is no single solution algorithm for solving the whole system. The one to be used
should be formulated in detail and may require the decomposition of the whole
solution in iterations that involve solutions of auxiliary problems (systems of algebraic
equations), which will be effectively solved. The whole process may be decomposed
into typical sub-processes:
§ Production of a finite number of vectors and matrices, which are designated to be

produced for each finite element and assembled into global matrices and vectors at
certain stages of the solution algorithm. Such matrices and vectors may depend on
discrete vector fields from other phenomena and, then is said to be coupled.

§ Assembling of linear algebraic linear systems, which means the assembling of the
matrices and vectors calculated for each finite element. The computations follow
the definitions coming from the discrete weak form and use the shape functions,
reference elements and integration rules needed to perform the tasks.

Solutions for 2a and 3a are 2a = 0.0488 and 3a = 0.0569. This is the approximate solution:

)(0569.0)(0488.0 32 xxu ψψ +=









222.69444.2
9444.2222.6










3

2

a
a

+ 







2222.0
1111.0

= 







0
0

25

§ Operations with vectors and matrices, that can occur at finite element level or not:
linear combination of vectors and matrices, matrix-vector multiplication; vectors or
matrices scalar product; vector vectorial product; multiplication of vectors and
matrices by a scalar, etc. Many of these operations may be needed during the
execution of processes defined by the solution algorithm,

§ Solution of algebraic linear systems: the solution algorithm defines which type of
solver is required for each linear system to be solved.

§ After a final solution is obtained, posterior error estimation can be computed,
which can be used for adaptation procedures: adaptation of the space and time
discretizations, adaptation of the distribution of approximation order and
adaptation of the distribution of models.

2.2.3 FEM Users

The typical FEM users ask what kinds of elements should be used, and how many of
them. They can also ask: Can the model be simplified? How much physical detail must
be represented? Is the important behaviour static, dynamic, non-linear or what? How
accurate will the answers be and how will they be checked? The user must understand
how elements behave in order to choose suitable types, sizes and shapes of elements,
and to guard against misinterpretations and unrealistic high expectations. A user must
also realize that the FEM is a way of implementing a mathematical theory of physical
behaviour. Accordingly, assumptions and limitations of theory must not be violated by
what the software supports. In some dynamic and non-linear analyses, algorithms by
which theory is implemented must be carefully chosen, to avoid inappropriate
algorithms, and to avoid interpreting results produced by algorithmic quirks or
limitations such as actual physical behaviour.

A responsible user must understand the physical nature of the problem and the
behaviour of finite elements well enough to prepare a suitable model and evaluate the
quality of the results. Competence in using FEM for stress analysis does not imply
competence in using FEM for (say) magnetic field problems. Engineers who use the
software are responsible for results produced, not the software developer, even if
results are affected by errors in the software.

An important problem, that users of numerical analysis techniques have to deal with, is
computed discrete data set itself does not promote an immediate understanding of the
behaviour of the quantities of interest, which were computed during the simulation.
Commonly, analysis executed in personal computers can generate hundreds of
megabytes of floating-point numbers. So, visualization techniques, when built in a
suitable way, represent the key technology needed to extract information from large

26

volumes of discrete data. There is a need to provide the interaction between the
simulator and those pieces of information and visualization tools.

2.2.4 Typical Errors in FEM Solution

The three main sources of errors in a typical FEM solution are: (i) Discretization
error results from transforming the physical system (continuum) into a FEM, which
can be related to modelling the boundary shape, the boundary conditions, etc; (ii)
Formulation error results from the use of vector fields that do not precisely describe
the behaviour of the physical problem. For example, a particular vector field might be
formulated on the assumption that it varies in a linear manner over the domain. Such
an assumption will produce no formulation error when it is used to simulate a linearly
varying physical problem, but would create a significant formulation error if used to
represent a quadratic or cubic varying vector field; (iii) A Numerical error occurs as a
result of numerical calculation procedures, and includes truncation errors and round-
off errors. These errors occur at developer or user levels (for example, by specifying a
physical quantity to an inadequate number of decimal places).

Important and relevant applications can be considered, when one is capable of
adequately solving coupled phenomena systems, that is, a set of interacting
phenomena, in space and time. The next section introduces and details these systems.

2.3 Coupled Phenomena

During the definition of a computational model for mathematical formalism, using the
FEM in the context of coupled phenomena, the designer has to deal with problems
such as data dependency and sharing. These issues are not trivial as to treat in a
homogeneous way because they are very dependent on the specific problem being
considered. It is difficult to provide reasonable high levels of abstractions, which could
represent the main components, properties, relationships and operations involved.
Without those abstractions, even when making use of sophisticated FEM libraries, the
tasks involved in building and accessing new methods could become very costly and
time consuming due to the lack of modularity and reuse. On the other hand, as far as
we are concerned, there is no standardized solution for multi-physic systems (see
chapter 1), that is, the control of coupled phenomena, making the integration of
reusable code a very difficult task.

Examples of coupled phenomena, represented by coupled partial differential equations
are: the displacement of a material body and temperature distribution in the same body.
See equations 1 and 2 in Figure 2-19.

27

 0...
 11

1
11 =∇∇−

∂
∂

T
t

T
c Kρ

 0).(. 1112
1

2

=∇−
∂

∂
ws

w
T

tiρ

Figure 2-19 Examples of Coupled Differential Equations

The simulation of coupled phenomena involves many processes, which are described
in the solution algorithm. A solution algorithm is tailored for the solution of the system
of algebraic equations that is defined by the discrete behaviour law (in discrete weak
form). A popular way of solving problems with many phenomena is dividing it into
many problems involving only few phenomena (auxiliary problems). Thus, a sequence
of procedures, which dictate the order in which each one of the auxiliary problems
should be assembled and solved, is defined in the solution algorithm. Usually, this is
an iterative procedure. Since the phenomena are coupled, the computations of matrices
and vectors by a given phenomenon at the level of the finite elements may need
evaluations of vector fields (at a given state) from other phenomena at the integration
points (data dependency). Although different phenomena may share a geometric mesh
(data sharing), this is not a requirement, making information management even more
complicated. Those relationships are illustrated in Figure 2-20

Figure 2-20 Phenomena Relationship

The FEM conventional process can be extended to treat coupled phenomena. One
extension is the incorporation of information on vector fields from other phenomena,
see Figure 2-20, and in the description of behaviour laws (weak forms) of a given
phenomenon. Another important extension is the consideration of the solution
algorithm as an input (data) to the problem. Thus, the processes described therein can
be put into higher levels of abstraction through a hierarchical modularisation and
pattern identification, improving reusability. There are other extensions, which due to
simplicity are not detailed here.

time

temperaturetime displacement

1) Heat transfer

2)Elasticity

Phenomenon 1

….

Data dependency

Data Sharing

Phenomenon n

28

An example of coupled multi-physics phenomena is water flow in estuaries and the
chemical and biological (organic/inorganic chemical substances and living species)
dynamics of the water quality. Some couplings are related to the evolution of chemical
substances and biological species, which are coupled with the water flow and several
predefined inputs to the system. Some more specific and detailed examples can be seen
in Appendix A.

The solution of coupled phenomena problems can be used in different kinds of
applications, which require modelling of different classes of simulators. A class of
simulators can be defined by a set of pre-defined functionalities defined by a class of
solution algorithms. For example, a class of solution algorithms may define processes
specific for time-dependent phenomena possibly with model and discretization
adaptivity. The class of problems a simulator can tackle can be defined by the types of
discrete weak forms (behaviour laws) for respective types of discrete vector fields
(describing the physical phenomena), which are defined on types of physical domains
(geometry) and for which there exists known types of boundary conditions and initial
conditions. The objective of the simulation is to compute some quantities of interest,
which are functions of those discrete vector fields. The post-processor computes those
quantities. It is important to mention that very frequently a post-processor procedure
resembles tasks, which are typical of a phenomenon.

Running a simulation for a problem involving coupled phenomena consists of
simulating a set of physical phenomena. The phenomena can be transient, i.e. time
dependent, or otherwise stationary. Finite element meshes can be adapted during the
simulation with the objective of keeping estimated errors below given tolerances. The
simulation result – as already mentioned - is composed of discrete vector fields and
post-processed quantities, which are also produced by special Computational
Phenomenon objects. An important simulation (pre-processed) data, for each
phenomenon, is its phenomenon and geometric meshes representing the spatial
distribution of the approximation order and discrete geometry, respectively.

In the following sections, the main problems related to the development of simulators
based on coupled multi-physic phenomena are identified and commented on.

2.4 Issues in the Development of FEM Simulators

The main issues related to the development of FEM simulators for coupled multi-
physics phenomena are, on the one hand, the need for simulators that could simulate a
large amount of coupled phenomena based on the FEM and, on the other hand, the
need for computational environments or techniques, which could help the construction
and configuration of those simulators.

29

However, other issues are also relevant:
§ Difficulty to replicate published numerical studies. Experimental physics imposes

on the other disciplines a formal way to describe an experiment, wherein basically
all the information required to replicate it is defined and should be given. The
replication of a given experiment, by multiple independent researchers, is a
fundamental step in the establishment of a scientific truth. Purely theoretical
studies allow any reader to access the experiment. To replicate it just one tool is
needed, the researchers brain [VM02]. Among experimental studies there are the
numerical studies. A numerical model relies on a variety of specificities associated
to the numerical implementation of the theoretical model being used. Let’s use, for
example, the FEM model, which is the focus of this work. A FEM model relies on
a theoretical model, which can be described exhaustively in writing, but it is very
difficult to describe all the conditions involved in the universe of possible
numerical methods. It is up to the designer to select the conditions and numerical
methods that make sense and build the appropriate solution. Seldom, all those
details, needed to replicate a numerical experiment, are published together with the
experiment description.

§ The question of reliability of computer-generated predictions is of great interest to
specialists. Without some confidence in the accuracy of simulations, their value is
obviously diminished. Today, remarkably accurate and reliable simulations are
obtained routinely in many application areas while others are, at best, qualitative
and capable of depicting only trends [COM00].

§ The reuse of models, replication and extension. The Committee on Theoretical and
Applied Mechanics emphasises that the selection of the mathematical and
computational model is quite often the single most important step in obtaining
valid computer simulation of physical events [COM00]. Model selection is a
largely heuristic process, based on the judgment and experience of the modeller
and on testing and experimentation. But it is frequently purely a subjective
endeavour: different analysts may select different models to describe the same
physical phenomena. Until now, there are few advances for making this selection
step easier. It is quite relevant to support model reuse, replication and extension
and persistence of previous simulation data and results.

§ The achievement of higher levels of sophistication in simulation design can be
obtained through the use of cooperative systems, where several technicians define
and implement solutions together following the same patterns, thus improving the
quality of the whole solution. The need for this cooperation is based on the fact
that, frequently, there are stakeholders that are specialists in modelling and
simulation of different classes of phenomena.

30

§ In the simulation of coupled phenomena applications, specifically, there is a need
for software packages, which could tackle the problem of multi-physics simulation
(as can be seen in section 2.3). Most of the existing tools in this area treat each
phenomenon independently, not achieving the required results, because sometimes
the solution simply cannot be given in a partitioned form. Furthermore, without
other alternatives, different software components have to be used together, when
simulating coupled phenomena, giving rise to problems of data transfer and
integration.

§ Scientists and engineers require demanding tools to fulfil their research
requirements and needs. There is an increasing need for flexibility in the
construction of different solution strategies, support for the implementation of
more suitable numerical methods, and a request for superior quality in simulation
software component design, implementation and analysis. The main issue behind
this is the fact that, due to the increasing complexity of the models and numerical
methods, the construction of simulation software has become a major part of the
scientists and engineer’s work.

Figure 2-21 General Problem Identification – Existing reality

Some of the causes that justify the strong need for more powerful simulation
development environments are presented in Figure 2-21. In order to improve the

Cause
 Some experiments are based
on strategies and data, which

were partially used in
previous simulations (need

for reusability)

Cause

Cause

Simulation of coupled
phenomena based on

FEM

Cause

Cause

Cause

Cause

Problem

High cost in
development of

complex
simulation systems

Simulations involve large
volume of data (need for

scalability, storage capacity)

Different software components
have to be used when solving
coupled problems (need for

integrability)

Need for flexibility in
building different solution

strategies

Difficulty in changing
numerical methods

(need for adaptability)

MAJOR OBJECTIVE
Development of a simulation

environment, which can reduce the
complexity of the design and

implementation phases of a simulation
project with lower costs

Restriction

Reliability of computer-
generated predictions is a

great concern to
specialists

Need for quality in the
simulation strategies

and data being defined

Some coupled problems
cannot be solved

independently for each
phenomenon

Cause

31

simulation software for coupled multi-physic phenomena, several objectives are
required to be satisfied (see Figure 2-22).

Figure 2-22 Objectives towards an improvement in Simulation Environments

2. 5 Related Work

Due to the great relevance of simulation in different application areas, the community
of simulation researchers is very active and we can name several existing initiatives,
which are related somehow to our work (FEM simulation or other types of simulation).
It is not the objective of this work to make a complete list of them, but we would like
to refer to a few of them, due to their importance and achievements:

§ DIFFPACK [LAN97] addresses an object-oriented strategy for the development of

software for solving systems of partial differential equations (PDEs). The proposed
strategy encourages reuse of modules capable of solving the involved sub-
problems. It extends the basic ideas of an object oriented numerical library to a
higher level where the objects reflect partial differential equations. It also opens the
possibilities of building repositories of solvers for single PDEs that can be
combined with each other in a flexible way. In [LAN01] a pre-processor is used to
generate geometric input data required by FEMs. It also defines an abstraction for
simulating coupled problems by operator splitting techniques.

§ In [RM96] an algorithm framework for flexible FE based modelling is presented.
Its goal is to explore the development of applications, accommodating the addition

Objective

6.Different technicians
participating in the

development of
solutions for the same

problem

Objective

5.Reuse of experience

Objective
 3.Support for the

definition of new
simulation strategies

Objective

MAJOR OBJECTIVE
 Development of a simulation

environment that can reduce the
complexity of the design and
implementation phases of a

simulation project with lower costs

2. Support for the
implementation of
different numerical

methods for the same task

Objective 1.Development of a single
software for coupled phenomena

simulation based on FEM

4. Make easier and faster the
development of simulation
strategies and problem running

Objective

32

of new modelling capabilities or the adaptation of existing ones, which can be
applied by users. It offers families of algorithms that can be easily accessed and
changed dynamically, providing algorithm flexibility. Distinct algorithms can be
used in different parts of the model.

§ [TO95] presents an overview of consecutive logical stages of technical aspects of
the design process for modelling the behaviour the FEM structure. The process
begins with the identification of the physical problems and design objectives and –
usually after several modifications – yields a model of a product performing
specific functions that satisfies design criteria. During the design process,
knowledge about the model is enriched, modified, and used at further stages of the
design. The simulator process development using FEM is composed of:
Understanding a physical problem; Mathematical Modelling of the structure;
Discretization of the Model; Selection of computational methods and strategies;
Numerical analysis of the discrete model solution; Generalized pos-processing;
Verification of the finite element solution; Modification of the model, that is, the
construction of problem specification or variation in model optimisation; and
accumulation of experience.

§ SCIRUN, a scientific programming environment that allows the interactive
construction, debugging and steering of large-scale scientific computations
[PWC97]. SCIRun allows scientists to: (a) design and change simulations
interactively using a dataflow programming model; (b) design and change and
view the geometry model; (c) change interactively simulation parameters and
boundary conditions; (e) change the level of mesh adaptation needed to make a
more accurate numerical solution and (f) visualize interactively simulation results.
O SCIRun gives access to already built modules, integrate scientific libraries and
also allows the development of new modules. It uses dynamic sharable libraries to
allow the user to recompile only a specific module without having to make a
complete re-link. The application programmer has the responsibility to break the
application into suitable components, and also has to guarantee that the parameters
change make sense considering the underlying physical problems. Modules
represent computational algorithms or operations, where a set of input and output
ports defines its external parameters. A port is a connection point to data routed for
different stages of connection. Ports can be added or removed of a module
dynamically. Output ports can maintains a cache for sets of data, avoiding re-
computation. Output ports can be connected to several input ports. However input
ports accept only a single connection. The process of writing a new module
involves writing a new C++ class.

§ FEMLAB [FEL04] is an interactive environment for modelling and simulating
scientific and engineering problems based on partial differential equations (PDEs)

33

– equations that are the fundamental basis for the laws of science. With
FEMLAB’s multi-physics features, you can simultaneously model any
combination of physics by choosing from these modelling approaches: (i) use the
ready-to-use application modes to create a model by directly defining the physical
quantities rather than the equations; (ii) Use equation-based modelling to have the
freedom to create custom equations;(iii) Combine both approaches for multi-
physics modelling. FEMLAB offers CAD tools, interfaces for physics or equation
definitions, automatic mesh generation, equation solving, visualization and post-
processing – all in an integrated environment. With the package’s MATLAB
interface you can extend the FEMLAB models through a powerful technical
programming environment. The combination of an easy-to-use graphical user
interface and the flexible programming capabilities make FEMLAB an
unprecedented package for multi-physics simulations.

In appendix B some other existing approaches for simulation software development
are described.

Most of these works support good practices and fundamentals, useful for defining
worthy simulation systems solutions and capabilities. However, despite the richness of
their contribution, in the case of the FEM solutions, we did not find an integrated
environment that satisfies the demanded features for coupled phenomena environments
described in earlier sections. There are still important questions related to abstractions
of numerical algorithms that remain unsolved, such as: (i) mechanisms to allow easy
interchange between numerical methods and strategies; (ii) repository organization and
management and its relationship with simulation instances; (iii) satisfactory
abstractions of couplings, which could be defined independently of the actual
implementation of the participating phenomena; (iv) abstractions of groups of
phenomena, which are to be solved together, making it possible to organize operator
splitting strategies in different forms; (v) higher abstractions of the phenomena-
geometry relationship, in order to decide whether each phenomenon will or will not
share its mesh with other phenomena (defined in the same geometry); etc.

2.6 Final Considerations

There are many advantages in the use of the FEM for the simulation of coupled multi-
physics problems, as the method can handle: complex geometry; many phenomena in a
homogeneous way (such as heat transfer, solid and fluid mechanics); complex analysis
types (steady and transient states, linear and non-linear behaviour laws); complex
geometry-related data: (boundary data, domain-embedded data); and complex
constraints. In addition FEM can handle bodies comprised of non-homogeneous

34

materials: material properties may be given as functions or the geometry may be
divided with each component being assigned different material properties. Special
material effects can be handled, for example temperature dependent properties, and
plasticity, etc. Special geometric effects can be modelled (such as large displacements,
large rotations, and contact conditions).

For the development of FEM simulators a powerful computer and reliable FEM
software are essential. The input and output data may be large and tedious to prepare
and interpret. The FEM pre-process is also susceptible to user-introduced modelling
errors: (i) Poor choice of element types; (ii) Distorted elements; (iii) Geometry not
adequately modelled.

The main issues in FEM simulation systems development are related to their
complexity and the consequent requirements of high investments of time and money,
which can frequently make their development impracticable. Even though there has
been great advances in software engineering in the past years, in FEM context there
are only a few simulation tools and techniques that support high levels of abstraction,
software reuse, friendliness, and maintainability of simulators based on the FEM for
coupled multi-physic phenomena simulation.

In our work, we analyse the existing requirements in this specific domain of
knowledge. We consider current trends in software engineering development and
propose an environment to support FEM simulator development for coupled multi-
physic simulators. In this thesis we define a structure, which improves the quality of
simulator designs. The approach tries to avoid problems that are intrinsically related to
some symptoms of poor design [MRC02] when: it is hard to change; it is hard to reuse;
it is hard to do the right thing; there is needless complexity; there is needless repetition
and disorganized expression of the world. The result is the proposal of a deep analysis
of the problem domain, and the definition of architecture based on some specific
patterns, which try to fill the existing gap in the development of FEM simulators.
In this thesis, FEM specific solutions can be gathered in a Simulation Environment for
the development of FEM simulators. Many applications are to be developed, within
the specific domain; so the timesaving of reuse will recover the time invested to
develop it. However, developing a reusable system requires abstractions that do not
become obvious until the application examples are tested in many situations. This
work results from the experience obtained during the implementation of several
simulators in the FEM context, from which important abstractions have been defined.
These implementations were evaluated and from this experience conclusions have
been drawn, which are used in our analysis.

 35

Analysing and Describing FEM Simulators with
Problem Frames

The development of FEM simulators is complex and the search for standard
solutions for its development is appropriate. This chapter improves the description
of the specific domain of FEM simulators through requirement analysis and the
problem domain specification. The existing world without the existence of the
Plexus solution is presented, and then the proposed environment with the respective
functional and non-functional requirements is specified. In order to help developers
with problem analysis, decomposition and description of FEM simulator solutions,
some specific classes of problem solutions (problem frames) are proposed. These
patterns include meta-models, which help to define the involved context.

This chapter also investigates the suitability of the Problem Frames technique,
which is applied for the improvement of the description of our specific domain of
FEM simulators. The study evaluates the appropriateness of the technique,
discussing its power of expressiveness and limitations and suggests what can be
improved.

Chapter

 3

 36

3.1. Introduction

The development of low cost and high quality complex software is a continuous
challenge for the software engineering community. Different techniques,
methodologies and frameworks have been proposed to improve software quality.
Independently of the nature of the software, the elicitation, analysis, negotiation,
specification and management of requirements are fundamental for the development
of quality software.

This work focuses on the conceptualisation and design of a simulation environment
to support the development of simulators. In this context we must identify and use a
flexible technique to describe the problem domain, that is, the real world (physics,
mathematics, chemistry, biology, etc.) and the FEM concepts, as well as for
specifying the requirements for the simulators to be developed. For this purpose we
applied the Problem Frames [JAC01] technique. One of our objectives is to evaluate
the use of this technique in the context of FEM simulators environment
conceptualisation.

We can summarize Problem Frames as a software engineering technique
appropriate to the description of problem domains, defining requirements and
decomposing the problem into sub-problems. A problem domain is composed into
several concepts (such as entities, events and states) that we can observe in the real
world and also the relationships between them. Some domains are controllers and
others are controlled, and others are simply symbolizations of concepts and their
relationship. Collections of these concepts can be grouped forming a part of the
world that can be distinguished and conveniently considered – a domain.

This chapter is organized in the following way. Section 3.2 presents Problem Frame
technique. Then, using the described concepts, in section 3.3, we first locate and
limit the scope of the problem (which motivates the development of a FEM
simulator environment), clarifying the distinction between the machine to be
developed and the world, and the relationship between them. In section 3.4 the
proposed environment (machine) is described, exploring the decomposition of the
involved problems into smaller and simpler sub-problems. In addition the involved
domains1 are detailed. Furthermore, in section 3.5 some of the machine sub-
problems are described; they are specific to the area of FEM simulator development.
This definition is made by the identification of common patterns in the simulators
context and the recognition of elementary problem frames. Section 3.6 evaluates the
application of Problem Frames to the FEM simulator domain. Finally, in section 3.7
remarks about this chapter are made.

1 Despite the order of the chapter sections, the problem domain (independent of the machine) and the
requirements can be explored iteratively.

 37

3.2. Problem Frames Technique

The Problem Frames [JAC01] technique objective is to help in progressing from
problem identification to problem structuring, while focusing on the domain
concept. Domain is a particular part of the world that can be distinguished because it
is conveniently thought of as a whole, and can be considered, to some extent,
separately from other parts of the world. The technique emphasizes the separation of
problem and solution domains.

A general belief is that one should focus on the problem before the solution, that is,
one should focus on what the system will do, before focusing on how it will do.
However, it is often hard to distinguish a problem from its solution, nor any easier
to distinguish what from how. The Problem Frames technique considers that it is
more helpful to distinguish where, that is, to recognize that the solution is located in
the computer and its software, and the problem is outside in the world. The
computer can provide solutions to these problems because they are connected to the
world outside. The connections between the computer and the world enable the
computer to play its role in the solution, see Figure 3-1.

Figure 3-1 The Environment - Problem and the Solution

Sometimes the word “system” is used for the whole combination of the world and
the computer together. So it is quite appropriate to say that the first step is to
describe the system: in a wider sense, the system is where the problem is. But the
word “system” also has the narrow sense of being the computer and its software. So
there is an ambiguity between the wide and narrow sense. So, Jackson [JAC01] uses
the term machine instead of system. A machine is that piece, which must be
eventually built and installed to solve a problem.

Developing software is building a machine to solve a problem in a given domain to
meet customer’s needs, requirements. The machine is a general-purpose computer
specialized by software. Problem decomposition gives rise to many sub-problems
and also many machines [JAC95]. Note that the machine in one sub-problem may
be a part of the problem domain in another sub-problem. The customer’s
requirement (property or behaviour) is in the problem domain. Requirements add
constraints to the domain’s intrinsic properties or behaviour. The machine is the
solution and the problem is outside the machine. The machine and the problem
interact at the interface defined by their shared phenomena. By phenomena we mean
elements of what we can observe in the world, such as events and states.

The computer and
its software

The world outside
the computer

The problem
is here

Connections
between the

world and the
computer

The
solution is

here

 38

The machine, the world and requirements are the main part of the software
development problem. The solution task is to construct a machine so that the
interactions with the world will ensure satisfaction of requirements. The existing
problem in the world is described through indicative properties (what is known). On
the other hand, the requirement and the machine are described as selected options,
that is, what is being desired and planned to solve the existing problem in the world.

3.2.1. Indicative and Optative Moods

The environment is defined as the portion of the real world relevant to the software
development project [JAC96, JAC01]. The requirements’ specification includes
statements in the:
§ Indicative mood: this describes the environment as it is in the absence of the

machine or regardless of the actions of the machine. This mood describes the
domain of knowledge. It indicates the objective truth about domains (what is
true regardless of the machine’s behaviour). For example, the definition of
what composes the formulation of a FEM simulation for multi-physic
phenomena (as described in chapter 2).

§ Optative mood: this describes the environment as we would like it to be and, as
we hope it will be, when the machine is connected to the environment. It can
be separated in requirements (options that customer has chosen) and
specification (machine desired behaviour). For example, the system
requirements for implementing configurable FEM simulators.

The indicative properties are at the heart of one’s analysis. One relies on the domain
properties to bridge the gap between specification of phenomena, that the machine
can directly sense and cause, and the required phenomena that the customer is
interested in. So, our subject includes problems, not only solutions. Since problems
are in the world, being more precise about problems and their domains means being
more precise about the world and its phenomena.

3.2.2. Phenomena

Jackson [JAC01] suggests that we must understand appropriate abstractions of
phenomena, that is, of what we can observe in the world. This is necessary at
specific levels of individual problems and domains. A phenomenon can be
classified into three types: (i) Individuals, which are phenomena that can be named
and distinguished from every other individual (a concept which has a specific
meaning, structure and behaviour, so its features can distinguish it from other
entities), examples are cars, or events identification such as the first time a person
drives a car; (ii) Relationship, an association among two or more individuals (for
example, a car revision represents a relationship between a broken car and a fixed
car); (iii) any pattern or structure among phenomena of a domain.

 39

Individuals can be further classified into:
§ Entity, an individual that is mutable over time, that is, an individual that

persists over time and can change its properties and states from one point in
time to another. Examples include cars, people, and so on. In our work,
examples are simulators and geometries.

§ Event, an individual that is an occurrence at some point in time, regarded as
atomic and instantaneous. For example, pressing a lift bottom, or in our work
the process of starting a simulation.

§ Value, an individual that is not subject to change, that is, an individual that
exists outside time and space. For example, integers and strings. In our work, the
values (strings) that determine physical phenomena context, such as “heat
transfer” and “elasticity”.

Relationships can also be further classified into:
§ States, that is, time changing relations over non-event individuals (which can

be true at one time and false at another, also an element of a state transition
diagram), for example, the fixed car state. In our work an example is the
simulator built state.

§ Truths, unchanging relations over non-event individuals (a relationship that is
either true at all times or false at all times). Then individuals are always values,
and the truth expresses mathematical facts. One example is GreaterThan (5, 3).

§ Roles represent the participation of individuals on events, in other words, a
relation between an event and individuals that participate in it in a particular
way. Each role expresses what one might otherwise think of as one of the
arguments of the event. Roles are fixed; they do not change over time. In the
event fix a car we have the roles of the object to be fixed (the car) and of the
mechanic (the person who will fix it).

One can also distinguish two categories of phenomena:
§ Causal phenomena, which include events, roles and states (relating entities).

They are directly caused or controlled by some domain, and they can cause
other phenomena in turn. Examples are input/output devices, arithmetic and
logical units, buttons, lights, sensors, motors. In our work an example is the
simulation, which is caused by a simulator, and in sequence causes simulation
results;

§ Symbolic phenomena, which include: values, truths, and states (relating only
values). They are used to symbolise other phenomena and relationship among
them. Some examples are input and output, a database held on one or more
disk drives, an object structure inside a machine, a file held on a tape. In our
work we have symbolic data representing stored data about existing kinds of
physical phenomena or geometries.

Jackson gives a symbol for each kind of phenomena. For example, Y represents
symbolic phenomena (for example, Y4); C represents causal phenomena (for
example, C2).

 40

Plexus phenomena are natural physical phenomena, so they are included as a subset
of Jackson’s phenomena. We must be careful here not to generate confusion. Note
that Plexus refers to natural phenomena (a computational abstraction of physical
phenomena, such as elasticity, heat transfer, rigid body motion, and so on).

3.2.3. Domains

A domain can be thought of as a collection of related phenomena, for example the
simulator domain is composed of phenomena like simulator’s strategies, the way
natural phenomena are grouped and organized to be solved, simulators skeletons,
and so on. Domains may share phenomena. Indeed the only way two domains can
interact is through the interface of shared phenomena.

Based on phenomena categories, Jackson distinguishes different kinds of domain
[JAC96, JAC01].
§ A Causal domain is a domain whose properties include predictable causal

relationships among causal phenomena (include events, roles and states); these
relationships allow one to calculate the effect of the machine behaviour at an
interface with the domain. An example is the car mechanics shop domain,
which can start events such as car repair and painting and which includes states
such as car repaired.

§ A Biddable domain usually consists of people such as operators or users. In our
work we have, for example, the simulator designer.

§ A Lexical domain provides the significance of data, for example, input and
output, a database etc. A definition can be found in [JAC96]: a physical
representation of a symbolic phenomenon such as data, for example a database
about simulations knowledge.

By considering the defined concepts of existing problem domains (which define the
indicative properties) and the requirements and the specifications (the optative part
of the desired machine), Jackson [JAC01] defines what he calls Problem Frames.

3.2.4. Problem Frames Diagrams

A problem frame defines an intuitively identifiable problem class in terms of its
context and the characteristics of its problem domains, interfaces and requirements
[JAC01]. A general representation of a problem frame is presented in Figure 3-2.
The scripted rectangle represents the machine one wants to build. The plain
rectangle represents the part of the world that interacts with the machine. The solid
line connecting the two rectangles represents an interface of shared phenomena (for
example, shared events and shared states). The dotted ellipse represents the
requirement; the dotted arrow indicates that the requirement is a description, which
is a predicate over the phenomena of the world.

 41

Figure 3-2 Generic Problem Frame Diagram

A frame diagram is just a slightly fancier generic problem diagram. It is different
from an ordinary problem diagram in the following ways:
§ The names of the parts are chosen to suggest their involvements in the general

form of the problem: control machine, controlled domain and required
behaviour (see Figure 3-2).

§ The sets of interface and reference phenomena are denoted by short stylised
names, like the names C1 and C2 (Figure 3-2). The names on interface
connections also include the usual control prefixes (like CM for control
machine and CD for controlled domain).

The control machine (CM) is the machine to be built (Figure 3-2). The controlled
domain (CD) is the part of the world to be controlled. The requirement, giving the
condition to be satisfied by the behaviour of the controlled domain, is called the
required behaviour.

In Figure 3-2, the interface of shared phenomena with the machine consists of: C1,
which is controlled by the machine (CM), and C2, which is controlled by the
controlled domain (CD). The machine affects the behaviour of the controlled
domain through the phenomena C1; the phenomena C2 provides feedback. The
requirement is expressed in terms of C3 phenomena of the controlled domain. These
are the requirement phenomena. In general C3 will be different from C1 and C2.
This gap must be bridged by indicative domain properties by the controlled domain.

A concern is an aspect of a problem demanding the developer’s attention. For
example, the completeness concern ensures that a description is complete and the
initialisation concern ensures that the machine and the problem domains are in
appropriate states at the start of the execution. Each frame has a concern that must
be addressed in any problem of the class. The concern identifies the descriptions
one must fit together properly in a correctness argument: requirement, specification
and domain. In conjunction with the characteristics of problem domains, the frame
concern gives rise to the particular concerns that distinguish the problem class. If
one tries to fit a problem into an inappropriate class, the resulting development will
certainly be awkward and probably unsuccessful.

Jackson also describes the concept of a composite frame, a familiar class of
problems that demands decomposition into sub-problems in accordance with a
standard structure. The sub-problems have frame concerns and other particular

Specification Phenomena
(Interface of shared

phenomena)

Requirement Phenomena
(a predicate over the

phenomenon)

Controlled domain
(CD)

Required
behaviour

Control machine
(CM)

CM!C1
CD!C2 C3

 42

concerns; interaction amongst them gives rise to fresh composition concerns. The
possible combinations of simple sub-problems are unlimited, but many composition
concerns can be identified by examining some of the combinations in terms of
problem domains common to different sub-problems. These concerns include
consistency (between indicative or optative domain descriptions), precedence
(between inconsistent domain descriptions), interference (between different
interactions with a domain) and synchronism.

Problem Frames take part of the problem decomposition. Generally before its
definition a context diagram is built for the computational system being defined, this
diagram will influence the identifications of the system required problem frames.

3.2.5. Context Diagram

The Problem Frames context diagram is the first representation of the proposed
problem [JAC95]. It is fundamental to determine where the problem is located, and
what parts of the world it concerns. It gives an opportunity to structure the problem
as a number of separable domains, together with the machine to be built, and to
show how the domains interact with each other and with the machine. The
structuring of the problem context is an essential step towards problem analysis, and
choice of each sub-problem.

 Figure 3-3 Context Diagram

Figure 3-3 exemplifies a generic context diagram composed of the machine to be
built and five problem domains; it also shows the interfaces between domains, that
is how the machine is connected to problem domains and how problem domains are
connected to each other (through interfaced phenomena a, b, c, d and e). The
domain with a single vertical stripe indicates that it is a domain that the developers
must design (e.g. DOMAIN 1 in Figure 3-3). The other problem domains with no
stripe are all given parts of the world. All the domains in the context diagram are
physical. The interfaces can be understood as events, states and values shared
between domains. By physical domain we mean parts of the world where the
customer can check for observable effects. It can be divided into:
§ Machine domain: this is the computer program which one must design and

build;
§ Designed domain: this is the physical representation of some information, for

example stored on: a magnetic stripe card, or a tape or a floppy disk or a hard
disk, or even on a screen or printed output. It is a description or model that the

PROBLEM
DOMAIN 1

 MACHINE TO
BE BUILT

PROBLEM
DOMAIN 2

 PROBLEM
 DOMAIN 3

PROBLEM
DOMAIN 4

PROBLEM
DOMAIN 5

a b

d c e

 43

developer is free to design (free to design and specify its data structure, to
some extend, its data context;

§ Given domain: this is a problem domain whose properties are given, that is, we
are not free to design this domain. However, this does not mean that it already
exists when you start the problem, only that you have information about its
definition.

According to Jackson [JAC01], the following issues must be considered, although
he does not impose order on them:
§ Locating and bounding the problem, that is, expand and clarify the distinction

between the machine and the world, and the relationship between them. The
world is always structured as a collection of interconnected domains, pictured
in a context diagram. Customer’s responsibility and authority bound the
problem context. The built machine must not change the parts of the world that
the customer has not authorized, and in analysing the problem one must not
ignore relevant parts of the world for which the customer is responsible.

§ Explore the decomposition of problems into smaller and simpler sub-problems.
Each decomposed sub-problem has its own projections – its partial views – of
the world and of the machine, taken from the original problem. It shows each
sub-problem in a problem diagram. That is like a context diagram with the
addition of a requirement.

§ After one has roughly identified what the problem is about, the next step must
be to look into it more deeply. One can look more closely at the interface
between the world and the system. For example, it could discover, decide,
analyse or design more details of the messages in data-flows, or more detail of
the dialogues for the use cases. Also the terminals and the actors can be
explored, and there is no reason to restrict it to what can be seen at the
interface with the computer.

Note that one does not have to draw the context diagram before analysing the
requirements. It must explore the context and the requirements iteratively.

3.2.6. Repertory of base Problem Frames

Jackson identifies a repertory of five base problem frames [JAC01], which are
recognized problem classes, with associated characteristics and solution methods.
Within these structures, specializations can emerge and incremental advances be
obtained, which otherwise could not be achieved by attempts on a more abstract or a
broader front. The repertory of elementary problem frames, available in [JAC01],
includes the following intuitive notion of each problem2:
§ Required Behaviour: “There is some part of the physical world whose

behaviour is to be controlled so that it satisfies certain conditions”. The
problem is to build a machine that will impose that control;

2 There are some variants of these basic problem classes, most of them result from adding further domains to
the problem world. All these variants raise additional characteristic concerns in the structure.

 44

§ Commanded Behaviour: “There is some part of the physical world whose
behaviour is to be controlled in accordance with commands issued by another
operator”. The problem is to build a machine that will accept the operator’s
command and impose the control accordingly;

§ Information Display: “There is a part of the physical world for which certain
information (about its states and behaviour) is continuously required.” The
problem is to build a machine that will obtain this information from the world
and present it at the required place in the required form;

§ Work-pieces, “A tool is needed to allow a user to create and edit a certain class
of computer processable text or graphic objects, or similar structures, so that
they can be subsequently copied, printed, analysed or used in other ways”. The
problem is to build a machine that can act as this tool;

§ Transformation, “There are some computer readable input files whose data
must be transformed to give a certain output file. The output data must be in a
particular format, and must be derived from the input data according to certain
rules”. This machine will produce the required outputs from the inputs.

In the next section we apply Problem Frames for Plexus problem description – the
Indicative description - also called knowledge domain. Then, section 3.4 presents
the Plexus machine to be developed – the Optative description.

3.3. Locate and limit the scope of the Problem in the world (Indicative)

When engineers want to develop a new simulator/simulation based on FEM they
must have a clear notion of the involved abstractions and their relationships, the
concerns of the stakeholders, and reusability of the data and code. Generally they
have to deal with the problem from the beginning, describing FEM abstractions,
processes details and requirements for the new simulator. Furthermore, the
multidisciplinary and interdisciplinary nature of multi-physics problems, induce
unorganised domains, which adds to the great number of possible ways for
knowledge representation, processing and use. High levels of abstraction and
problem decomposition are required, in order to achieve a state where software
reusability, maintainability and adaptability become commonplace together, with
the possibility of easier software evolution. However, it is difficult to identify which
kind of requirement modelling technique or architectural abstractions are relevant,
appropriate and complete to understand the whole problem, especially if we aim at
reuse and evolution of solutions.

An engineer using a FEM simulator can perform an analysis such as the one defined
in Figure 3-4. Some requirements for performing a specific FEM-based simulation
analysis are described by [COR95]:
i) A problem must be solved; problem data and simulation objectives are

defined at the application level;
ii) Develop a plan for an initial Finite Element (FE) model, that is, define the

problem data, discretization and solution methods;

 45

iii) Pre-process, which means processing the problem’s input data, to obtain a
set of data structures, which are needed for the simulation process;

iv) Execute the solution algorithm, which means a sequence of operations that
represent the simulation itself;

v) Post-process, which means further processing the FEM simulation results in
order to compute (based on the simulation results), store and display the
required data.

vi) Validate the results. The physical behaviour must have been anticipated.
vii) Revise the plan if needed.

Figure 3-4 Conventional FEM Analysis Process [COR95]

FEM design and procedure can be clearly divided into two types of processes: one
which involves performing large-scale algorithmic computations and data
processing; secondly processes involving decision-making, which require
perception, intelligence, knowledge and reasoning power [TO95]. Engineers,
expected to master the expertise necessary to use finite element software effectively
in the design process, traditionally perform the decision-making process. The
human expertise in the decision–making process represents a major part of the time
and effort to perform analysis and design. To overcome these problems, several
research efforts are currently underway, attempting to formalize the decision-
making criteria and to develop intelligent automated software to supplement the
human designer [TO95]. The problem we want to solve is related not only to
decision making-process but also to ways of organizing processes and data (related
to large-scale algorithmic computations and data processing) in a way that will
facilitate further exploration of process and data distribution and reuse.

i) A problem must be solved

 Anticipate physical behaviour.
Plan how FEM results will be
checked. Are they reasonable?

vii) Plan revised FE modelling
insight provided by the current

FE model

 iii) Pre-process: prepare
the FEM model

iv) Solve equations of FE model

v) Post-process

vi) Are results reasonable? Are error
estimates small? Does model revision do

little to alter computed results?

Stop

ii) Plan an initial
FE model

 46

3.3.1 Plexus Indicative Mood

The world under study for the development of a new application, without the Plexus
System (machine), can be structured as a collection of interconnected domains. In
Figure 3-5 the problem domain, related to the development of simulators using the
FEM, is organized as a number of separable domains, commonly found in most
conventional FEM simulator worlds (based on Figure 3-4 which documents the
domains of study).

Problem Domain (P)

User Domain (U)

U:formulates
Visualization Domain (V)

Pre-Processor Domain (PP)

P:supplies
problem data

Real World Domain (RW)
U:acquires

knowledge from

PP:Uses
discretization

methods

U:observe problem in the nature

Simulation Domain (S)

V:display results
based on specific
simulation results

Simulator Domain (S)

PP:supply
pre-processed data

S:implement
solution

numerical
methods

S:Supplies
simulation results

Figure 3-5 Plexus Indicative Mood (Problem domains and their interaction)

The existing domains include:
§ The Real World, where humans acquire expertise. It gives a clearer

understanding of what the designer has to deal with;
§ The Problem Domain, which includes problems to be solved through the

simulation;
§ The Simulator Domain, simulator main characteristics, and strategies, etc;
§ The Pre-processor Domain, is represented by the input data mapped to the

simulators requirements, and also some applied structures or machines used to
do this mapping;

§ The Simulation domain, which consists of simulation results;
§ Visualization Domain, where more elaborate and appropriate results are

generated and viewed.
§ The User Domain is composed mainly of engineers and scientists.

Note that in Figure 3-5, we can identify some problem frames phenomena, which
are part of the phenomena interface between existing domains. For example,
between the User Domain and the Problem Domain we have an event controlled by
the User Domain (U: Formulates, indicating that the User controls the problem
formulation), etc. Those domains include a lot of information explained in Chapter
2 about FEM Simulation.

Next, we describe each of the involved domains. Some of them include existing
commercial machines, which can be available in a FEM simulation analysis, such as
commercial simulators (in the Simulator domain), mesh generators (in the Pre-
processor domain). During this chapter, in the domains description we present meta-

 47

models, whose objective is to describe the involved concepts, syntax and semantic.
Some of the meta-models represent the concepts that will help the formulation of
the simulation problems and solution strategies in the FEM context. UML class
diagrams will be used to represent the domains relationship. In particular, we define
the following stereotypes: domain and phen-entity (which represents phenomena
classified as entities).

3.3.2 Real World Domain

According to the context diagram, the Real World Domain is the scientific world
where the engineer obtains information. In other words, it refers to the mathematical
domain, where whole information about the problem to be simulated and respective
solution methods come from. The mathematical world domain (Math World) is
derived considering the physical world domain (Physic World), the geometry
domain (Geometry World). The mathematical world domain (Math World), is in
turn composed by the domain of exact mathematical world (Exact Math World), the
domain of solution strategies (Solution Strategies World), and the domain of
discretized mathematics (Discretized Math World). The FEM Domain is based on
mathematical discretization of exact mathematical behaviour laws. The FEM
Domain also restricts the Solution Strategies World, and is composed of Geometry
Discretization and Phenomena Discretization sub-domains. The Real World Domain
and the involved sub-domains are described in Figure 3-6.

Nature
<<domain>>

...

Geometry World
<<domain>>

Geometry Discretization
<<domain>>

Phenomena Discretizat ion
<<domain>> DiscretizedBehaviourLaw

<<domain>>

Physic World
<<domain>> related to

based on
observation of

Exact BehaviourLaw
<<domain>>

Exact Math World
<<domain>>

related to Math World Domain
<<domain>>

related torelated to

Discretized Math World
<<domain>>

FEM (Discretization)
<<domain>>

based on

Solution Strategies World
<<domain>> related to

restricts

Other forms of Discretization
<<domain>>

based on

restric ts

Figure 3-6 Real World Domain

 48

From Chapter 2, Figure 2-6 and Figure 2-7 we can identify several concepts, that is,
problem frames phenomena, which compose the involved domains [JAC01]:
§ Entities: Exact Vector Field (in Physical World), Exact Behaviour Laws (in

Exact Math World), Exact Geometry (in Geometry World), Discretized
Behaviour laws (in FEM), Geometric Mesh (in Geometry Discretization),
Discrete Vector Field, Shape Functions (in Phenomena Discretization), etc

§ Event: Discretization of Behaviour Laws (in FEM), Mesh Generation, Exact
Behaviour Laws Formulation (in Exact Math World), and Physical Model
Creation (in Physic World), etc.

§ Values: Finite Element Geometric Shape = Triangle (in Geometry
Discretization), and Mesh Generation Method = Restricted Delaunay (in
Geometry Discretization), etc.

§ States: Geometry Discretized or Mesh generated (in Geometry Discretization),
Behaviour Laws Discretized (in Phenomena Discretization), and Solution
Strategy Defined (in FEM Discretization), etc.

§ Truth: Discrete Weak Form equivalent to the System of Algebraic Equations
(in FEM domain), and Mesh Generation Method ShouldBeCompatibleWith
finite element geometric shape (in Geometry Discretization), etc.

§ Roles: Triangle defines Finite Element Shape in Mesh Generation (in
Geometry Discretization), etc.

The domain phenomena (problem frames phenomena), that compose the domains in
Figure 3-5, was be exemplified by a small set of concepts, because our purpose is
only to illustrate how these definitions can help the understanding of the involved
domain information (events, entities, truths and states, etc).

3.3.3 Problem Domain

The Problem Domain includes the exact and discretized problem:
§ The exact problem consists of obtaining the exact vector fields, which satisfy

the exact behaviour laws (coupled multi-physics) defined on a given exact
geometry.

§ The approximate (discrete or discretized) problem consists of obtaining the
discrete vector fields defined on an approximated geometry, which satisfies the
system of algebraic equations, which resulted from the discretization
procedures applied to the exact behaviour laws.

In order to define a problem several pieces of data are needed and must be supplied
by the User Domain. For instance: the exact geometry, phenomena data,
phenomena-geometry relationships, phenomena-phenomena relationships, and
auxiliary methods (e.g. mesh generation method), etc.

As seen in chapter 2, the discretization processes starts with the application of a
FEM technique (from a FEM domain) the exact problems (in a Exact Math World
domain), which will be transformed into the approximate (discretized or discrete)
problem (from a FEM domain) by geometry discretization and phenomena

 49

discretization methods (from a Geometry Discretization domain and Phenomena
Discretization domain, respectively).

Some of the problem frames phenomena, identified in the Problem Domain are, for
example: (i) Entities such as the discretized geometry and discrete vector field. (ii)
Events such as discretization; (iii) States such as DiscretizedProblem, which is a
state of a given problem.

3.3.4 Pre-Processor Domain

Remembering that the definition of the discrete (or discretized) problem considers
for granted several pieces of data. Some pieces are not usually given by the user and
should be generated and their relationship with the discrete problem should be
established before the simulation itself begins. For example, the geometric mesh.
The “pre-processing” phase is responsible for the transformation of the user input
problem data into data structures in the form acceptable by the analysis.

The Pre-processing domain includes problem frames phenomena such as: (i) the
relationship between phenomenon and geometry entities, the relationship between
phenomenon-phenomenon entities, and the definition of phenomena methods and
processes; (ii) Events such as phenomena generation and geometry generation;
mesh generation (geometric and phenomenon), and simulator configuration, etc.

The extent and complexity of the pre-processing phase depends on the level of
abstraction supplied by the simulation system for the problem and solution
definitions. Particularly, for coupled multi-physics problems, the pre-processing
phase can become very intricate if high levels of abstractions are not considered.

3.3.5 Simulator Domain

This includes the computational system, which is used for the simulation itself,
which means the computation of the solution to a given discrete problem. It
executes processes such as: step estimation in the time progression scheme, model
(physical and mathematical) and discretization adaptations, solution of systems of
algebraic equations, and Error Estimation, etc. In spite of the commercial software
available, which support FEM simulation, many problems are still beyond their
scope. When defined/implemented from scratch, a simulator for complex problems
demands hard work. Frequently simulators and simulations need to be redefined
many times, which, without the definition of a standardized reusable way, implies
heavy reprogramming. The main processes involved in a simulation were detailed in
Chapter 2.

We can identify several concepts, that is, problem frames phenomena, which
compose the Simulator domain. They include: (i) Entities such as: Pre-
ProcessedProblem, SystemofEquations, and SimulationResults, etc; (ii) Events such

 50

as SimulateProblem, CalculatePhenomenaContributions, SolveSystem, and
CalculateNextTimeStep, etc; (iii) States such as Error Estimated, and
InitialTimeStepCalculated, etc; (iv) Values such as kindofsystem = ‘Linear’,
Method = ‘NewtonCotes’, etc; (v) Roles such as SimulateProblem
(Pre_processedData, and SimulationResults), etc.

3.3.6 Simulation Domain

This domain represents the entities that correspond to data generated during a
simulation or the simulation result. It represents hard work, but frequently neither
stored nor maintained. This domain must be verified and validated for the guarantee
of proper results. So, some problem frames phenomena found in the Simulation
domain includes: (i) Entities, such as Simulation Results and Pre-Processed
Problems; (ii) States such as Problem Solved.

3.3.7 Visualization Domain

This domain corresponds to the “post-processing” that takes analysis output and
generates the data required by the user in the form accepted by the viewer. The
domain can include an appropriate machine (visualization environment), which
helps this visualization; the physical problem solution (its result) is processed in
order to obtain the quantities of interest for the user and for the required
visualization. An important aspect is that the existing visualization environments
require the data for visualization in a specific format.

Some problem frames phenomena found in the Visualization domain are: (i)
Entities, such as Images, format, and visualization environment, etc; (ii) Events such
as: View a specific Distribution (e.g. view the distribution of the involved stresses
and temperatures in a structure), etc.

3.3.8 Users Domain

This domain includes persons that are responsible for events such as: building of
simulators, running simulations and the visualisation of simulation results. They are
composed of entities such as engineers, scientists and students, etc. That is, FEM
simulator designers, developers and users, which are considered as problem frames
phenomena entities.

In this section the knowledge domain (indicative mood) was described. We did not
give many details because the FEM method has already been explained in Chapter
2. In the next section, the Plexus proposed environment (opative mood) is presented.
The existing domains will be described together with some specific machines and
given domains, which compose or interact with the Plexus machine.

 51

3.4. Proposed Environment for the Development of FEM Simulators (Optative)

Our goal is to propose specific solutions, which can be gathered in a Simulation
Environment for the development of FEM simulators (the Plexus System). Many
applications are going to be developed, within the specific domain; so the
timesaving of reuse will recover the time invested to develop it.

The desired Simulation Environment must improve domain comprehension
(through abstractions and pre-defined data); support reusability of simulation
models and numerical solutions; simplify requirements specification; focus on
application specific functionality; and implement specialist routines for automatic
programming, see Figure 3-7.

Figure 3-7 Non-functional Requirements

The proposed environment also requires the management of great volumes of data,
previously built components, phenomena, phenomena coupling, algorithms
components, definition of persistent data and simulation knowledge reuse. There are
also some systems, which may interact with the Plexus system, such as: (i) CAD
systems, to input information related to geometries and so on; (ii) library
components, since there are programs available that can be coupled to Plexus e.g.
BLAS (Basic Linear Algebra Solvers); (iii) Image reconstruction systems; (iv)
Visualization systems; (v) Virtual modelling systems.

The new Plexus environment must include features such as:
§ Provision of a knowledge base management.
§ Abstractions and pre-defined data for problem definition.
§ A pre-processor machine, which helps the data treatment.
§ Allow the use of different numerical methods in the simulation machine;
§ Help simulator building and configuration, supporting the reusability of

different simulators strategies.
§ Support modularisation of simulator structuring.
§ Definition of a systematic method to organize and describe processes in the

FEM context in order to reuse them. FEM simulator process and process reuse,
based on processes their types and levels of computation inside a FEM
simulator. For processes to be reusable, we need to express common elements
and variables within one process.

Reusability of models
and numerical solutions

Implement specialist routines
for automatic programming

Make the development of
simulators easier and faster

Simplify requirements
specification

Focus on application
specific functionality

Improve domain
comprehension

Definition of a group of domain
solutions

Objective
 Simulators

Adaptability

 52

The general objective of our approach is to facilitate and shorten the development
time of FEM simulators. To achieve this, the definition of a group of solutions for
the FEM domain was considered: the definition of a specific domain architecture
(applying abstractions which promote reuse), the definition of customisable and
modular solutions, considering existing software engineering standards (i.e.
reference models); management of commonality across different simulators;
definition of adaptative models, and to explore process reuse. See Figure 3-8 .

Figure 3-8 Solutions Decomposition

3.4.1 The Plexus System

The proposed environment will assist in the construction of simulators, based on
meta-data information. It will support the development of various different classes
of simulators, specified by the designer (engineer), not just one specific simulator.
The developed simulator uses complex structures (that represent data and software
components) to implement coupled phenomena simulators in the FEM context. The
environment allows the design of an integral piece of software, which is able to
solve the coupled phenomena problem as an integrated solution for the
considered/defined coupling. Figure 3-9 gives an overview of the Plexus system
input and output. This figure does not follows a specific notation, is only
illustrative.

 Figure 3-9 Plexus Environment -Desired Machine

 SIMULATOR
SYSTEM-A

SIMULATION
VIEWER-N

SIMULATION-X

SIMULATION-Y

 SIMULATOR
SYSTEM-B

SIMULATION
VIEWER-1

PLEXUS
SYSTEM

…

Simulator
Models and

Configuration

…
Visualization
Parameters

…

…

Definition of a group of solutions for FEM
simulator development

Management of commonality
across different simulators

Development of
modular solutions

Definition of domain
reusable architecture

Adaptative solutions
(Customization)

Separation between task and
activities (workflow control)

 53

In this work, however, we strive for the construction of reusable simulators, which
take into account several requirements that will be further detailed. In Figure 3-10
we propose a general process for FEM simulation development, which involves the
following activities: (i) Defining a meta-simulator model. (ii) Building the required
simulator, that is, a semi-complete simulator based on the designer simulator model
is constructed. (iii) Configuring this simulator, using defined articulation strategies3,
resulting in the final simulator. This simulator could also be reconfigured later. (iv)
Using the final simulator for the definition of a general problem scenario. This, in
turn, will run different requested simulations. Finally the visualization process can
be used for a better understanding of the results.

In Figure 3-10, the correspondent states encapsulate the systematic similarities
amongst simulators, allowing software FEM simulator developers to readily extend
the framework components into applications that address specific simulator
requirements. It provides a process organisation, which supports the required
encapsulation for exploring reusability in the development of a new application.
More details will be seen in the Plexus architecture, in Chapter 4. Hence, developers
could write new applications with a proven design and assure the reuse of code and
data.

Define Simulator
Model

Build
Simulator

Configure
Simulator

Simulator
Built

Define Problem
Scenario

Execute
Simulation

View Data

Simulation
Executed

build new

reconfigure

define new
problem

build new

reconfigure

define new
problem

build new

reconfigure

Figure 3-10 Simulator Building and Simulation -Problem Definition and Solution

An example of the application of the process is described as follows. Imagine that a
specialist wants to build a simulator for the following scenario/requirements: a
simulator capable of solving problems involving transient phenomena; the
phenomena context includes temperature-dependent elasticity, rigid body motion

3 The simulator main solution algorithm is here considered as an articulation of pre-defined processes. Hence,
it occurs at a higher computational level then the “classical” simulator processes.

 54

and heat transfer. First, the designer defines these models through the Plexus
system. Then, the designer asks the Plexus system to build it. The Plexus identifies
the proper global algorithm, taking into account the feature supplied and matches
them with some pre-defined global algorithm skeletons, for the simulator and
generates a semi-complete simulator. Then the designer configures the simulator
with the phenomena articulation strategies, that is, identifying how phenomena will
be grouped (their contexts) and solved in further simulated problems. As a result the
simulator will be ready for the execution of simulations. At this stage, users of the
simulator will define several scenarios for running simulations. In this work we will
apply this approach. Two examples of problems that can be solved by the defined
simulator are described in Appendix A. After or during execution of a simulation,
the user can view data through a specific visualization tool.

Through the simulation environment the user is capable of decomposing the
geometry into relevant components, where phenomena are defined. It is also
possible to copy and selectively distribute geometry data between phenomena. The
user can also define different solution strategies for different phenomena groups.
Moreover, the user has the flexibility to define algorithms as data in several levels
of the simulation, to integrate pre-built software components to the environment,
and run local or remote simulations.

In the following subsection, we will consider simulator development problem
decompositions (structuring) [JAC01].

3.4.2 The Plexus Context Diagram

The Plexus context diagram is presented in Figure 3-11. It is composed of the
desired machine and the domains with which it interacts. Note that there are new
domains, which were defined to give support to the new system, like Knowledge
Base Domain and the Pre-Processed Data Domain, which were not present in Figure
3-4, and are part of the defined domains to give support to the machine. Also the
User Domain was enriched with new users and now is called Plexus User Domain.

Some of the Plexus domains include sub-machines, which satisfy some of the
defined requirements for the Plexus machine. They try to complement the
automation of the existing world, described in Figure 3-5. These sub-machines are
the ones described in Figure 3-24 and each one will take part of a specific domain.

 55

Figure 3-11 Plexus Context Diagram

Note that Figure 3-5 and Figure 3-11 represent different diagrams. The first presents
a diagram of the indicative mood, while the second explains the machine to be built,
together with the domains that will interact and support the required Plexus
machine.

3.4.3 Real World Domain

This domain is the same as the one presented in the section 3.3. It is the outside
world, which will supply information to users and to the knowledge (stored in the
Plexus System).

3.4.4 Plexus User Domain

The Plexus User Domain (U) is composed of different users: Designer, Simulator
User and Administrator, see
Figure 3-12. Remember that the Problem Frames represent people as biddable
domains. The Designer Domain is, in turn, composed of scientists and engineers;
they are responsible for the simulator model definition, or to supply the general
information for the Knowledge Base Domain. The designers select information
from the Knowledge Base Domain in order to specify a configurable simulator. The
Simulator User Domain represents final system users, who will rely on the simulator
for different problem solutions and running different simulations and post-
processing. The persons that are responsible for the system configuration and table
loading represent the Administrator domain; they are not necessarily FEM simulator
specialists.

Plexus User
<<domain>>

Simulator User
<<domain>>

Administrator
<<domain>>

Designer
<<domain>>

Figure 3-12 Designer, User and Administrator Domain

REAL WORLD
DOMAIN (RW) KNOWLEDGE BASE

DOMAIN (KB)

PLEXUS USER
DOMAIN (U)

PLEXUS
MACHINE

PRE-PROCESSOR
DOMAIN (P)

PRE-PROCES. DATA
DOMAIN (PD) SIMULATION

DOMAIN (SD)

VISUALIZATION
DOMAIN (V)

SIMULATOR
DOMAIN (S)

 56

The Plexus Users Domain is intrinsically related to the Knowledge Base Domain.

3.4.5 Knowledge Base Domain

The Knowledge Base (KB) domain represents the discretized information
(Geometry and Phenomenon Discretization domains, see Figure 3-6) that will take
part of the system knowledge. The Knowledge Base domain is composed of: Basic
Knowledge Domain, Simulator Knowledge Domain, and Problem Knowledge
Domain. The Basic Knowledge data is the most reusable data; it helps Plexus users
in the definition of simulators and simulation problems. The Simulator and Problem
Knowledge domains are composed of data related to simulator and simulation
problems respectively.

Basic Knowledge
<<domain>>

Simulator Knowledge
<<domain>>

Problem Knowledge
<<domain>>

0..*0..*1..*1..*1..11..1

KnowledgeBase
<<domain>>

Figure 3-13 Knowledge Base Domain

In the sequence we present them in more detail.

a) Basic Knowledge Domain

This domain consists of the Geometry, Component and Phenomenon domains (see
Figure 3-14).

 Phenomenon
<<domain>>

 Component
<<domain>>

 Geometry
<<domain>>

Basic Knowledge
<<domain>>

1..*1..* 1..*1..*
1..*1..*

Figure 3-14 Basic Knowledge Domain

The Phenomenon Domain abstractly defines phenomena as a fact or occurrence,
which can be described by a certain finite number of pieces of information, which,
in turn, have to obey a set of behaviour laws (for example, fluid flows and heat
transfer). This domain is composed of semi-defined phenomena, which will guide
and further help simulation phenomena definition in the Problem Knowledge
domain.

 57

The Component Domain is an abstraction that represents software components, used
for implementing parts of processes, e.g. simulator skeletons and phenomena
methods. Hence, they represent the most reusable parts of the Plexus system.

The Geometry Domain consists of the supplied geometries. Each of the geometries
is represented hierarchically4, from the definition of the highest dimension
geometric part, for instance - volume, down to the definition of the lowest
dimension parts (i.e., points).

Other information that is part of the basic knowledge domain is related to existing
possible classifications, such as: phenomena contexts, types of phenomena
coupling, types of boundary conditions and restrictions.

b) Simulator Knowledge Domain

This domain is composed of the Algorithm Skeleton, Simulator Model and
Configuration Domains, described below.

The Algorithm Skeletons Domain represents algorithms defined by a simulator
designer, for a simulator. By skeletons we mean those parts of the solution process,
which can be replaced, making it possible to build different simulation strategies
(configuration).

1..1

AlgorithmSkeleton
<<domain>>

Configuration
<<domain>>

Simulator Model
<<domain>>

1..1

Sim ulator Knowledge
<<domain>>

1..*1..*1..11..1

Figure 3-15 Simulator Knowledge Domain

The Simulator Model Domain includes the characterization of several simulators
(see Figure 3-16). It is composed of:

§ The Simulation Scenario determines the main features of simulation strategy:

phenomena classes (transient, steady, etc.), estimation error (in space, time and
model), adaptation (in space, time and model), etc. Each Simulation Scenario,
also called Skeleton Specification, represents the classes of problems that a
simulator will be able to tackle in a broad sense; it includes a list of simulator
major features (type of phenomena, estimation error options and adaptation
options).

§ The Phenomena Context describes phenomena classification groups, e.g. heat
transfer in solids or liquids, flow of Newtonian fluids, and linear or non-linear
elasticity.

4 Plexus uses the boundary representation method (B-rep) for geometry management.

 58

§ A Global Skeleton, which is an algorithm skeleton used to implement the
highest level of the solution scheme of a simulator. It implements the simulator
scenario.

EstimationErrorOptions
<<phen-ent ity>>

Adaptat ionOptions
<<phen-entity>>

GlobalSkeleton
<<phen-entity>>

Simulator Model
<<domain>>

1..11..1

PhenContext
<<phen-entity>>

1..*1..*

SimulationScenario
<<phen-entity>>

1..11..1 1..11..1 1..11..1

1..1

1..11..1

...

1..1

TypePhen
<<phen-ent ity>>

Figure 3-16 Simulator Model Domain

The Configuration Domain is related to simulator configurations. Each simulator
configuration is represented by simulator articulation strategies, which describe the
way involved phenomena will be solved together. Articulation strategies can be
defined at block level (which consider different groups of phenomena) or group
level (a group of phenomena); they are represented by Block Data and Group Data
properties, described in Figure 3-17. More details, which justify the definition of
blocks and groups of phenomena, can be seen in Chapter 5 (FEM-Simulator
Skeleton Pattern).

Block Data is defined by:
§ Block context, which represents the general classification of the phenomena

grouping. We can have, for example, the heat transfer and elasticity block
contexts. This means that in a specific problem we can have the heat transfer
problem solved as one block, while another block solves the elasticity
problem. Each of these blocks involves groups of phenomena compatible with
its context.

§ Block Skeleton, which is an algorithm related to the block level of
computation. Represents processes involving groups of phenomena in the
simulation.

§ Block Method, which is a method (another skeleton) used by a block.

 59

Group Data is defined by:
§ Group Context, which is the general classification of phenomena grouping,

considering the phenomena contexts.
§ Group Skeleton, which is an algorithm related to the process in the group level

of computation, representing strategies for solving groups of phenomena;
§ Group Method, which is a method (another skeleton) used by a group.

Examples of Block and Group Skeletons and Context can be found in the Chapter 5,
which details a FEM-Skeleton pattern.

BlockContext
<<phen-entity>> GroupContext

<<phen-entity>>

BlockData
<<phen-entity>>

1..11..1

GroupData

1..1

Articulation Stategy
<<phen-entity>>

1..*1..* 1..*1..*

Configuration
<<domain>>

1..*1..*

1..1

BlockSkeleton
<<phen-entity>>

1..*1..*
BlockMethod

<<phen-entity>>

1..*1..*

1..*1..*

GroupSkeleton
<<phen-entity>>

1..*1..*

GroupMethod
<<phen-entity>>

1..*1..*

1..*1..*

Figure 3-17 Configuration Domain

So far we have described the Basic and Simulator Knowledge Domains (according
to Figure 3-13). Now we will describe the Problem Knowledge Domain that is
related to problem data, which will be solved by the defined simulators.

c) Problem Knowledge Domain

This domain consists of several simulation problems to be solved by a simulator.
Each problem is composed of: the geometry where the problem takes place,
phenomena under study, simulation regions, representing the geometry entities
where these phenomena occur and blocks and groups of phenomena (see Figure 3-
18). By group, we mean a set of phenomena, which are going to be solved
monolithically (together). By block, we mean a set of groups of phenomena, which
will be articulated in a solution branch independently from other blocks. The
definition of more than one block is justified in the case where a problem can be
partitioned into either independent or coupled sets of groups of phenomena. For
each group of phenomena the user must specify the scenario (front tracking, type of
linear solver, equation type, etc) that will generate specific algorithm skeletons and
constrain the group methods.

 60

Block
<<phen-entity>>

PhenGroup
<<phen-entity>>

Phenomenon
<<phen-entity>>

1..*1..*

Problem Knowledge
<<domain>>1..*1..*

1..*1..* 1..*1..*

Geometry
<<phen-entity>>1..*1..*

SimulationRegion
<<phen-entity>>

1..*1..*

1..11..1

1..11..1

Figure 3-18 Problem Knowledge Domain

Phenomenon is composed of complex abstraction tools responsible for providing
the contributions of a natural phenomenon to the algebraic equations to be solved in
each instant of the solution process.

Having described the Knowledge Base Domain (KB) we can now move on describe
the Simulator Domain (S).

3.4.6 Simulator Domain

The Simulator Domain consists of (see Figure 3-19):
§ The Simulator Builder, which corresponds to the software program and data

used to construct the simulator.
§ The Simulator Configurator.
§ Simulation Data corresponds to the pre-processes data supplied by the Pre-

processor.
§ The Simulator Kernel, which is a workflow that executes a simulator

specification, applying the Simulation Data.
§ The Simulator Domain is described in sequence.

Simulator Builder
<<domain>>

Sim ulator Configurator
<<domain>>

Simulator Kernel
<<domain>>

SimulationData
<<domain>>

 Simulator
<<domain>>

1..1

1..1

1..1

0..*

1..1

1..1

1..1

0..*

Figure 3-19 Simulator Domain

The Simulator Builder Domain is composed of a machine (tool) and data, which are
capable of building a semi-complete simulator considering a defined or selected
simulator model. A Semi-complete simulator represents a framework, which is
responsible for the control of the main process flow (Simulator Kernel), i.e. the
user’s simulation strategy implementation, which will guide the remaining

 61

processes (pre-processing, simulation, and post-processing). It is built from a series
of decisions about the kind of problem that the strategy will satisfy, for instance the
type of phenomena (transient, pseudo-transient), error estimation and type of
adaptation (if it exists). Hence, it represents the basic infrastructure for simulation
execution. It is the class that can be customized with the possible simulations, which
represent the main process. Thus, it maintains the core of simulation through the
global algorithm skeleton.

The Simulator Configurator Domain represents the machine (tool) and data for
configuring a simulator. A configured simulator means a simulator state where data
about the desired articulation strategy has already been supplied for the semi-
complete simulator. By articulation strategies we mean: simulator configuration
data following the specified simulation scenario, which determines the block and
group skeletons, the number and type of blocks and groups of phenomena, their
skeletons and relationship and execution order.

The Simulator Kernel Domain is the main process (engine) that executes the
simulator workflow. Figure 3-20 presents a defined workflow process to be
controlled. In Plexus, the main skeleton defined for a simulator represents the
workflow business process. The invoked applications include the Block and Group
Skeletons, and the Computational Phenomenon (which is the complex abstraction
tool responsible for providing the contributions of a natural phenomenon to the
equations to be solved in each instant of the simulation solution process). The
Kernel is represented by the Simulator component detailed in Chapter 4.

Figure 3-20 Business Process Workflow controlled by the Simulator Kernel

Simulation Data Domain is composed of the Problems Data - Phenomena,
Geometry, and Finite Element Domains - after the appropriate discretization.

 Workflow main process:
 Global Simulator Skeleton

…

Steps of the workflow

Simulator Kernel (Workflow Engine)

Invoked Applications:
Block and group skeletons, and
computational phenomenon

 62

3.4.7 Pre-processor Domain

The Pre-processor Domain includes a machine (a tool) that will map the users input
data (Problem Data) to the suitable Pre-processed Data structure (Figure 3-21). It is
independent of the simulator itself, and is related only to the data structure used by
the simulator.

Object Manager
<<domain>>

Geometry Manager
<<domain>>

Phenomenon Manager
<<domain>>

GraphManager
<<domain>>

Sub Pre-processors
<<domain>>

Pre-processor
<<domain>>

1..1

1..1
1..1

1..1

1..*

1..11..1

1..*

1..1
1..1

Figure 3-21 Pre-processor Domain

The Pre-Processor Domain is composed of specific managers, which deal with
objects used in the generic pre-processor control (Object Manager Domain),
geometry (Geometry Manager Domain) and phenomena (Phenomena Manager
Domain), see Figure 3-21. It also includes sub pre-processors, which deal with
specific data mappings. More details about these tools are given in chapter 4, the
pre-processor subsystem section.

3.4.8 Simulation Domain

The Simulation Domain is composed of the following domains: the first is the
Simulation Problem, which corresponds to the problem which will be solved by the
simulator and that will be mapped to the appropriate Simulation Data, after the pre-
processing. The second is the Simulation Result Domain, which corresponds to the
data obtained after a simulation run (see Figure 3-22).

Simulation
<<domain>>

Simulat ionProblem
<<phen-entity>>

1..1

Simulation Result
<<phen-entity>>

0..*

1..11..1

1..1 0..*

Figure 3-22 Simulation Domain

3.4.9 Visualization Domain

The visualization domain is composed of several domains described bellow and
presented in Figure 3-23.

 63

Simulat ionResults

VisualizationExtractedDataExtractUsedFormat

Extractor

Viewer

MappedData

VisualizationResults

Visualization
<<domain>>1..*

1..*1..1

1..1 1..1

1 .. *

1..*1..1

1..1 1..1

1 .. *

1..* uses VisualizationEnvironment1..*1..*

1 .. *1 .. *

generates

att tends

Figure 3-23 Visualization Domain

§ Simulation results are the data generated for a problem simulation.
§ An Extractor selects, gather and maintain relevant data to be used for

visualization (the VisualizationExtractedData).
§ ExtractUsedFormat is the specific data format used by the Extractor to

maintain the extracted data.
§ The Viewer is responsible for mapping the extracted data to a format that can

be understood by an existing Visualization Environment.
§ The data in the appropriate format (known by the visualization environment),

generated by the Viewer is called the MappedData.
§ Visualization Environment (the applications available in the market, e.g. Data

Explorer [IBM02] and AVS [AVS02]).
§ Visualization Results (which are relative to the final data presented by the used

environment).

3.4.10 Classification of Plexus concepts according to Problem Frames

Remember that following [JAC01], the domains existing concepts are problem
frames phenomena. They can be classified into: entities, events, values; states, truth,
relations and roles. This classification helps to understand Plexus’s concepts:
§ There are some basic entities such as Simulator, Phenomenon, Geometry,

Groups of Phenomena, Algorithm skeleton, Group of Phenomena and
Numerical Methods.

§ There are some defined values, such as: (i) types of phenomena coupling such
as: weak, strong, etc; (ii) phenomena contexts, for instance, heat transfer in
solids or liquids, flow of Newtonian fluids, Linear elasticity or non-linear
elasticity. Boundary Conditions Types (which can be for example: Dirichlet,
Neuman and Mixed)

§ A Simulator can have the following states: (i) modelled simulator, which
indicates that a specification of a simulator using a pre-defined model has been
developed; (ii) built simulator, indicates when the simulator code has already
been built; (iii) configured simulator, used when data about the desired
articulation strategy have already been supplied for the simulator; (iv)
simulation done, after a simulation has been finished.

§ Existing events are for example: (i) input simulator model, (ii) input
articulation strategies, (iii) build simulator, (iv) start simulation running, (v)

 64

change simulator configuration, alter block and group articulation; (vi) input
knowledge data; (vii) input problem data.

§ Event roles, that is, the participation of one or more individuals in an event:
BuildSimulator (Simulator_x, SimulatorM1l), Configuration (Simulator_X,
Articulation_Strategies_Y); SimulationRun (Simulator_X, Preprocessor_K,
ProblemScenario_Y, Results).

Until now we have described the Plexus context diagram, the involved domains and
phenomena. In the sequence, for a complete analyse of the problem and
specification, we will introduce the Plexus Problem Decomposition. The context
diagram influences this phase, since the identification of the system required
problem frames takes part of the problem decomposition.

3.4.11 Plexus Machine Structuring

The Plexus approach for the construction of simulators consists of sub-problems.
Figure 3-24 shows the Plexus machine, which is composed by other sub-machines.
This decomposition was based on the previous described context diagram and other
information related to the proposed solution (e.g. the requirements of knowledge
base management and simulator configuration):

§ Knowledge Base Manager: is responsible for the maintenance of all

information to be built and reused by the simulator.
§ Simulator Builder: construction of a simulator based on a selected global

scenario. Its concern is to ensure the right construction of a semi-complete
simulator (based on the defined simulator model) responsible for simulator
functioning. It ensures that the designer can further re-configure it, supplying
the desired articulation strategies.

§ Simulator Configurator: redefines simulator configuration from some designer
supplied data. It changes the built simulator articulation strategies (see
configuration domain for more details) by selecting other ones; and allows the
designer to change the relationship between phenomena grouping.

§ Pre-processor: responsible for the mapping/transformation of the user input
data into a specific and appropriate defined data structure, which will be used
by the simulator. It is described in more detail further on this chapter.

§ Simulator: corresponds to the machine, which will be able to execute several
desired simulations. It can be considered as a simple workflow structure that
executes the constructed and configured Simulator, using Simulation Data,
which includes Computational Phenomena (see GIG-pattern in Chapter 5).

§ Viewer: allows further post-processing of simulations result data.

 65

Figure 3-24 Problem’s decomposition – Plexus Sub-machines

This decomposition was based on the requirement for building an environment for
the development of simulators, following FEM conventional analysis approach.
Next we will detail the main Plexus machine and each involved domain. Since the
main Plexus problem frame is very complex, it must be decomposed into several
simpler problem frames. In order to give an illustration of the representation of a
class of sub-problems, we will detail the Simulator Builder Problem Frame and the
Pre-processor Problem Frame in section 3.6.

3.5. The Plexus Problem Frames

The identification of a set of problem frames, specialized in FEM simulator
development, will assist developers in system description and analysis. To illustrate
the Plexus problem frames we choose to describe the Simulator Builder and the Pre-
processor Problem Frames. Each decomposed sub-problem has its own partial views
of the world and machine, taken from the original problem and is shown in a
problem diagram. As described in section 3.2, a problem diagram has a concern, is
composed by a machine, parts of the world with which the machine interact
(involved domains which can be given or designed), the requirement description
and the interface of shared phenomena (the specification phenomena) and the
requirement phenomena (a predicate over the phenomena).

In a complete description, the defined Plexus Problem Frames could be further
decomposed into instances of Jackson’s basic problem frames [JAC01]. For
example, the Knowledge Base Generator frame can be further decomposed into
simple work-piece frames and the Pre-processor and the Simulator Builder into
transformation frames. This identification helps in further descriptions, once
Jackson details the way of describing each of them.

3.5.1 Simulator Builder Problem Frame

This problem frame concern is to ensure the construction of a simulator from a
selected global scenario with a default configuration, Figure 3-25. The Simulator
Builder finds the information related to the stored simulator model specified by the
designer (through the global scenario and global skeleton). It constructs the
simulator considering the default configuration (group and block skeletons) supplied
by the knowledge base. The process of building the simulator is mainly concerned

PLEXUS
MACHINE

 KNOWLEDGE BASE
MANAGER

SIMULATOR
 CONFIGURATOR

SIMULATOR

PRE-PROCESSOR

VIEWER

SIMULATOR
BUILDER

 66

with the integration of the global, block and group skeletons defined by the
configuration data.

Figure 3-25 Simulator Builder Problem Frame

In order to simplify the diagram in Figure 3-26, a decision was made to use letters
(a,b,c,..) in the specification phenomena, instead of including the controlling
domains which will be presented next, following [JAC01] notation. The interfaced
phenomena and the domains that control them are represented in the diagram (the
Simulator Builder machine and the other involved domains: Designer, Knowledge
Base and Simulator).

The requirement specification, in a problem frame, includes the indicative mode
(what exists independently of the machine defined) and the optative mood (the
requirements of the defined machine). The domains the machine interacts are
represented by the indicative mode (see Figure 3-6) (Knowledge base, Designer and
the Simulator). The optative mood is represented by the specification phenomena
(see Figure 3-27) and the requirement phenomena (see Figure 3-28). Note that, in
one problem frame the optative mood can be the indicative mood and in the other
not. E.g. the Knowledge Base, which is optative in the Knowledge Generator is
indicative in the Simulator Builder.

Figure 3-26 Indicative Mood – Simulator Builder Problem Domain

Note that the machine Simulator Builder (SB) controls some actions:
§ It interacts with the designer to get the required simulator model, and validates

input data.
§ It asks the knowledge base for the simulator model data, that is: the simulator

scenario and algorithm skeletons, etc.
§ It sets the default configuration.
§ It builds the simulator.

Problem Domain (Indicative Mood)

The Simulator Builder Machine interacts with the following domains:
§ The Designer, is a biddable domain, which selects simulator global

scenarios and algorithm skeletons and starts simulator building;
§ The Knowledge Base Domain is a lexical domain, which supplies

information about the simulator model;
§ The Simulator is the built domain that is a causal domain.

DESIGNER (D)

KNOWLEDGE
BASE (KB)

Build a semi-complete
simulator using a
defined simulator

meta-model

SIMULATOR
BUILDER

(SB)

a

b

c

 s1

 s2

 s3
 SIMULATOR

(S)

 67

Figure 3-27, details some examples of the interfaced phenomena and which domain
is controlling them. A list of phenomena is associated with each controller domain,
and describes the phenomena it controls. The symbol ! separates the list of
controlled phenomena from the controller domain. The controller domain is
identified by an abbreviation using uppercase letters (like D and SB). For example
D!{Select_Simulator_Model} means that the designer selects a specific simulator.
In turn, the Builder gets this information from the Knowledge Base
(SB!{Request_Simulator_Model}).

Figure 3-27 Optative Mood: Simulator Builder Specification Phenomena

Figure 3-28 Optative Mood: Simulator Builder Requirement Phenomena

3.5.2 Pre-processor Problem Frame

This problem frame is concerned with the processing and constructing of dynamic
structures (called pre-processor control structures) that will generate suitable
simulator internal data, from the problems input data, see Figure 3-29. This data is
related to mathematical and physical information (e.g. geometry, boundary
conditions and vector fields). The system required states are presented in Figure 3-
31.

Requirement phenomena (Optative Mood)

The system requires that:
Someone selects a pre-defined simulator model and start the simulator building:
 s1: {Simulator_Model_Selected, Simulator_Building_Requested}
The existing selected model be retrieved from the knowledge base:
s2: {Simulator_Model_Given}
A simulator is built, if everything is ok:
s3: {Simulator_Built}

Specification phenomena (Optative Mood)

The simulator builder “requests the Simulator Model” and the designer “selects,
through the available ones”:
a: SB! {Request_Simulator_Model}
 D! {Select_Simulator_Model, Start_Simulator_Building}
The simulator Builder requests from the Knowledge Base the respective
simulator data, which answers with the requested data
b: SB! {Request_Simulator_Data}
 KB!{Give_Global_Skeleton_Data, Give_Default_Configuration }
The simulator Builder, constructs the simulator with a default configuration:
c: SB! {Set_Default_Configuration, Build_Simulator}

 68

Figure 3-29 Problem Frame Pre-processing

The Pre-processor machine interacts with the following domains, see Figure 3-30:
Knowledge Base (KB), which stores existing reusable data (e.g. problem data); User
(U), a biddable domain which desires to solve simulation problems; Pre-processed
Data domain (PD), which is a given lexical domain, which represents the data
structure that will be used further in the simulation. It also has to interact with the
Pre-processor Control Structure Domain (PCS), which is a causal domain that
represents appropriate controllers for the input data mapping of the simulator data
structures.

Figure 3-30 Indicative Mood: Pre-Processor Problem Domains

Figure 3-31 describes the desired states to be achieved by the Pre-Processor
machine, such as Pre-processor control structures are mounted.

Figure 3-31 Optative Mood: Pre-processing Requirement Phenomena

Requirement phenomena, that is desired states (Optative Mood)
The system requires that:
s1: A problem is identified, and the pre-processor started
s2: Problem data is retrieved
s3: Pre-processor control structures are mounted
s4: Simulator data is generated

 Problem Domain (Indicative Mood)

The Pre-processor Machine interacts with the following domains:
§ User (U);
§ Knowledge Base Domain (KB),
§ Pre-Processor Control Structures (PCS)
§ Pre-Processed Data (PD)

PRE-PROCESSOR
(PP)

USER (U)

KNOWLEDGE BASE
(KB)

PRE-PROCESSOR
CONTROL

STRUCTURES (PCS)

PRE-PROCESSED
DATA

Process problem data
and construct control

structures for mapping
input data to the proper
simulator data structure

and perform the
mapping

a

b

c

d

s1

s2

s3

s4

 69

Note in Figure 3-32, that the Pre-processor machine (PP) controls events such as:
Geometry Pre-processing, Phenomena Pre-processing, Group and Block Pre-
processing, Block Pre-processing, Geometry Mesh Generation, Phenomena Mesh
Generation, Geometry Copying and Collapse and so on. Each one can be
decomposed into a problem frame.

Figure 3-32 Optative Mood: Pre-processing Specification Phenomena

We can identify that the Pre-processor includes one of Jackson’s basic
Transformation problem frames [JAC01], which describes a machine where some
readable input files data is transformed to a certain output file (with a particular
format), according to certain rules. In the pre-processor we can identify: some input
domains (Knowledge Base and Designer), output domains (Pre-processor Control
Structures and Simulator Data) and requirements. Although Pre-processor control
structures are output, they are also internal data, which will be further transformed
to generate the output simulator Data.

3.6. Problem Frames Evaluation

In this chapter, we choose the Problem Frames technique for our complex
engineering domain description due to several aspects. Some were related to the
separation of the problem domain and the machines (indicative and optative
moods), others due to the use of Problem Frame diagrams to represent particular
solutions of classes of problems. In this work, we described a sequence of steps for
FEM simulator structuring that promotes reuse of components and data. Some
advantages and problems are enumerated below (establishing the benefits, and
suggesting that the approach is valuable, however not complete).

The complex domain of FEM involves different sub-domains. Engineers need a
technique, which uses common and compatible terms with their

 Specification phenomena, that is some of the possible events

 The pre-processor “requests the Problem Scenario” and the user “selects,
 through the available ones”:

a:PP! {Request_Problem_Scenario}
 U! {Identify_Problem_Scenario, Start_Pre-processing}

 The Pre-processor requests from the Knowledge Base the respective problem
 data, which replies with the requested data

b:PP! {Request_ProblemData}
 KB!{Gives_Problem_Data (Simulation_Regions, Phenomena,…)}

 The Pre-processor, runs several sub-pre-processes and generates the
 simulator data

c: PP!{PP!{PreprocessGeometry, PreprocessPhenomena, PreprocessGroup, etc}
d: PP! {Generate_Simulator_Data}

 70

scientific/engineer’s terminology. As FEM is complex, simplicity in modelling is
also a desire. The extensibility and reuse of the previous solutions helps to reduce
development time, and improves the level of correctness. It is also important to
represent the rationale and design decisions for the requirements, which are not
considered in this chapter.

We can make four general observations about the advantages of the use of the
Problem Frames technique [JAC01] in FEM simulators:
§ First, related to the appropriateness of the provided terms: the term domain is

commonly used in mathematics, and also the term machine is applicable to
simulator development. However, we have problems with the term
phenomena, which cause confusion, since it has different meanings in Plexus
(where we consider physical natural phenomena) and in the Problem Frames
approach (where it means anything in the world). Also the term domain can be
seen as very strong.

§ Second, regarding reuse. Problem frames are one of a number of ways of high
level grouping problems by type. Problem frames are similar to design patterns
- elements of reusable object-oriented software, but are problem oriented rather
than solution oriented. Problem frames make it easier to solve a problem once
the type of problem is classified. In FEM, we use problem frames to capture an
abstraction of a class of problems, for example the construction, configuration
and pre-processing of simulators. Hence, it allows the definition of problem
frames to be reused and detailed in a standardized way. This is reinforced by
the fact that FEM is a domain specific application, where we can take
advantage of existing expertise such as the reuse of skeletons.

§ Third, the levels of detail are very appropriate. Problem frames have a
distinctive characteristic, which is very attractive: they clearly separate the
indicative and optative mood. In FEM this feature is used to describe the
existing problem in a modularised way identifying the definition of a simulator
exploring a reusable form through meta-models. Also the concept of
phenomena, which involves the concepts of entities, states, and events, allows
a clear enumeration of the involved data, and operations, and so on. In FEM
we have for example the following states: Simulator Modelled, Constructed
and Configured. This simplifies cross-references in the model definition.
Another relevant aspect is the definition of the context diagram at problem
level, giving an overview of the whole problem to be considered. Furthermore,
Problem Frames allow the description of their involved domains using any
language, such as UML, which is used in the Plexus meta-model definition.

§ Fourth, some other gains are generic to requirements engineering, such as the
support for precise definition of concepts through a more formal description
(not discussed in this work), support for modularity in the definition of
architecture in early stages, that helps system analysis and evolution.

We also identified some disadvantages in Jackson’s technique [JAC01]. Despite the
appropriateness of some terms, there are still some ambiguities in the way the
concepts and categories can be applied. The definition of a meta-model may help to
address those ambiguities or misunderstandings. The problem frames notation is

 71

neither simple, nor intuitive, nor trivial. The complete documentation becomes very
long. The need for predefined abstractions for representing the relationship between
domains (like composition and restriction) could help domain grouping,
comprehension and definition. It also does not identify some relevant notions
present for example by Bubenko [BUB95] (e.g. causes and problems, applied in
Chapter 2 for characterising an existing problem). Finally, Problem Frames do not
treat goals explicitly and neither assists in solving conflicts.

3.7. Final Considerations

In this chapter Problem Frames were applied to structure the analysis of the world in
which the problem is located and describe the involved concepts and what effects
one would like the Plexus system to achieve.

Next chapter will detail the definition of a specific architecture for the Plexus
Simulator Environment, which will manage commonality across different
simulators. The architecture is defined considering some quality attributes to which
it maintains conformity (such as system reusability, flexibility and adaptability, as
well as interaction with other systems).

72

Plexus Simulation Environment Architecture

This chapter presents the Plexus architecture for supporting simulation of coupled
phenomena based on FEM solutions. This architecture takes into account the
required quality attributes, architectural components, and the interaction between
components and their functionalities. The chapter gives a clear perspective of the
whole system and the control required for its development, aiming to reflect system
requirements such as reuse, modularity, and flexibility. The architectural
abstractions used include frameworks and patterns, which are detailed in the next
chapter.

Chapter

4

73

4.1 Introduction

Understanding of a domain feeds requirements that help to define an architecture,
which determines components. In chapter 3 we made an in-depth analysis of our
problem domain, FEM simulator development.The requirements for the proposed
environment, called Plexus, were pointed out and discussed. In addition, the first
structuring of the Plexus environment was proposed. In this chapter, we suggest an
architecture and its components for this environment, considering the current trends in
software engineering development. The approach takes into account the definition of a
structure that improves the quality of the simulator designs. The defined architecture
attempts to fill the existing gap in the development of FEM simulators.

Some of the previous identified requirements are drivers for the Plexus’s architecture,
such as: flexibility in the development of simulators, extensibility of the system
through component integration, reduction of complexity, reusability (processes, data
and models), and distribution. Quality attributes, such as performance are not the
focus of this work, since many other studies are being developed in this area, such as
performance analysis in the solution of linear and non-linear systems, and performance
in matrix and vector calculations. However, this work tries to guarantee flexibility in
the integration of the achieved results obtained in those performance research areas
through the integration and modularity quality attributes of the system. Furthermore,
the requirement of being a cooperative system was not considered in this work, due to
the complexity involved in addressing it.

Architecture is a design artefact that begins to map requirements into a solution.
Quality attributes of a system are mainly permitted or precluded in its architecture.
Hence, if the architecture does not comply with these qualities, from the beginning,
one cannot expect to achieve them later on in the development. The architecture
determines the structure and management of the project development as well as the
resulting system, since teams are formed and resources allocated around architectural
components. For anyone seeking to learn how the system works, the architecture is the
place where understanding can be improved [CNL01].

The system architecture concept represents the main support for the development and
maintenance of software systems of long term. One interpretation of software
architecture definition is that presented in [BCK98]: “It is the structure or structures of
the system, which comprises software components, the externally visible properties of
those components, and the relationship among them”. Externally visible properties,
refers to the assumptions that other components can make of a component, such as its
provided services and shared resource usage. By making externally visible properties
of components part of the definition, one intentionally and explicitly includes
component interfaces and their behaviours. Components may be developed by the
internal team, bought on the open market, mined from legacy assets, or commissioned

74

under contract. Once available, the components may be integrated to the system and
tested [CNL01].

Software architecture can be observed better in terms of views. Views are particularly
useful as guidelines for implementing and maintaining a system. Subsystems and
components are typically specified into different views to show the relevant functional
and non-functional properties of a software system [BUS96, BCK98]. Views in UML
(Unified Modelling Language [OMG02]) can capture the structural and behavioural
aspects [HR99]. Classes and packages can represent a structural view; on the other
hand, the behavioural view can be represented by scenario, states and activities.

As a generic modelling language, the UML offers a familiar notation for designers,
besides allowing a direct link between object-oriented implementation and
development tools. However, as a general-purpose language it has the problem of
conceptual object vocabulary that cannot be ideal to represent architectural concepts.
As there is a considerable interest in using general notation for architecture modelling,
a great number of proposals have recently attempted to show how concepts found in
ADLs (Architecture Definition Languages) can be directly mapped into an object-
oriented notation such as UML [ME99, HNS99, GKP99]. However, the purpose of
this work is to give a generic view of Plexus architecture, not considering the details
found in ADLs (such as ports and interfaces).

The next section describes Plexus architecture subsystems and components. Plexus
architecture will be presented according to the conventional UML approach, that is,
the definition of the structural and behavioural views. In section 4.2, the Structural
View Section shows the architectural components and their functionalities. After, in
section 4.3 the Behavioural View Section describes component interaction. Then in
section 4.4, the defined architecture is evaluated, considering the addressed quality
attributes.

4.2 Plexus Architectural Structure

The Plexus system is described by three-levels of architecture, which improves the
portability and maintainability of the system. The main levels are the interface, which
corresponds to the presentation, logical, and repository levels. The general
organization of the system and global control structure are presented in Figure 4-1
using UML package notation:
§ The presentation level is composed of the Plexus interface, which is responsible

for all human-system interaction and visualization of results.
§ The logical level representation includes the following major subsystem:

Knowledge Management, Pre-processor, Simulator Builder, Simulator
Configurator, Pre-Processed Problem Data, and Simulator.

§ The data storage level is composed of a single subsystem called the Repository
Manager.

75

Pre-processed
Problem Data

Simulator
<<subsystem>>

Pre-Processor
<<subsystem>>

Plexus Interface
<<subsystem>>

Knowledge Management
<<subsystem>>

Phenomena
Pre-processor

PLEXUS ARCHITECTURE

Repos itory
Manager

<<subsystem>>

Viewer
<<subsystem>>

Geometry
Pre-processor

Algorithm
Pre-processor

Block
Pre-processor

Pre-processor
Control Structures

Basic Know
Management

SimulatorKnow
Management

ProblemKnow
Management

Simulator
Builder

<<subsystem>>

Simulator
Configurator

<<subsystem>>

DataServer
Manager

Kernel
Block

Group

Phenomena

Group
Pre-processor

Presentation Level

LogicalLevel

RepositoryLevel

Figure 4-1 Plexus Architecture

Each subsystem’s architecture is described bellow. In fact the simulator component is
the main component, which can be seen as a framework. By framework, we mean a
software abstraction that is defined by a set of cooperating classes that make up a
reusable and customisable design for a specific class of software [AB00]. The
simulator subsystem is supported by some other subsystems, which help in its
construction, configuration, and data mapping and visualization.

4.2.1 Knowledge Management Subsystem

This component is the domain registration subsystem. Its purpose is to provide input
and maintenance of the generic data on simulators and simulation in the system

76

database. This data includes: basic FEM, simulator, and problem knowledge data. All
this data will provide users with basic information, guiding problem data definition
and simulation construction. Through the selection of data, that were previously
modelled and recorded in the system, Plexus guarantees less data replication.
Independence between data and programming code could be achieved. This subsystem
includes:
§ Loading/Maintenance of basic data to the system database. The basic data

acquired represents general reusable data. It defines for example different
simulators meta-models, problem scenarios, and generic representations of
phenomena with existing possibilities for behaviour laws. It also defines and
provides reuse for components related to simulator skeletons, and numerical
algorithms, etc.

§ Manipulation of Strategies Catalogue: Finite Element Strategies Catalogue
searches for strategies that have been previously implemented, allowing solution
reuse.

§ Maintenance of Simulation Problems: simulation phenomena occurring in a
supplied geometry, each phenomena describing its numerical solutions, existing
blocks and groups of phenomena.

§ System Management: environment configuration, definition of system users,
groups of users and their privileges, and importation/exportation of data, etc.

Next, we present the main sequence and dependence among input data and
intermediary states achieved. The Simulator data input is composed of two main steps:
Simulation Scenario Specification and Problem Specification. The description of the
involved data was presented in chapter 3, in the Knowledge Base Domain section
3.4.5.

Figure 4-2 details the involved activities within 4 parts: the Basic Domain
Specification, basic to all simulators, the Simulator Model Scenario Specification, the
Problem Specification and the Phenomena Specification. Note that the Basic Domain
Specification is related to all simulators and the Phenomena specification is a step of
the Problem Specification. So we will consider only two steps, as follows:

(1) Simulation Model Scenario Specification, which in turn is composed of other
specifications, which must follow a pre-defined sequence:
§ Skeleton Specification where the main features of the simulation strategy are

determined: phenomena classes (transient, steady, etc.), estimation error (in space,
time and model), adaptation (in space, time and model), etc.

§ Definition of Phenomena Context: for instance, heat transfer in solids or liquids;
flow of Newtonian fluids; linear or non-linear elasticity;

§ Definition of Geometry components where afterwards (in the problem
specification) the phenomena will be defined. This step is independent of the two
previous items.

77

Define Block
Skeletons

Basic Domain
Specification

Skeleton
Specification

Phenomena
Context

GeomCompont
Definition

Simulator Model
Defined

Define Simulation
Regions

Select Simulation
Phenomena

Associate each phenomena
with the respective Simulation

DefinePhen
Gorups

Group Scenario
Specification

Define Blocks
of Groups

Define Phenomena
Boundary Conditions

Generate Ficticious
Phenomena

Define Phenomena
Coupling

PhenomenaSpecificationProble mSpecificationSimulator Model Scenario SpecificationBa sic Knowledge Spe cification

Figure 4-2 Pre-processing Input

(2) Problem Specification (Raw data). In this step, there are three important
intermediary states of defined data, related to problem specification, which can be
achieved. They represent the states when: the Phenomena, Groups, and Blocks are
defined. Figure 4-2 shows that the process must follow a specific sequence and that
some actions can be carried out in parallel. It includes the identification of simulation
regions and specific phenomena that will take part in the simulation problem,
association of each simulation region with the correspondent phenomena, specification
of each phenomena (boundary conditions, “fictitious” phenomena1 and coupling) and
also phenomena groups and blocks. For each group of phenomena the user must
specify the scenario (front tracking, type of linear solver, equation type, etc.) that will
generate specific algorithm skeletons and will constrain the group methods. There is

1 Detailed in the Computational Phenomena, described in Chapter 5.

78

also the specification of Blocks, and each block has a set of skeletons, which satisfies
the demands from the Global Skeleton by decoding them into demands for the groups
in a previously defined order.

Figure 4-2, starts considering the definition of the basic system domain specification.
In this diagram, the process reaches a final state that assumes that a defined task has
been completed. An example can be seen in Appendix A (Example 1).

4.2.2 Simulator Builder Subsystem

Simulator Builder is a subsystem, which builds simulators based on algorithm
skeletons, phenomena contexts, and a global simulator algorithm. After the designer
has selected the simulator meta-model to be built, from the repository manager (which
contains different kinds of pre-defined simulators), the builder component recovers the
associated data, creates the required infrastructure for organizing simulator objects,
instantiates the simulator objects, identifies involved components, and other required
objects. It also makes a simulator configuration, if required by the designer at this
stage.

The Simulator Builder constructs the simulator taking into account the simulator
model, which distinguishes: types of solution (linear or non linear), types of
Phenomena (such us transients, pseudo-transients, and permanent), requirement for
Adaptation (time, space, none), inclusion of Estimation Error or not; and requirement
for Mesh Generation or not.

4.2.3 Simulator Configurator Subsystem

The Simulator Configurator supports the configuration of the simulator. It allows the
redefinition of the simulator configuration from designer supplied data. The designer
can change the simulator articulations strategies (that is global skeletons, block
skeletons and group skeletons) by selecting different ones and can change the
relationship between blocks, groups and phenomena (for example change the number
of blocks, etc.). However, it does not allow for modifications of the phenomena
context and global skeleton specification. It includes a Simulator Set-up, which
assembles the appropriate structures (graphs) that will manage the simulator process
flow.

4.2.4 Pre-processor Subsystem

The Pre-processor is a tool that assembles some standardised control structures to
support the mapping services. It takes input data (raw data pieces) and coverts it to the
simulator pre-processed problem data (see Figure 4-3). Once the pre-processor
finishes, the Pre-processed problem data is supplied to the Simulator. This, in turn,
uses a service called Load Simulator data (from Simulator), which builds specific

79

simulator data structures, implementing the format required and recognized by the
simulator.

Simulation Problem
Pre-process

Simulator
Load

Raw data defined in
the Knowledge Base

Problem Data loaded by Simulator
DataServerManager. Simulation Data ready

Input Simulation
Problem

Simulation Problem Processed by
the pre-processor

Figure 4-3 Data transformation

Figure 4-1 shows the Pre-processor package decomposed into: (i) Control Structures
package, which is related to the special structures that help the pre-processing of the
raw pieces of data and transform it into suitable pre-processed problem data to be
further used in simulator loading. (ii) Geometry, Group, Block, Algorithm, and
Phenomena Packages. These packages are abstractions for dealing with the
phenomena that occur in a given simulation region from a supplied geometry
[LSA02b].

The main part of pre-processing corresponds to processes related to dynamic
structures building, which is composed of:
§ Object Manager Pre-processing: where some important singletons are created,

such as: PhenDomainManager, GeomDomainManager, Algorithm Manager,
GraphManager, PhenGroupManager, Simulation Manager, Post-processor
Manager, DynamicStructuresManager;

§ Geometry Pre-processing: creation of dynamic structures that will represent the
initial geometric components of the simulation scenario;

§ Phenomena Pre-processing: creation of phenomena managers in each simulation
region;

§ Geometry Collapse: identification of the phenomena that share a geometric mesh
and collapse the correspondent geometry before mesh generation takes place;

80

ObjectManager
Pre-Processing

Geometry
Pre-processing

Pheomena
Pre-processing

Geometry
Colapse

GeomMesh
Generation

PhenMesh
Generation

PhenGroup
Pre-processing

Block
Pre-processing

Algorithm
Pre-processing

Dynamic
StructuresBuilt

Simulat ion Scenario and
Problem Specified

Figure 4-4 Dynamic Structure Building

§ GeomMesh Generation: process responsible for the discretization of the

geometric entities creating geometric meshes. Each phenomenon occurring in a
simulation region has an associated mesh, which can be shared or not with other
phenomena;

§ PhenMesh Generation, process where the related phenomena mesh is created,
that is, where the vector field approximation is defined on each geometric finite
element;

§ PhenGroup Pre-processing: creation of dynamic structures that represent each of
the defined phenomena groups, each solution method and the existent priorities of
execution;

§ Block Pre-processing: definition of the groups, which will compose each block,
definition of all block skeletons;

§ Algorithm Pre-processing: the algorithm skeleton of the main process of the
simulation being defined is assembled in the dynamic memory, including the
solution skeleton of each block and group. The features identified in the Pre-
processing Input determine the Global Algorithm Skeleton.

81

The final state (Dynamic Structures Built) represents that the dynamic structures have
been built, and the system is ready for simulation start, since the control structures
have already been assembled.

Different managers compose the Pre-processor Control Structures Package present in
Figure 4-1. In the Pre-processor Control Structures package, see Figure 4-5, each
manager has an exact specific function:
§ The PhenDomain Manager, which deals with all structures that are responsible for

the phenomena data manipulation;
§ The GeomDomain Manager, which deals with all geometric data from the

supplied geometry and meshes up to the slave geometry (the implementation of
the simulation region where a phenomena occurs);

§ The Graph Manager, which is a generic package that supports the system with
structures and tools to deal with graph structures that are to be used in the
representation of phenomena and geometry.

§ The ObjectManager, which is a generic package that helps building complex
objects used during the process.

Pre-processor ControlSt ructures

Phen Domain
Manager

Object Manager

Geometry Domain
Manager Graph Manager

Figure 4-5 Pre-Processor Control Structures

The most important class packages, Geometry Domain Manager and Phen Domain
Manager, are described in the sequence. Due to simplification constraints only some
classes are explained.

Geometry Domain Manager Class Package
§ Master Geometry Domain – supplied geometry, it starts hierarchically from the

definition of the highest dimension geometric part (for instance, volume) down
to the definition of the lowest dimension parts (i.e., points);

§ Geometric Entity – it is each one of the geometric components into which is
decomposed a Master Geometry Domain;

§ Simulation Region– it is the highest dimension geometric entity, part of the
supplied geometry, where a specific phenomenon is to be defined;

§ Slave Geometric Domain: implements the simulation region;
§ Slave Geometric Entity – it is each one of the geometric entities into which is

decomposed a Slave Geometric Domain;

82

§ Geometric Mesh: geometric entity that defines a discreet geometric
approximation;

§ Geometry Finites Elements: tetrahedron, triangles, etc;
§ Geometric Domain Manager: the manager of all geometries involved.

PhenDomainManager

GeomDomainManager

MasterGeomDomain

1..*1..*

SimulationRegion

Phenomenon

GeomFiniteElements PhenFiniteElements
1..11..1

SlaveGeomDomain

1..11..1

SlaveGeomEntity
1..*1..*

1..*1..*

MasterPhenDomain

1..*1..*

SlavePhenDomain

1..11..1

VectorField

PhenMesh

**

SlavePhenDomainEntity
1..*1..*

1..11..1

0..10..1

MasterPhenDomainEntity

1..*1..*

1..*1..*

GeomEntity

1..*1..*

GeomMesh

1..*1..*

1..11..1

0..10..1

Figure 4-6 Geometry and Phenomena Manager

Phendomain Manager Class Package

§ Master Phenomenon Domain is the manager of all the phenomena, which occur

in a simulation region. It constructs the Slaves Phenomenon Domain and
supplies each one with: a copy of the respective geometric entity; construct it’s
Vector Fields and Weak Forms, etc.

§ Slave Phenomenon Domain– entities, which contain all the information about a
phenomenon, defined in a particular Geometric Entity of the problem.

§ Master Phenomenon Domain Manager: it is the manager of all Master
Phenomenon Domains involved in the simulation process.

Figure 4-6 presents a view of the main structures of the Geometry and Phenomenon
Packages [LSA02b].

4.2.5 Simulator Subsystem

The Simulator subsystem is responsible for the simulation of coupled phenomena
applying FEM. In fact, the Simulator is a tool, which manages simulator programs
process flow. Figure 4-7, which is based on [WMC95], shows that: the Simulator
Kernel represents the Workflow Engine; the simulator Global Skeleton instance

83

represents the defined workflow process; and that the Workflow Invoked Application
are instances of the Block and Group skeletons, and also Numerical Methods that take
part of Phenomena Data. Plexus does not consider the Administration and Monitoring
tools yet. The workflow users are the designers, which define the workflow process
when they build a simulator and configure it. Users are those who run simulations
through the definition of the invoked applications.

Figure 4-7 Overview of Plexus Workflow Perspective following Workflow reference model

The simulator process workflow is defined, during the simulator building, through the
extension of the simulator by a Global Algorithm Skeleton (which include specific
processes for solving blocks and groups of phenomena) and other relevant sub-
processes. The simulator functionality is supported by its algorithm skeletons and in
the extension provided by the computational phenomena, which are incorporated as
simulator data, and encapsulate phenomenon solution methods. The simulator applies
the FEM-Skeleton and the GIG patterns, described in chapter 5. Therefore, we can
represent the simulator system through a class diagram, presented in Figure 4-8, which
is composed of:

§ The Kernel, which will execute the defined simulator workflow process;
§ The ServerManager, which supplies services for loading the simulator data in

specific structures; its services can be supplied at run time or not, providing
simulator adaptability for processes and data.

§ Phenomena, which defines the specific and supplied phenomena strategies
(numerical methods) and data.

§ The Global Skeleton, which defines the workflow process.
§ Blocks and groups, which constitute the method of solving phenomena

together.

The solution of coupled phenomena frequently involves the decomposition of
differential operators: the solution of a set of phenomena at different times, with
transference of information between the solution instances. A problem that arises with
the use of this technique involves the initial instant, when there is no information
available about the previous solution. Then, initial solutions must be supplied. These
procedures were encapsulated in the phenomena domains, and were described in this

 Plexus Interface: Process Definition Tool

Workflow Client Application (main workflow
process): Simulator Global Skeleton

Workflow Invoked Application:
skeletons, numerical methods

 Workflow Engine: Simulator Kernel

84

work as Computational Phenomenon patterns (which take part in the simulator as
supplied data, treated by the Server Manager, see Figure 4-8).

GraphNode
0..*

0..*

...

SkeletonGraph

Kernel Block Group Phenomenon
1..*1..*

0..*

0..*

Simulator

1..1 1..*
1..*

ServerManager
1..11..1

GlobalSkeleton

1..*

BlockSkeleton

1..*

GroupSkeleton

1..*

1..1 1..*
1..*

1..*1..*1..*

AlgthmNode1..11..1

1..*1..*

1..11..1

DomainData

1..*1..*

AlgthmData
1..*1..*

Figure 4-8 Simulator Component

Generally the main effort in the simulation run would be the computation of the
discrete vector fields for all phenomena. This means the solution of several coupled
systems of algebraic equations for each time step (if time dependent). The
computation of extra quantities, which may be derived from those discrete vector
fields, and visualization procedures may also impose considerable load on the
computer system.

The simulator solution process is hierarchical. Firstly, it considers the global solution
and the subsets of phenomena to be solved simultaneously (blocks and groups).
Secondly, each of these phenomena is detailed. The objects needed for each one of
these hierarchical stages are encapsulated in objects of the same class, called here the
solution domain. In this way each phenomena has a solution domain that will manage
all the processes related to the contribution of it to the regional and global solution
(matrix, vectors, estimation error, and adaptation of the discrete model, etc.). The same
occurs to the set of phenomena that are to be considered simultaneously (blocks and
groups of phenomena), which are defined by the decomposition of the differential
operators and global procedures.

For instance, the global Skeleton articulates the time loop (if present), adaptation
iterations and defines processes involving the call of Block Skeletons. Block Skeletons

85

may define different solution strategies for different Groups, thus, articulating Group
processes. Group Skeletons articulate their phenomena procedures in very specific less
reusable ways. It is at this level that solvers for algebraic systems are applied.
Phenomena are the abstraction of the entities being simulated. All those skeletons can
be implemented as objects from classes following the GIG pattern (Chapter 5).
Therefore, the GIG would allow for the realization of the interoperability of the
different levels of computation (by automatically plugging the lower level skeletons
into the higher ones).

4.2.6 Viewer Subsystem

Viewer is a part of the Presentation Level that allows the visualization of simulation
results. The solution is processed in order to allow the access and visualization of
specific values, relevant to the user. These subsystem functionalities include: (1) View
of data using a specific graphic tool; (2) Support for queries, considering different user
needs; (3) Validation, which determines the appropriateness of the scientific principles
and mathematical models used to develop simulation tools. This pattern is not part of
the current work.

4.2.7 Pre-processed Problem Data

The Pre-processed Problem Data Package is responsible by the problem input data
after being treated by the Pre-processor. It will be further transformed by the Simulator
Server Manager to represent the simulator data (AlgthmData, figure 4-8), presented in
Figure 4-3.

4.2.8 Plexus Interface Subsystem

The Interface Package is composed of all the system windows that allow access to the
Plexus environment. These interface windows are presented in appendix C.

4.2.9 Repository Manager Subsystem

This Package implements functions to support the whole system with a higher level of
abstraction to access data methods for the system repository.

The database maintains the general data related to meta-simulators models, the
context, the algorithms that take part in different simulation strategies, the simulation
problem’s data and also the simulation’s intermediary data and results. To improve
process reuse, Plexus stores in the database and classifies existing processes in the
following way:
§ Numerical Methods, which are already known numerical algorithms that can be

incorporated or implemented by the simulator. They represent algorithms available
in the literature. They can be classified according to their relative context (such as

86

geometry, phenomena, etc.). They are used, for example, to implement phenomena
solution methods.

§ Simple Processes, which are implemented by the designer to provide the extra
functionality required, and do not need to be specific numerical method
algorithms.

§ Plexus Algorithms, which can be incorporated or defined through the system.
They represent the composition of defined processes. They can include
alternatives for a specific functionality; however there must already be defined
default processes.

§ Skeletons, processes defined by the designer, which will compose the main
structure of the simulator. They can be a specialization of the above-defined
Plexus Algorithm. In pursuit of a high degree of reusability, hierarchical levels of
processes are used to define a simulator, where each level may have several
possibilities of algorithms, and can be easily described by a graph. These levels
satisfy a number of requirements, such as: (i) to separate less reusable modules
from reusable ones; (ii) to help the understanding of the decomposition of the
simulation data among the several processes; (iii) to make possible the dynamic
re-configuration of the simulator through the replacement of reusable modules.
More details can be seen in the FEM-Simulator Skeleton (chapter 5).

§ Built and configured algorithms, which correspond to a designer strategy mounted
from the composition of existing numerical methods, components, or simple
process, but which do not contain alternatives (the process was already defined), in
this way they are different from simple Plexus Algorithms.

4.3 Plexus Architectural Behaviour

As described in previous chapters, the Plexus main processes consist of Knowledge
Management, Simulator Management, Pre-processor, Simulation, and Simulation
Results View.

Figure 4-9 presents part of the collaboration diagrams, which describe the main
processes, their inter-relationship and sequence of subsystem execution, which are
detailed in the following items:

1. The Plexus controller starts requesting the Knowledge Base Manager services for
storing data (basic data loading, simulator specification and problem data
definition).

2. The Plexus Controller requests the simulator construction for the Simulator
Builder.

3. The Simulator Builder requests the simulator related data to the Repository
Manager. The retrieved data is relative to the details of the selected simulator.

87

1 : Plexus
Controler

8 : Simulator

10 : Viewer

4 : Simulator
Configurator

3 : Simulator
Builder

2 : KnowledgeBase
Manager

5 : Simulator
Setup

6 : Pre-processor

7 :
ServerManager

 : Repository Manager

 : Pre-processor
ProblemData

14: runs simulation

16: requests data
visualization

4: request simulator
configuration

2: request simulator
construction

1: requests data
maintenance

6: runs
simulator

setup

8: Problem Definition/
Pre-processor start

15:

11: load
simulator

data

12: loads 13: supplies

9:

7: request
data

5: request
data

3: request/
store data

17: requests data

10: generates

Figure 4-9 Plexus Functioning

4. The designer wants to specify the articulation strategies, the Plexus Controller

requests the system configuration (however, this can be done later).
5. The Simulator Configurator acquires the required data from the Repository

Manager.
6. Then, the Simulator Set-up is executed. This will guarantee that the basic

simulator structures are created.
7. Data is requested to the Repository Manager.
8. The ProblemDefinition/Pre-processor can be started.
9. Data is requested to the Repository Manager.
10. The Pre-processor Data is generated (see details given previously in Figure 4-3).
11. The simulator data is loaded; the Server Manager transforms the pre-processed

data into the appropriate simulator structures (it is part of the simulator
component, see Figure 4-8).

12. The data is supplied to the Server Manager.
13. The Simulation running is started.
14. The data is requested to the Server Manager.
15. Simulation data visualization is requested.

88

16. The simulators viewer can be requested to present the required visualization data.
17. The viewer in turn requests the appropriate data from the repository manager,

which in turn supplies it.

The Simulator Builder and the Simulator define specific sub-processes. However, their
logic is very re-configurable, that is, most of the sub-tasks are changeable.

The definition of a process based on FEM allows the control of coupled phenomena,
guaranteeing a high level of abstraction and reuse of developed solutions. The
complexity of the implementation phase can be greatly reduced by the use of a
predefined process that describes the activities and stages that take part in the
complete process of defining and constructing the main structures that are part of the
Plexus control system.

The following section describes an evaluation of Plexus architecture.

4.4 Plexus Architectural Evaluation

For an architecture to be successful, its constraints must be known and it must not only
implement the functional requirements of the system which are specified in the
requirements document, but also satisfy many quality attributes, such as whether or
not the system will have to interact with other systems (interoperability), and meet
business goals (such as future desires), etc. Bellow we evaluate our proposal
architecture to affair the previous identified objectives.

Table 4-1 Summary of the Architecture Evaluation

Problem

Solution

Single Software Solution
for coupled multi-physic
simulation based on
FEM

Definition of an architecture incorporating subsystems that
apply FEM-Skeleton Simulator Pattern; Computational
Phenomenon Pattern, and the Pre-processor Pattern.

Flexibility in the
implementation of
different numerical
methods and definition
of different simulators
strategies

Implementation of simulator modularity, through different
levels of computation, which allow the customisation of
numerical solutions (FEM-Skeleton Simulator). This allows
the configuration of the: (i) simulator articulation strategies
configuration (Configurator Component) (ii) phenomena
numerical methods (Computational Phenomena Component).
Support for the dynamic adaptation of the system workflow.

Make the simulators and
problem development
easier and faster than
before

Pattern definitions for the FEM simulators domain
development providing reusable solutions;
Improvement of Domain understanding and definition;
Reusability of numerical solutions, models and data,
supported by a database repository;
Simplification of Requirements;
Focus on application (specific architecture considering

89

defined patterns).
Automatic Routines (not considered in this work).

Distribution Distribution of solutions (partially treated by defined
Architecture); (ii) Encapsulation of activities in specific
abstractions; Simulator modelling and implementation
through computation levels make the distribution of
functionalities and the simulation process easier.

Persistence It is considered through meta-models definition and its
implementation is supported by the use of a Data Base
Management System.

Integration with other
systems

The system allows the incorporation of new components and
due to its modular organization allows easy extension to new
functionalities.

Maintainability Definition of the architecture in levels (hierarchical) and in
subsystems helps system maintainability.

Plexus architecture considers functional and non-functional requirements, which drive
its definition. The functionalities are related to the implementation of all the processes
required to develop a simulator based on FEM. However, the conceptualisation of the
architecture articulates many non-functional requirements to achieve its purpose.
Table 4-1 summarizes some of them giving an overview of the adopted solutions.

4.5 Final Considerations

In order to achieve an effective development process in software engineering, reuse
and abstraction can be applied at many different levels of design. The software
architecture level is specifically concerned with the description of elements from
which systems are built, interactions among those elements, patterns that guide their
composition, and constraints of these patterns. Plexus architecture is a domain specific
architecture for FEM simulators. It applies the object-oriented paradigm, for
constructing families of applications, in our case simulators.

There is a well-known specification architecture for composite simulations [KWD99]
called High Level Architecture (HLA). In pursuit of simplification, it is not the
purpose of this work to include HLA integration. We only take into account its
features, considering it as a future improvement for the Plexus architecture. The
purpose of the HLA is to support requirements related to the increasing need to build
more complex and realistic numerical simulations (such as interoperability and
distribution). In this architecture, components are individual simulations. Each one can
be developed and executed independently, and when integrated they build a major
simulation. It supports the building of simulations distributed across multiple

90

computers. However, nothing in the architecture assumes or requires a distributed
implementation of a simulation. HLA development was based on an initiative
involving government, academia, and industry. In 1998, the Defence Modelling and
Simulation Office adopted version 1.3 of the HLA specification. These specifications
formed the basis for draft IEE standards for simulation interoperability architecture. A
more detailed description can be seen in [KWD99].

The next chapter details some of the Plexus architectural abstractions (patterns and
frameworks). The applied patterns include: modelling patterns, for addressing
framework domain features, by supporting the expression of an abstract domain model
underlying the framework and design patterns, for addressing structural properties of
frameworks by supporting the development of the logical structure [FAY99].

91

Plexus Simulation Environment Abstractions

This chapter presents some basic concepts about Plexus architectural abstractions
including patterns and frameworks. Some patterns were indentified during the
Plexus Simulation Environment conceptualisation: Computational Phenomenon,
FEM-Simulator Skeleton, and GIG-Patterns. The first and the second one are
domain specific patterns, which help control the simulation of coupled phenomena
based on FEM solutions. The GIG pattern is not domain specific.

Chapter

 5

92

5.1 Introduction

Software architectural abstractions can be exemplified and divided into various
categories according to a set of dimensions, which include level of abstraction, degree
of domain specificity, level of granularity, and the degree of completeness. Design
patterns [GHJ95] and frameworks [JF88] are examples of those categories, which are
applied in Plexus conceptualisation.

Patterns for software development are one of the hottest topics that emerged from the
object-oriented community. According to [AB00]: “Patterns are literally a form of
software engineering problem-solving discipline that has its roots in a design
movement of the same name in contemporary architecture, and the documentation of
best practices and lessons learned in all vocations”.

Being able to analyse and build a system with a regular set of building blocks, which
represent common pattern usage, provides substantial benefits. These include better
human comprehension of complex systems, with the reduction of the cognitive burden
[BCK98], and aids both development and maintenance of the system. Such a regular
set of building blocks represents common pattern usage.

A pattern is a small collection of atomic units and a description of their relationships.
In general, a pattern is a named perspective on a subject. In order to be relevant, a
pattern must express a general recurrent theme that has proven to be useful. Focusing
on the analysis, design, and implementation efforts in software development, the
subject is a problem domain, a system design, or a program implementation. In
addition, the subject can be a structural diagram with classes, objects, and their
relationships. Other types of subjects could be models of problem domains, interaction
diagrams, or source code [FAY99].

Frameworks are closely related to design patterns. Frameworks are an object-oriented
reusable analysis or design of all or part of a system, which has been used successfully
and which forms an important part of the culture of experienced object-oriented
developers [FAY99].

Modelling patterns address framework domain features by supporting the expression
of the abstract domain model underlying the framework. A modelling pattern names a
reusable abstraction over classes, specifies the static structure of the abstraction in
terms of methods and class relations, exemplifies the abstraction, and provides hints on
applicability [COD92, FAY99].

Design patterns address structural properties of frameworks by supporting the
development of the logical structure [FAY99]. Many design patterns are related to
abstract coupling or the management of recursive structures, which are issues

93

considered in the more technical phases of design and in the implementation of
frameworks. The primary focus when using design patterns is the development of
frameworks. Design patterns promote loose coupling between the parts, making
framework design flexible. To provide flexibility in terms of abstract coupling between
the constituent parts, a design pattern is used to design the functional factoring and
component interfaces in a part of the framework. The design patterns address very
explicitly the task of providing a framework with structural characteristics.

A collection of patterns, built on each other to generate a system, form a pattern
language [ALX77, COP01]. A pattern in isolation solves an isolated design problem; a
pattern language builds a system. It is through pattern languages that patterns achieve
their fullest power. A pattern language describes an architecture, a design, a
framework, or another structure. It has structure, but not the same level of formal
structure that one finds in programming languages. A pattern language is not just a
decision tree of patterns. This is partly because the patterns of a pattern language form
a directed acyclic graph (DAG), not a hierarchy. The number of distinct paths through
a pattern language is very large. It is indeed, the structure of this network, which makes
sense of individual patterns, because it anchors them, and helps to make them
complete.

We can identify a collection of patterns that generate the Plexus system environment.
The Plexus Pattern Language can be decomposed into the following patterns (see
Figure 5-1): (i) FEM-Pre-processor Pattern; (ii) FEM Simulator pattern, composed of
FEM-Simulator Skeleton and the GIG-Patterns; (iii) Computational Phenomenon
Pattern; (iv) Viewer Pattern.

Figure 5-1 Plexus Pattern Language

The Computational Phenomenon Pattern, the GIG-Pattern, and the FEM-Skeleton
Pattern are detailed in the rest of this chapter. These patterns deal with specific
problem solutions such as Simulator Modelling and Workflow definition and control.

 PLEXUS PATTERN LANGUAGE

ii) FEM-simulator pattern

GIG
Pattern

FEM Simulation
Skeleton Pattern

iii) Computational Phenomenon
Pattern

iv) Viewer
Pattern

i) FEM-Pre-processor Pattern

Control Structures
Pattern

Pre-Process
Pattern

uses uses

94

§ The Computational Phenomenon Pattern represents the phenomenon model to

be used by the simulator. The main objectives of such an abstraction are to have
a common language to represent a phenomenon in the coupled context and to
make intuitive and easy the representation of data sharing and dependence
between different phenomena.

§ The objective of the FEM-Simulator Skeleton Pattern is to guide the
development of Simulator Models based on FEM. This pattern is intended to
help the design and implementation of simulators. The main advantage of the
pattern is its high level of abstraction, reusability, and modularity in the design
of simulators for several coupled multi-physics phenomena.

§ The GIG Pattern represents a solution based on a generic interface graph, which
deals with the definition and control of processes flow, taking into account
some specific requirements of simplicity, making easier the definition from
algorithmic natural language and giving flexibility in the granularity of defined
processes. The pattern is intended to help the design and reuse of programs. It is
not domain specific.

The other patterns, that is the FEM Pre-processor Pattern (described in [LSA02b]) and
the Viewer Pattern (described in [VA02]) are still under development and are not
presented in this work.

There is a lot of confusion about whether frameworks are just large-scale patterns, or
whether they are just another kind of structure. A frequently used definition is “a
framework is the skeleton of an application that can be customized by an application
developer”. The term “framework adaptation” is applied when a developer customizes
a framework to a particular application [FAY99]. Both definitions for frameworks are
not conflicting; the first describes the structure of a framework while the second
describes its purpose [FAY99]. When structuring a framework in terms of design
patterns, the framework structure will be made visible because patterns will describe
logical units and point out abstract couplings that take part of the framework Figure 5-
2. This is important for both framework adaptation and framework evolution.

 Figure 5-2 Frameworks supported with patterns

 Plexus Simulator Framework

Domain features: simulation of coupled multi-
physics phenomena, etc

Structural characteristics: groups of
phenomena, phenomena, etc

 Support

GIG-Pattern, FEM-Skeleton Simulator Pattern and Computational Phenomena Pattern

95

A framework provides architectural guidance by partitioning the design into abstract
classes and defining their responsibilities and collaborations [GHJ95]. A specialist in a
particular framework sees the world in terms of the framework and will naturally
divide it into the same components [FAY99]. The adaptation of a framework is done
through the customisation and extension of the framework structure. The parts of the
framework that are open to extension and customisation are termed flexible hot spots.
They express aspects of the framework domain that cannot be fully anticipated. They
are discovered during domain analysis or provided by a domain expert. The
components to be supplied in the flexible hot spots can be components from a library
belonging to the framework (providing different alternatives), and/or they can be user
created. A framework can be adapted by means of white box or black box reuse. The
former corresponds to customizing the framework classes by specialization, and the
latter corresponds to configuring a part of the framework.

Plexus environment applies the object-oriented paradigm for constructing families of
FEM simulator applications, which can benefit from the framework concept through
the exploration of system customisation. In addition, it provides the support for the
understanding and construction of simulator systems, which include the database
models, the system interface (see appendix C), and the involved processes
classification (for example skeletons and numerical methods described in chapter 4,
section 4.2).

The Plexus architecture includes the simulator subsystem component, which can be
seen in Figure 5-3 as a framework abstraction. This framework, applies the GIG and
FEM Simulator Skeleton, and the Computational Phenomena Patterns (which can be
seen in Plexus Pattern Language, see Figure 5-2). In fact, the Simulator Framework
includes a component, the Computational Phenomena Framework (see Figure 5-4),
which applies the Computational Phenomena Pattern.

Figure 5-3 Plexus Simulator Framework

Figure 5-3 and Figure 5-4 give an overview of both Frameworks identifying the
existing hotspots.

Simulator Framework

Simulator Framework

Simulator Framework

Simulator Framework

Simulator Framework

Simulator Framework

Kernel

Hotspots

Flow Control

Skeletons

Articulations

Comp. Phenomenon

Common points

Flexibilization
points

The Plexus Simulator
Framework presents several
flexible hotspots. Examples
of white box hotspots are the
algorithm skeletons and the
GIG structure, which are
customized by
specializations.

96

Figure 5-4 Plexus Computational Phenomena Framework

This chapter presents some specific patterns developed considering the domain
requirements. Each pattern was described in the following form based on suggestions
found in [COP01]. First, the pattern name is supplied. Then, some details are given
about the context in which existent problems might inhibit further developments, and
to which the pattern solution applies. After, the design challenge is presented through a
question. Then, pattern forces are shown, that is, the patterns design trade-offs, which
pulls the problem in different directions, towards different solutions. Next, an
explanation about how to solve the problem is presented. Then, the pattern
applicability is described. In the sequence, an example of usage is presented. Then, the
resulting context is detailed, indicating which forces the pattern resolves and which
forces remain unresolved by the pattern. Finally, related patterns are shown and some
comments are made on about known users.

The rest of this chapter is organized as follows. Section 5.2 presents the Computational
Phenomenon Pattern. Section 5.3 introduces the FEM-Simulator Skeleton Pattern.
Section 5.4 describes the GIG Pattern. Finally, in section 5.5 we make some closing
remarks.

5.2 Computational Phenomenon Pattern

This pattern represents an abstraction of the collection of commonalities found in the
concepts and processes for representing phenomena simulation through FEM. A
further objective with such an abstraction is to make the representation of data sharing
and dependence between different phenomena intuitive and easy. This pattern
complements the Plexus FEM Skeleton Pattern (detailed in the next section), which
advocates the separation of the simulator process levels into different levels of
programming, considering one specific level for the computational phenomena
processes.

5.2.1 Pattern Name

The Computational Phenomena
Framework: represents the
definition of an abstraction
where the flexible points are in
the black boxes defined for the
numerical methods
customisation.

 Computational Phenomenon Framework
 Kernel

 Hotspot

Hotspot

 Calculation of Phenomena contributions

Numerical Methods

97

Computational Phenomenon, which means a pattern for modelling the simulation
phenomenon data and processes for simulators based on FEM.

5.2.2 Context

As described in chapter 2, in the definition of a simulation problem the user defines the
involved physical Phenomena (e.g. fluid flows and heat transfer). The discrete
formulation of a phenomenon comprises a set of algebraic equations (either linear or
non linear) obtained through the application of a finite element technique to the exact
mathematical formulation. The application of such techniques can be described using
FEM concepts: finite elements, shape functions, discrete weak forms, discrete vector
fields, nodal values, couplings, linear solvers, non-linear solvers, error estimation,
adaptivity, and time progression schemes.

In FEM simulation, the solution algorithms can and should be defined in a modular
structure and in such a way that avoid couplings between procedures at different levels:

i) The finite element level;
ii) The solution level, composed of:

§ Sub-level of the assembling and solution of algebraic systems;
§ Sub-level of interactions, which articulate solutions of different algebraic

systems;
§ Sub-level of loops and interactions involving progression in time and

adaptation of models and discretization.

The processes at the lowest level, that is, the finite element level, motivate the
Computational Phenomenon pattern definition. Those processes are related to the
production and assembling of the corresponding matrices and vectors. The element
matrices and vectors may be coupled with other phenomena, meaning that the
computations of those quantities need pieces of information from other phenomena.
Since the coupling requirements can be classified and standardized, the production of
uniform interfaces between coupled phenomena became possible. These interfaces can
be configured (specialized) by the processes, which are going to use the Computational
Phenomenon Patterns objects.
This pattern solution can be used to implement a framework that, during the pre-
process phase, automatically associates any pre-defined phenomena to geometric
entities in a simulation.

5.2.3 Problem

What information, relationships and processes must be supported, and in what way, in
order to describe and implement computational phenomena, considering coupled
multi-physics systems?

98

5.2.4 Forces

With respect to the definition of an adequate abstraction for computational phenomena
considering coupled multi-physics systems, there are different forces, which lead to
different solutions, such as:

§ Possibility to replicate numerical studies.
§ Achievement of higher levels of sophistication in simulation design.
§ Reliability of complex computer-generated simulations.
§ Reuse, extension and configuration of models.
§ High levels of abstraction, modularity and the right separation of concerns.
§ Automation in dealing with coupled phenomena definition.
§ Simulation performance and maintainability.

The support for numerical studies replication can be obtained through the definition
of standard solutions, persistency of knowledge and data as well as high degrees of
completeness and reuse of the involved abstractions. However, those techniques may
produce undesirably rigid systems. The completeness of the considered information,
for a computational phenomena abstraction, can also generate a trade-off between the
levels of considered concepts and rigid systems. To achieve completeness the modeller
can try to gather to many details for a correct specification of the Phenomenon and its
relationships within the simulation system. However, it is difficult to establish what is
considered complete, that is, when it is time to stop introducing information details.
Conversely, sometimes the simplification of an abstraction allows it to be used in a
more extensive number and types of simulation applications and thus helps the
establishment of a standardized abstraction of a model. Alternatively, completeness of
abstractions supports the understanding, use and discussion of the involved details. The
correctness of the abstraction provided, itself provides more reliability to simulations.

Since the conceptualisation of a system takes care of the most critical (complex and
detailed) aspects of the problem under consideration, higher levels of sophistication
can be achieved. Reuse, extension and configuration of models help in this task.
However, other aspects should be considered, for instance, the control load required in
order to maintain the dynamics of the system functioning.

Reliability of a simulator comes as a result of several aspects, from the system
conceptualisation to the software programming and use. Techniques such as
standardization of solutions, completeness of data and reusability can increase the
reliability of the system.

In the context of many coupled phenomena, the set of data and procedures related to
the computation of matrices and vectors (used in the solution algorithm) is the main

99

obstacle to reuse, extension and configuration of phenomena models, due to the
complexity of data sharing and dependence between those phenomena. High levels of
abstraction, modularity and the right separation of concerns are important aspects
in obtaining good solutions in this respect. Performance is a concern whenever those
techniques are applied.

Some of the complex set of information a phenomenon deals with requires a great deal
of effort in their development and are extremely reusable. The most technologically
intense parts of Phenomenon can be made persistent for further use, if there is a
reasonable and standardized way of representing phenomena concept models.

Also the phenomenon variants and complexity of their sets of data and procedures can
make the automation of the phenomena definition and the building of their set very
demanding in the context of coupled phenomena. The variety of possible solutions
requires a careful understanding of the subjacent logic, which makes the phenomenon
concept - in the finite element context - a valid concept, in the sense that it allows for a
representative abstraction. Consecutively such a representative abstraction provides
support for the automation of phenomena definitions.

Achieving high performance usually requires resolving low level machine-dependent
details. Whenever methods are considered in the direction of dealing with highly
complex systems requiring high levels of reusability, the performance is usually
affected negatively. However, careful design procedures and considerations in the
direction of distributed and parallel computations can reduce the most severe
shortcomings. Performance at the level of the procedures responsible for computation
of matrices and vectors in the finite element context is critical for large systems.

Maintainability for complex systems is of the utmost importance in order to make
possible the tasks of error detection and correction, model extensions, system
configurations etc, with a minimum amount of work.

5.2.5 Solution

A solution for the proposed problem can be achieved by the definition of a
Computational Phenomena abstraction whose purpose is to reflect an adequate
separation of concerns in FEM simulation modelling, preserving the encapsulation of
data and processes concerning only the numerical modelling of a phenomenon. Data
related to the numerical modelling of a phenomenon are used in different phases of the
simulation. For instance, in the pre-processing phase, pieces of phenomenon data are
used for the establishment of the right coupling between phenomena and for the
definition of the mesh generation method. Alternatively, processes responsible for the
computation (at the element level) and assembling (in the global entities) of the right
vectors and matrices (coupled or not) are also specific for a phenomenon.

100

The separation of concerns means the separation of the data and processes, employed
in the global solution of the coupled algebraic (time dependent or not) systems, from
the data and processes of the numerical modelling of a phenomenon. This separation
allows for the reuse of the numerical modelling data of a phenomenon in either
different solution strategies or different simulations.

Subsequently, the Computational Phenomenon is considered as a set of data and
processes, which define the numerical modelling of a phenomenon. The numerical
modelling data of a phenomenon is comprised of a vector field, weak forms (for
different vectors and matrices, shape functions, coupling data), and methods (e.g.,
mesh generation, approximation generation and numerical integration rule), etc.

The notation of phenomena may be abstracted (described in this work as “fictitious”
phenomena) in order to allow for a generic representation of either relationships
between different phenomena, or restrictions, or additional vector fields and
correspondent behaviour laws (such as Lagrange multipliers). This extension of the
notation of phenomena becomes very important in computational modelling, because it
allows several different techniques to be used in order to impose restrictions (e.g.,
boundary conditions, and constitutive restrictions, etc.).

The discrete behaviour law may have terms, which are defined on the boundary of the
domain. Those terms are provided by sub-phenomena, which are defined as objects,
which are dependent on the correspondent main Computational Phenomena. Boundary
terms are related to boundary conditions or boundary restrictions. This work considers
many kinds of boundary conditions. The most well known are Dirichlet, Neumann and
Mixed ones. The Dirichlet boundary conditions are considered as restrictions defined
on correspondent parts of the boundary. The restrictions are modelled using a
Lagrangean formulation; which requires the implementation of extra independent
phenomena. The other types are modelled as sub-phenomena defined on the
correspondent parts of the boundary (the fictitious phenomena is basically the same as
the original physical phenomena). Even the restrictions on the boundary (like Dirichlet
boundary conditions) produce coupled terms on the behaviour laws of the original
phenomena. These terms are provided by sub-phenomena defined on the correspondent
part of the boundary.

Participants

The Computational Phenomena pattern is composed of several participants. We divide
our explanation in three parts:

§ Geometry participants (see Figure 5-5), composed of: GraphNode,
GeomEntity, GeomGraph, Point, Curve, Surface and Volume.

§ Phenomenon participants (see Figure 5-6), composed of objects which
represent phenomena, simulation regions and their interaction: PhenGraph,
PhenEntity, GeomGraph, GeomEntity, PhenMethod, VectorField, Group,

101

WeakForm, PhenMesh, GeomMesh, GraphNode, QData, SimulationRegion,
Geometry, Phenomenon, and VecFieldTransferToolsAndData.

§ Mesh participants (see Figure 5-7), composed of objects related to the
geometric and phenomena mesh: GeomFiniteElement,
GeomReferenceElements, GeomIntrinsicIntegData, PhenReferenceElement,
PhenIntrinsicIntegData, PhenShapeFunction, and PhenElementData.

For the details of many concepts, used in the description below, see Chapter 2
definitions.

A phenomenon occurs in a geometric domain. This work uses a computational
representation for the geometry (geometric domain) based on the boundary
representation method (Brep). This is extremely useful due to a number of reasons. For
instance, when a phenomenon is defined on a region, its boundary conditions will be
defined on all parts of its boundary. Thus, the relation between a phenomenon and its
boundary conditions resembles that of the boundary representation (for example in a
direct acyclic graph implementation). The geometry diagram is considered as a direct
acyclic graph pattern (DAG). It is represented hierarchically through a graph scheme
where each graph node stores a geometric entity (GeomEntity, i.e., point, curve,
surface, and volume) see Figure 5-5. The connected components of the geometry are
referred to as GeomGraph.

GraphNode

0..*0..*

0 .. *0 .. *

GeomEntity GeomGraph

0 .. *0 .. *

1..11..1

 Point Curve Surface Volume

parent

children

root

Figure 5-5 Geometry Participants (Brep graph)

A defined Phenomenon is implemented by a structure, called a PhenGraph, and
occurs in a given Simulation Region, which is related to a Geometry (represented by a
GeomGraph). A Phenomenon applies some specific methods for its solution,
integrated in a PhenMethod; they include: Integration Rule, PhenMesh Generation
Method, GeomMesh Generation Method, and PhenShape Function, etc.

A simulation region (SimulationRegion) is a partition of the geometry where a
phenomenon is first defined. For each simulation region a PhenGraph manages the
simulation data of all phenomena defined therein. A PhenGraph can also be viewed as

102

a graph-like data structure, where each node stores a PhenEntity. The PhenGraph
closely resembles the organization of the respective simulation region. Each
phenomenon has a copy of its simulation region (GeomGraph). Each GeomEntity of a
GeomGraph has a manager entity (the PhenEntity) responsible for its relationship
with all pertinent simulation data. Thus, each PhenEntity has a GeomEntity where its
weak forms are defined.

The VectorField stores basic information about the discrete vector field, such as its
dimension and the dimension of its vector of nodal values. The PhenEntity needs those
pieces of information for the computation of its matrices and vector sizes and for
assembling them into global matrices and vectors. The WeakForms represent parts of
the discrete behaviour laws, boundary conditions and other pieces of information,
which are needed by the solution algorithms. Therefore, the production of the
phenomenon vectors and matrices (at the finite element level) and their assembly into
global vectors and matrices are performed by the respective weak forms, which have
knowledge of the required coupling data.

GraphNode

0..*0..*

children

0..*0..*

parent

QData

PhenMethod

 Group

VectorField

Computational Phenomenon

1..*1..*

determines

0..*0..*

1..11..1

knows
its owner

1..11..1

associated with

GeomMesh

SimulationRegion1..11..1occurs

PhenGraph
1..11..1

implemented by

GeomEntity

1..11..1

approximated to

GeomGraph
1..11..1represented by

1..11..1related to

0..*0..* 1..11..1

root

Geometry

1..11..1

relative to part of

1..11..1

represented by

PhenMesh
1..11..1associated with

WeakForm

1..1

VecFieldTransferToolsAndData

0..1
knows

0..1

knows

1..1

PhenEntity

1..11..1

knows

0..*0..*

1..*1..*

coupling
1..11..1

0..10..1

1..11..1 knows

0..*0..* 1..11..1

root

1..11..1defined on

0..*0..*

Figure 5-6 Phenomena Participants

When asked to compute and assemble a certain quantity (vector or matrix), a
Computational Phenomenon sends the request to the PhenEntity in the root of its

103

PhenGraph. It will look in its QData in order to see if it is able to provide what its
being asked. If so it executes the right weak form. After it is finished it passes the
request to its children PhenEntities. Thus, the union of all QData objects from all
PhenEntities of a phenomenon comprises the set of all quantities that the
Computational Phenomenon is able to compute. QData also contains information
regarding the coupled phenomena needed in its computation.

When computing a quantity, a weak form may need information from other
phenomena (coupled information). Usually it will need the vector of nodal values and
the phenomenon mesh from each coupled phenomenon. However, those meshes are
frequently different from the current phenomenon’s mesh. Thus, in order for the
incoming information to be useful, it should be transferred to a phenomenon mesh,
which has the same geometric mesh as the current phenomenon’s geometric mesh.
Therefore VecFieldTransferToolsAndData is provided with specialized tools for
performing those types of tasks.

A geometric mesh (GeomMesh) is an approximation to a partition of a geometric
domain (GeomEntity). It is described by a set of geometric finite elements
(GeomFiniteElement), which can be see Figure 5-7.

PhenElementData

PhenMesh

GeomFiniteElement PhenFiniteElement
1..*1..*

1 ..11 ..1

PhenShapeFunction

PhenIntrinsicIntegDataGeomMesh

1..11..1

associated with

1..*1..*

PhenReferenceElement

0..*0..*

represented
by

1..*1..*

1..11..1

GeomIntrinsicIntegData GeomExtrinsicIntegData

GeomReferenceElement
0..*0..*

1..11..1

uses

GeomIntegrationData

1..11..1 1..11..1

1 ..11 ..1

IntegrationRule

1..11..1

has

has

Figure 5-7 Mesh Participants

The geometric mesh depends on associated GeomReferenceElement, which in turn
have an integration rule (numerical integration method) and numerical integration data
(integration points and weights for a specific approximation order). A
GeomReferenceElement has the following associated data concepts: (a) Intrinsic data
(integration points and weights); (b) Extrinsic data for a given geometric finite element

104

(Jacobean matrix and Jacobean at the integration points; positions of the integration
points in the given finite element). Intrinsic data are fixed, while extrinsic data are
dependent on the geometric finite element under consideration. The intrinsic set of
integration data is encapsulated in GeomIntrinsicIntegData.

The phenomenon mesh is a set of phenomenon finite elements, which have a one-to-
one relationship with the geometric finite elements of the respective geometric entity.
It is important to note that phenomenon meshes have a reference element called the
PhenReferenceElement, which is associated with the GeomReferenceElement and is
capable to provide that part of the integration data, which depends on phenomenon
data intrinsic data. This part is typically intrinsic since it does not depend on any
external information. It comprises the values of the trial and test shape functions and
their derivatives - up to a given order – at the integration points – provided by the
respective GeomReferenceElement. All of those portions of data are encapsulated in
the PhenIntrinsicIntegData. Based on what was just explained, it is natural that the
PhenReferenceElement is the owner of the trial and shape functions, which are
encapsulated in the PhenShapeFunction.

The information regarding the approximation of the vector field on each geometric
finite element (from points to volumes) is stored in the PhenElementData. Therefore,
this information is important if one wants to know the set of shape functions, which are
non-zero on the finite element under consideration. This is the case when a weak form
is requested to compute a vector or matrix at element level, since their size depends on
the number of non-zero shape functions on the element and their values depend on
which are the non-zero shape functions.

Interaction

During a simulation, the Computational Phenomenon objects are requested to perform
some tasks by the solution algorithm. The sequence diagram in Figure 5-8 illustrates
the interactions between some objects of the Computational Phenomena pattern after a
request for the computation and assembling of a coupled quantity (specified by a
code). The quantity is to be computed using a certain set of states from other
phenomena (coupled phenomena) and assembled in a data structure. A phenomenon
state is either a vector or a matrix, which has an identifier and is stored outside the
Computational Phenomenon. The solution algorithm used in the simulation determines
the meaning and number of states maintained for each phenomenon. Therefore, they
are stored outside the Computational Phenomena under the responsibility of the Group,
which owns the respective phenomenon. The retrieving of the states is made through
the coupled phenomenon, which asks its Group to provide the right set of states.

105

SolutionAlgorithm
: Algorithm

PhenA : Computational
Phenomenon

PhenGraphRoot :
PhenEntity

PhenRootWeakForm :
WeakForm

PhenEntChildren :
PhenEntity

CoupledPhen :
PhenEntity

Contribute(code, structure, states)
Contribute(code,structure,states)

RetrieveData(states)

ReturnData()

ComputeAndAssemble()

Contribute(code,structure,states)

The same process executed by
PhenRootWeakForm is recursevely
performed by its children until the
leaves of PhenGraph

Return()
Return()

Return()
Return()

RetrieveStates()

Contrib(structure,states)

Figure 5-8 Sequence diagram for Computational Phenomenon

When the solution algorithm (SolutionAlgorithm) wants to compute a certain
phenomenon quantity and assemble it in a specified data structure (structure), it asks
the Computational Phenomenon object (PhenA) to contribute and send information
about the quantity code, data structure and identifiers of the states to be used by the
coupled phenomena, through the command Contribute (code, structure and states).
PhenA, then, forwards the same message to the root of its PhenGraph
(PhenGraphRoot). The PhenGraphRoot forwards the request Contrib (structure and
states) to its weak form (PhenRootWeakForm) correspondent to the quantity code
provided. The PhenRootWeakForm retrieves the needed data (states, and other relevant
pieces) from its coupled phenomena (CoupledPhen). Next, the PhenRootWeakForm
will compute the right contribution for each one of the PhenFiniteElments of the
PhenGraphRoot’s PhenMesh and assemble it into the data structure, provided as a
parameter. Then, the PhenRootWeakForm initiates a recursive procedure in order for
its children PhenEntities (PhenEntChildren) to perform the same operation it has just
finished. The recursion continues until all the PhenEntities of the PhenGraph are
reached. At the end of this process the desired quantity is computed and assembled and
the SolutionAlgorithm takes over the control of the simulation.

5.2.6 Example of Usage

The problem describes the dynamics of a rigid body attached to an elastic beam, with a
temperature dependent constitutive relation, where both are also submitted to thermal
loads. Consider the geometry defined in Figure 5-9, consisting of two sub-domains Ω1

106

and Ω2. The physical phenomena defined therein are transient and include: linear
elasticity with a temperature dependent constitutive equation in Ω1; rigid body motion
of Ω2 (this body has a certain distributed mass density ?M) and heat transfer in Ω1 and
Ω2. More details about this example can be found in Appendix A, section A.1.

Figure 5-9 Whole domain of example

Geometry: as can be seen in Figure 5-9. There are 6 points, 7 curves and 2 plane
regions defined for the problem geometry. Plane region Ω1 is composed of curves Γ1,
Γ2, Γ3, Γ7 and points 1,2,3,4. Plane region Ω2 is composed of curves Γ4, Γ5, Γ6, Γ7 and
points 3, 4, 5, 6.

Phenomena Context: composed of: elasticity, rigid body motion and heat transfer.

Phenomena: in the problem we can identify the following simulation phenomena:

§ Heat transfer, phenomenon is represented by the temperature vector field T1:
ℜ→ℜ×Ω +

1
§ Heat transfer phenomenon is represented by the temperature vector field T2:

ℜ→ℜ×Ω +
2

§ Phenomenon represented by Lagrange multiplier vector field µq: ℜ→Γ7
(Lagrange multiplier in Γ7, due to restrictions between T1 and T2)

§ Elasticity phenomenon is represented by the displacement vector field
2

1 : ℜ→ℜ+w
§ Rigid body motion is represented by rigid body displacement vector field

2: ℜ→ℜ+
2w ,

§ Phenomenon is represented by the Lagrange multiplier vector fields µ:
2

2 ℜ→ℜ×Γ + and µf: 2
7 ℜ→ℜ×Γ + (Lagrange multipliers in Γ2 and Γ7,

respectively due to restrictions of w1, and between w1 and w2).

Simulation Regions: these are the regions where the phenomena are defined. The
regions, where restrictions between phenomena are defined, are included as simulation
regions. In the example we have:

107

§ Ω1, where elasticity and heat transfer are defined;
§ Ω2, where rigid body motion and heat transfer are defined;
§ Γ7, where restrictions between T1 and T2 and a restriction between w1 and w2

are defined;
§ Γ2, where a restriction involving only w1 is defined.

Below one can find the specification of the data for each phenomenon.

a) Phenomenon Specification:

Each one of the described phenomena has its own discrete vector field, geometric
domain, and couplings with other phenomena, discrete weak form, and other relevant
data. Furthermore, for all phenomena we define the following:

§ Shape Functions (Test Functions and Trial Functions): a tool for providing the
values of the shape functions and their derivatives up to a given order at the
integration points;

§ Phenomenon methods
§ Integration rule: a routine for providing integration points and respective

weights with respect to the geometric reference finite element;
§ Geometric mesh generation method;
§ Phenomena mesh generation method;
§ Initial state;
§ Compute initial time step;
§ Compute next time-step.

§ Restrictions (Dirichlet or other type)

§ Restriction between w1 and w2 on Γ7 and w1 = β.w2;
§ Restriction w1 = 0, on Γ2;
§ Restriction T1 = T2 on Γ7.

§ Phenomena Couplings

§ Between w1 and T1 on Ω1 (constitutive coupling the material constitutive
relation depends on T1);

§ Between w1 and the Lagrange multiplier µ f defined on Γ7;
§ Between w1 and the Lagrange multiplier µ defined on Γ2;
§ Between w2 and the Lagrange multiplier µ f defined on Γ7;
§ Between the phenomenon boundary condition for T1 defined on Γ7 and the

Lagrange multiplier µq;
§ Between T2 and the Lagrange multiplier µq defined on Γ7.

b) Phenomena Boundary Conditions:

Boundary conditions for w1:

§ On Γ1 and Γ3 there is a Neumann boundary condition with zero loads in each
one of them. Thus, void sub-phenomena (which do nothing) are defined there.

108

§ Dirichlet condition on Γ7. This was already considered as a restriction, which
generated an extra phenomenon with vector field µ f. However, w1 became
coupled with this Lagrange multiplier. Therefore a sub-phenomenon is defined
on Γ7 in order to provide for the quantities related to that coupling.

§ Dirichlet condition on Γ2. This was already considered as a restriction, which
generated an extra phenomenon with vector field µ. However, w1 became
coupled with this Lagrange multiplier. Therefore a sub-phenomenon is defined
on Γ2 in order to provide for the quantities related to that coupling.

Boundary conditions for w2:

§ On Γi, i = 4, 5, 6 there is a Neumann boundary condition with zero load in each
one of them. Thus, void sub-phenomena (which do nothing) are defined there.

§ Dirichlet condition on Γ7. This was already considered as a restriction, which
generated an extra phenomenon with vector field µ f. However, w2 became
coupled with this Lagrange multiplier. Therefore a sub-phenomenon is defined
on Γ7 in order to provide for the quantities related to that coupling.

Boundary conditions for T1:

§ On Γ2 there is a zero Neumann boundary condition (insulation). Thus, a void
sub-phenomenon (which does nothing) is defined there;

§ On Γ1 and Γ3 there are mixed boundary conditions (convection) prescribed.
Therefore two sub-phenomena will be defined there;

§ Dirichlet condition in Γ7. This was already considered as a restriction, which
generated an extra phenomenon with vector field µq. However, T1 became
coupled with this Lagrange multiplier. Therefore a sub-phenomenon is defined
on Γ7 in order to provide for the quantities related to that coupling.

Boundary conditions for T2:

§ On Γi, i = 4, 5, 6 there are mixed boundary conditions (convections) prescribed.
Therefore, three sub-phenomena will be defined there;

§ Dirichlet condition in Γ7. This was already considered as a restriction, which
generated an extra phenomenon with vector field µq. However, T2 became
coupled with this Lagrange multiplier. Therefore a sub-phenomenon is defined
on Γ7 in order to provide for the quantities related to that coupling.

Representation of Phenomena and Geometry through graph structures

Figure 5-10 presents the GeomGraph, which represents the supplied geometry where
phenomena occur and which are composed of GeomEnitites. Note that the graph
represents the problem geometry composed by surfaces, curves, and points presented
in Figure 5-9.

109

Figure 5-10 GeomGraph of the whole example geometry

Figure 5-11 shows the Simulation Regions and phenomena defined on them.
Remember that a copy of the simulation region is given to each phenomenon defined
therein, which becomes the GeomGraph of the phenomenon.

Figure 5-11 Simulation Regions and their phenomena

The PhenGraph represents the phenomena controller responsible for the simulation
data, described previously in Figure 5-6. As noted previously, the PhenGraph
resembles the organization of the respective simulation region (represented by its
GeomGraph). Each GeomEntity of the simulation region is associated with a
PhenEntity, which represents a specific simulation data, which in turn implements the
phenomenon in that GeomEntity.

1Ω 1Ω

 Γ1

 Γ3

 Γ2

1Ω 2Ω

 Γ6
 Γ7 Γ5

 Γ4

 3 4

6

 Γ3

 Γ2

1Ω 2Ω

 Γ6
 Γ7 Γ5

 Γ4

2 3 4

6

1 5

Simulation region
where restriction (µ)
occur

Simulation region where
1Ω where

Phenomena (T1, w1) occur

Simulation region where 2Ω where
Phenomena (T2, w2) occur

Simulation region
where Restrictions

(µq, µf) occur

110

Figure 5-12 Example of a PhenEntity

Through space discretization and the use of the FEM it is possible to obtain the
following semi-discrete equations (discretization in time is still to be done).

5.2.7 Consequences

Several forces were considered as relevant for the definition of a computational
phenomena abstraction (see section 5.2.4). They included: levels of defined
abstractions, degree of completeness of involved concepts, reliability of the concepts,
possibility of data persistency, standardization of the model in the community,
performance, and the management and automating of simulator building, etc.

We can observe that the proposed solution solved some of the following forces:

§ Definition of higher levels of abstraction;
§ Simplification on computational phenomena use and implementation;
§ Completeness of the information provided was improved, however;
§ Reliability of computer simulations is improved by the use of pre-defined

models.
§ Higher levels of reusability and maintainability were achieved.
§ Persistence can be defined as structures for representing the underlying

concepts were defined.

The definition of high levels of abstraction for the main concepts of problem data
modelling were proposed to reduce the complexity and improve the correctness of the
simulation to be developed. This was achieved by an adequate separation of concerns,
such as the separation between the solution processes and the computations of the
contributions of each phenomenon to the equations to be solved. Note that many pieces
of information regarding the modelling of a phenomenon are used in different phases
of the simulation. For instance, mesh generation methods are used in the pre-
processing phase, while numerical integration methods are used in the simulation itself.
However, both pieces are directly related to the numerical modelling of a phenomenon.
Thus, many aspects of the structure, dynamics and relationships of the sets of data
related to a phenomenon could be analysed in order to achieve high levels of
abstraction with the resulting desired benefits. The abstractions used can reduce the

1Ω

Γ6

Γ5

5

6

4

3

Γ4

Sub-phenomenon Phenomenon

Sub-phenomenon

111

involved complexity in the development of FEM simulators and their maintenance, and
also give support to their automation.

For the independence of the higher levels of simulator programming, we separated the
parts responsible for the solution processes and the parts responsible for the production
of the vectors and matrices, at the finite element level, and their assembling in global
entities. This separation becomes possible when the machinery for the production and
assembly of those vectors and matrices is provided and is made flexible enough to
accommodate for the requirements of large classes of solution processes.

Some negative forces can also be identified such as performance. If phenomenon
objects, for the computations of matrices and vectors, do not provide special tools
performance is expected to be very low, due to the high level of abstractions involving
and integrating many concepts.

5.3 FEM Simulator Skeleton Pattern

The FEM Simulator Skeleton pattern supports the conception of FEM simulators. This
pattern makes possible to separate complex procedures from simpler ones and strongly
re-usable software components from less reusable ones. Furthermore, it opens the way
to automatic programming of FEM simulators for coupled phenomena. One immediate
benefit is the enhancement of reusability.

The FEM Simulator Skeleton considers four levels of computation for FEM simulator
conception. It supports abstractions for different phenomena coupling in a single
strategy, identifying which parts can be more reusable than others and proposes a
hierarchical and modular solution. The pattern also suggests a physical phenomenon
abstraction, called here Computational Phenomenon, which was described previously
in section 5.2.

5.3.1 Name

The FEM Simulator Skeleton, which means a pattern for modelling FEM simulators
based on algorithm skeletons for coupled phenomena.

5.3.2 Context

When a designer defines a computational model for a mathematical formalism, using
FEM in the context of coupled phenomena, he/she has to deal with problems such as
data dependence and sharing. Such issues are not trivial to treat in a homogeneous way
because they are strongly dependent on the specific problem being considered. Thus, it
becomes difficult to provide reasonably high levels of abstractions, which could
represent the main components, properties, relationships, and operations involved.
Without that, even when making use of sophisticated FEM libraries, the tasks involved

112

in building and assessing the performance of new methods could become very costly
and time consuming due to lack of modularity and reuse. In addition, as far as we are
concerned, there is no standardized solution for the control of coupled phenomena
simulations, making the integration of reusable components a very difficult task in this
context.

In this pattern, we are concerned with the conceptualisation of the Simulation Process.
We assume that the simulator building and assembling will be based on a variable
designer data model, which describes: the initial scenario, algorithm skeletons and
numerical methods, phenomena, and geometry. The initial scenario defines the class of
problems that the simulator will be able to tackle in a broad sense, as was described in
previous chapters.

5.3.3 Problem

How a complex simulator for coupled multi-physics phenomena based on FEM can be
structured in such a way that it guarantees a high level of reuse and modularity?

5.3.4 Forces

The FEM Simulator Skeleton pattern aims at solving forces related to high costs in
complex simulation systems development, particularly in the direction of complexity
management and software quality achievement. Nevertheless, this pattern also
considers the automatic articulation of solution strategies for coupled multi-physic
phenomena and their possible replacement by other articulations. In the sequence we
describe the forces involved in the context of FEM coupled phenomena simulator
modelling:

§ High complexity: there is a lack of standard abstractions to help the
simplification and organization of complex structures of data and code related
to coupled phenomena simulations in the FEM context. The relationships
among phenomena are strongly problem-dependent and solution algorithm
dependent.

§ Reusability: numerical experiments are complex constructs, based on pieces of
information such as strategies, auxiliary methods, and other pieces of data.
They can be very reusable for large classes of problems.

§ Adaptability: due to the frequent improvement of numerical methods or due to
the need of comparing different methods, the simulator architecture must be
adaptable (to some extent) to support the required modifications without heavy
reprogramming.

§ Strategy Independence: in order to allow the designer to specify the simulator
features and strategies, there must exist flexibility in building different solution
strategies.

§ Integrability: there is a need for an application/routine that is able of
monolithically solve a specified set of coupled phenomena. Some problems
simply do not allow for an independent solution for each phenomenon.

113

Furthermore, whenever different software components have to be used together
for the simulation of coupled phenomena (for instance, in a partitioned way),
problems concerning data transfer and integration frequently appear.

5.3.5 Solution

The main structure of the pattern for representing a general FEM simulator is
composed of Simulator, Block of Groups, Group of Phenomena, Phenomenon,
Algorithm Skeletons and MathMethods, see Figure 5-14. The FEM Simulator Skeleton
pattern suggests a FEM simulator algorithms organization with four levels of
computational demands: Global Skeleton, Block Skeletons, Group Skeleton, and
Phenomenon. These levels were defined due to the high number of repeated (similar)
structures and the degree of reusability of the involved algorithms (see example in
section 5.3.7).

Algorithm Skeleton

Block Skeleton

GolbalSkeleton Phenomenon

Simulator

1..*1..*

Block

1..*

1..1

1..*1..*
1..*

MathMethod

1..*1..*

GroupSkeleton

Group 1..*1..*

1..*1..*
1..*1..*

1..*1..*1..*

1..*

1..1

Figure 5-13 Participants of the Simulator Pattern

Participants

The FEM Simulator Skeleton pattern is composed of the following participants:

§ Simulator represents a class of possible simulations and it is responsible for the
control of the main process flow; thus, it maintains the core of simulation
through the Global Skeleton, which is stored in the Kernel.

§ Algorithm Skeletons are algorithms described by the simulator designer,
corresponding to one of the levels of computation (Global, Block, Group),
using the pattern-defined abstractions.

§ MathMethod is a routine with a very specific purpose and is used by either
Algorithm Skeletons or encapsulated procedures inside a Phenomenon. For
instance, MathMethods are defined by: numerical integration, mesh adaptation,
error estimation, and other tasks.

§ Kernel: main part of the simulator, which is related to the global Skeleton and
which also controls the simulator workflow.

114

§ Global Skeleton is the highest level of the solution scheme and it articulates the
action of all Blocks contained in the Kernel. It is supposed to be strongly
reusable.

§ Block contains a set of Groups of phenomena. Each Block has a set of skeletons
called Block Skeletons. More than one block is justified, for instance, in the
case where a problem is partitioned into the solutions of separate sets groups of
phenomena.

§ Block Skeletons, where the Groups are required to perform a certain number of
categories of procedures (for instance, partitioned - staggered - solution
procedures involving groups of phenomena). When a Group is asked to execute
a category of procedures (for instance, to compute a solution for its group of
phenomena), it executes a very specific algorithm, which is a member of that
category. Block Skeletons are supposed to be very reusable.

§ A Group contains a set of phenomena, which are going to be solved
monolithically. A Group is provided with a set of Group Skeletons.

§ Group Skeletons represent very specific procedures. Due to their problem- and
method-specific definition and organization, the Group Skeletons are the least
reusable amongst all Skeletons. Nevertheless, they may be implemented in such
a way that they become capable of considering a varying number of
phenomena, depending on the requirements from the simulation design.

§ A Phenomenon represents a complex system composed of data and tools. Its
primary responsibility is to provide the contributions of each phenomenon to a
Group System of equations to be solved in each instant of the solution process.
This level is the place where the couplings and other processes of data sharing
and dependence are considered in the construction of the required vectors and
matrices. It is the lowest level of the procedures in the solution schemes and
thus, it represents a tremendous effort in terms of programming, testing, and
validation. Therefore, the reusability of the tools located in the classes, which
compose what we call a Phenomenon, is fundamental to saving time and cost
whenever one is programming new simulations.

Levels of Computation

The four levels of computational demands (skeletons and methods) are detailed below:

§ Global Skeleton is the first level of computation and represents the global
algorithm skeleton (the core of the simulator). The global algorithm skeleton
articulates the procedures involving all blocks. The procedures here deal with a
high level of simulation execution, such as time loops, and adaptive iterations,
etc. It also includes general requirements such as asking the blocks to obtain the
block solution or to perform an adaptation procedure. There is no need for
matrices and vector manipulations at this level. The building of a Global
Skeleton depends on a series of decisions about the whole classification of the
simulation. A Global Algorithm Skeleton is unique for each simulator, but may

115

be replaceable, producing another simulator. Global Algorithm Skeleton is the
procedural structure representing the algorithm to be performed with demands
defined at a higher level. It does not refer directly neither to a Group of
phenomena nor to any phenomenon.

§ Block Skeletons are necessary in order to articulate the Groups of Phenomena in
the execution of tasks demanded by the Global Skeleton. Each block has a set
of skeletons (Block Skeletons), which satisfies the demands from the Global
Skeleton by decoding them into demands for the groups in a previously defined
order. A simulator may have a Block Skeleton changed without requiring the
modification of the simulator’s Global Skeleton. Nevertheless, a well-designed
Block Algorithm Skeleton is also very reusable and it is not supposed to be
replaced even in the case of very severe changes in the solution algorithm at the
level of the phenomena Group. The Block Skeleton defines solution procedures
such as iterations in the case of operator splitting solution strategies (which
involve all Groups), iterations in the case of non-linear solvers (involving one
or more Groups), etc. It also transfers directly to its Groups some of the
demands coming from the Global Skeleton (time step estimation, error
estimation, etc.) and possibly post-processes the output from the Groups.

§ Group Skeletons are necessary in order to articulate the Phenomena in the
execution of tasks demanded by the Block Skeletons. A Group is provided with
a set of Group Skeletons, which represent very specific procedures and may not
be very reusable. Its purpose is to encapsulate the parts from the solution
scheme, which are specific to the particular solution method being used for a
group of phenomena. Usually, the more reusable parts of the solution scheme
are best located either in a Block Skeleton or in the Global Skeleton. In the
Group Skeletons, the quantities produced by the Phenomena Skeletons are
manipulated in the way required by the solution method, which characterizes
the Group. Thus, the Group becomes specialized in the solution of any subset
of its set of possible phenomena; hence, all vectors and Matrices used in the
solution are located in the Groups. The Group also needs to have knowledge of
its Phenomena couplings, whenever building coupled terms. This is because the
coupled terms have been built, possibly using an already computed discrete
vector field (possibly related to another group), which should be appropriately
defined. Frequently, Group Skeletons make use of MathMethods, whenever
there is a task, which can be encapsulated representing either a reusable or a
replaceable procedure (solution of an algebraic system of equations, for
instance).

§ Phenomenon Procedures represent the lowest level of all procedures in the
simulation and are related to all possible contributions its Phenomenon can
provide to any solution scheme. Starting from the computation of the Global
Skeleton and going through the two other levels of articulation, what remains to
be defined are the contributions of each phenomenon to its Group solution

116

scheme in a uniform parameterised way. The phenomena classes will be
composed of phenomenon data and a group of numerical methods
(MathMethods), which are replaceable (i.e. can be modified by the users
through input data, such as integration rules, for instance).

Interaction

We can summarize the pattern’s major interactions in the following way: (a) the
Global Skeleton articulates the procedures involving all blocks; it does not make
any requirements directly neither to a Group of phenomena nor to any Phenomenon;
(b) the Block Skeletons then define the activities of the groups; (c) the Group
Skeletons in turn articulate the phenomena in their computations, that is represent
how the phenomena will be solved together. This produces cleaner and more
reusable Global and Blocks algorithm Skeletons, leaving to the Groups algorithm
Skeletons the responsibility of defining the specific problem dependent (non-
reusable) procedures of the whole solution algorithm.

5.3.6 Applicability

The proposed pattern has great applicability in FEM simulation modelling
especially when the following situations are frequent:

§ Several phenomena defined in the same geometric region, with either different
meshes and different adaptation criteria or sharing meshes and other data;

§ Interchange of data between phenomena is very frequent (data dependence);
§ Assessment of solution quality may be different and sometimes interdependent

(error estimation, adaptation, and approximation properties) from one
phenomenon to another;

§ The desired solution algorithms articulate separate groups of phenomena and
those groups, in turn, consider sets of phenomena in the computation
procedures (as it is the case in operator splitting schemes).

5.3.7 Example of Usage

In this sub-section, we show the application of the pattern to a general scenario of a
simulator model, which is described in Appendix A. Next we will detail the pattern
application for the proposed simulator scenario. Then, some considerations related to
the pattern application are presented. Finally, we show an example of a problem that
can be solved by the defined simulator.

Usually, it can be observed that an algorithm defined for the solution of a problem by
the FEM method has repeated (similar) structures. Thus, in the pursuit of a high degree
of reusability, four levels of demands in the algorithm were devised: Global Skeleton,
Block Skeleton, Group Skeleton, and Phenomena procedures. In the Block Skeleton

117

we will assume that r
gN is the number of groups for the rth -block. In the sequence we

will present the algorithm Skeleton and the Global Skeleton.

Figure 5-14 shows the Global Algorithm Skeleton for the proposed Simulator. As it
involves, for example, transient phenomena it includes tasks to compute initial time
steps for blocks and the computation of the next time step.

 I.) From Blocks i = 1 until 2
 I.0) Retrieve initial state for Block i
 I.I) Compute initial time step ∆t I for Block i
 I.II) Compute initial auxiliary data for Block i
II) Compute initial ∆ t = min 1 ≤ i ≤ 2 {∆t i} and set time instant t1 = 0
III) While t1 ≤ Tmax do:
 III.0) Set t0 = t1 and t1 = t0 + ∆ t
 III.I) For Block i = 1 until 2
 III.I.0) Solve for Block i
 III.I.I) Compute next time ∆t i for Block i
 III.II) Compute next time step ∆ t = min 1 ≤ i ≤ n {∆ t i }
 III.III) Continue with time iteration
IV) End of the simulation

Figure 5-14 Global Algorithm Skeleton

Figure 5-15 details the Block Skeleton for the proposed Simulator. It is composed of
sub-skeletons that implement for example: the initial state for the Block (I.0), the
solution for the block (III.0), etc.

Observe that the Block Skeletons articulate the groups in a very simple way, almost
only sending to the groups the requests made by the Global Skeleton. Nevertheless, it
should be noted that the decision of providing an iterative scheme involving the
Groups was made and defined by the Block Skeleton. In this sense such a procedure is
transparent to the Global and Group Skeletons.

The Group Skeletons are subtler in what concerns the articulation of their phenomena
for providing the demands of the original solution algorithm. The detailed description
of Group Skeletons is beyond the objectives of this example. However, it can be seen
from the algorithm that each Phenomenon should provide the group with matrices and
vectors for assembly.

118

Figure 5-15 Block Skeleton for any Block

 Is-Br) Initial State for Block r (see (I.0))

 Is-Br.0) For i = 1 until r
gN

 Is-Br.0.0) Ask Group i to compute Initial state for its phenomena
 It-Br) Initial time step for Block r (see (I.I)):

 It- Br.0) For i = 1 until r
gN

 It- Br.0.0) Ask Group i to compute Initial time step ∆i
 It-B1.I) Set ∆t1 = min 1≤ i ≤ N

1
p {∆ i }

 Id-Br) Compute initial auxiliary data for Block r (see (I.II))

 Id-Br.0) For i = 1 until r
gN

 Id-Br.0.0) Ask Group i to compute its auxiliary data.
 Sl-Br) Solve for Block r (see (III.0))
 Sl-Br.0) Initialise iteration state k = 0 for Block i
 Sl-Br.I) Set k = 0. While convergence for Block r is not achieved, do:
 Sl-Br.I.0) Compute the (k+1) th-solution based on the k th-solution for Block r
 Sl-Br.I.I) Compute error between the solutions k and k+1 for Block r
 Sl-Br.I.II) Compute auxiliary data for next step and increment k = k+1
 Sl-Br.II) Accept last solution from iteration loop for Block r
 Sk-Br) Initialise iteration state k = 0 for Block r (see (Sl-Br.0)):

 Sk-Br.0) For i = 1 until r
gN

 Sk-Br.0.0) Ask Group i to initialise iteration state k= 0
 Sl-Br) Compute the (k+1) th-solution from the kth -solution for Block r (see (Sl-Br.I.0)):

 Sl-Br.0) For i = 1 until r
gN

 Sl-Br.0.0) Ask the Group i to compute its (k+1)th -solution from its kth –solution
 Er-Br) Compute error between the (k+1)th -solution and the kth -solution for Block r (see (Sl-Br.I.I)):

 Er-Br.0) For i = 1 until r
gN

 Er-Br.0.0) Ask Group i to compute its error Eik

 Er-Br.I) Compute Block error Er,k based on the Group errors { Eik} 1≤ j≤ l
gN

 Ad-Br) Compute auxiliary data for Block r at kth -iteration (see (Sl-Br.I.II)):

 Ad-Br.0) For i = 1 until r
gN

 Ad-Br.0.0) Ask Group i to compute its auxiliary data.
 As-Br) Accept last solution obtained in the iteration for Block r (see (Sl-Br.II)):

 As-Br.0) For i = 1 until r
gN

 As-Br.0.0) Accept last solution obtained for Group i and store it.
 Nt-Br) Compute next time step for Block r (see (III.I.I)):
 Nt-Br.0) Ask group i to compute next time step ∆ i

 Nt-Br.I) Set ∆tr = min r
gNi≤≤1 {∆ i }

119

In the above Vec is a given vector and a and b are given scalars. Each one of those
quantities that a phenomenon offers to its Group may depend on vector fields from
other phenomena (either from its Group or not). It is the responsibility of the current
Group to indicate: (i) the quantity to be computed by its phenomena and (ii) in the case
of coupling, what is the vector field state (either from the current Group or not) that the
coupled phenomena should use in order to provide what is needed for the computation
of the coupled quantity. With such an organization, demands to the Phenomena
become very uniform, making them extremely reusable.

A final remark is related to the fact that this pattern was made possible by the way the
data and tools are built in the Phenomenon level. It is in this level that data dependence
and sharing between phenomena are defined, leaving the Global Skeleton and the
Block Skeletons free from those details. The Group Skeletons are the agents
responsible for mapping the requirement of a phenomenon for quantities from other
phenomena to the actual quantities, which are stored either in the current Group or in
other Groups.

5.3.8 Considerations

This pattern considers that the class of problems, which define the applicability of a
simulator, can be defined in a somewhat clear way. For instance, considering only its
Global Skeleton, the Simulator built in the example (first sub-section of section 5.3.7)
is capable of solving simulations in the class of dynamic problems with neither
adaptation nor error estimation. Now, considering its Block Skeletons, it is capable of
solving only linear (or very mild non-linear) problems with Dirichlet type restrictions
and using a split stabilized methodology. Those restrictions may involve one or more
vector fields. The Group Skeletons are very specific to the solution scheme used and
even slight modifications may cause the necessity to redesign and reprogram them. As
noted, the couplings and other processes of data sharing and dependence are
considered at the phenomenon level leaving the Global and Block Skeletons free of
having to consider them. Since Group Skeletons are the least reusable; they may (and
frequently do) deal with specifying the right quantities that a coupled phenomenon
should retrieve from its own Group. This reflects on coupling between Groups, which
has been described earlier and is related to the specifics of the solution methodology
being used by the Group.

5.3.9 Example of Simulator Applicability

An example of a problem that can be solved by the defined simulator is described in
Appendix A – example 1 and 2. Is composed of two sub-domains Ω1 and Ω2. The
physical phenomena defined therein are (transient state): linear elasticity with
temperature dependent constitutive equations in Ω1; rigid body motion of Ω2 and heat
transfer in Ω1 and Ω2. The proposed simulator will build the global linear system
related to all the mesh elements, for each phenomenon, and solve this system. For the

120

present example of problem formulation, to be applied to the defined FEM simulator
we can consider the following:

§ Groups: group 1, phenomena represented by vector fields T1 and T2 (heat
transfer in Ω1 and Ω2); group 2, phenomena represented by vector field µq
(Lagrange multiplier in Γ7, due to restrictions between T1 and T2); group 3,
phenomena represented by their vector fields w1 and w2 (elasticity in Ω1 and
rigid body motion in Ω2); group 4, composed of the phenomena represented by
their vector fields µ and µf (Lagrange multipliers in Γ2 and Γ7, respectively, due
to restrictions in w1).

§ Blocks: block 1, composed of groups 1 and 2; block 2, composed of groups 3
and 4.

5.3.10 Consequences

It is worthwhile observing that a FEM Simulator Skeleton pattern is not restricted to a
given implementation of Blocks, Groups and Phenomena. Their abstract behaviour and
interaction are independent of a specific implementation. When dealing with the
building of a specific Simulator, the implementation of the Global and Block Skeletons
should reflect the needs for the solution of a large class of problems, which constitutes
its strategy. Thus, each Simulator built, based on the proposed pattern, should be
capable of solving completely different problems, defined by completely different
geometries and considering completely different sets of phenomena, provided that the
problem is still within its applicability range.

Forces solved by the pattern

The FEM Simulator Skeleton pattern consider:

§ Higher levels of abstraction for the main concepts of FEM Simulation Skeleton
pattern modelling, giving support for the reduction of complexity and
correctness of the systems (simulators) to be developed.

§ Higher levels of hierarchical modularity for the system process organization, by
the use of global skeletons, blocks and group skeletons.

§ A solution, which may consider monolithic, coupled phenomena simulation.
§ The higher levels of code reusability are found in the Phenomena, Global and

Block skeleton structures, followed by Group of phenomena. The less reusable
is the group of phenomena, because it is the location more sensitive to
modifications, whenever changes in the numerical method and type of
simulation are desired.

§ Reliability of the computer-generated predictions is considered by the use of
pre-defined strategies, numerical methods and templates.

§ A higher level of maintainability is supported due to the defined modularity in
the simulator modelling, that is, the separation of the different levels of
computation.

121

5.3.11 Negative Consequences

In the FEM Simulator Skeleton pattern some negative consequences can be identified:
the model builders require special training, that is, the designer must understand the
proposed abstractions; designers will only achieve higher levels of reusability if they
know how to articulate their strategies and problems; simulator performance can
decrease due to the extra levels of abstraction imposed. However, one may notice that
the number of calls to Blocks, Groups and Phenomena are very small.

5.3.12 Forces unsolved by the pattern

Some forces are still not solved or not even treated in the present work:

§ Automatic programming: this is desired due to the great volume of code that
must be reprogrammed in a single application of coupled phenomena.

§ Expertise level: there are multiple standard situations and states, which are
neither assisted nor guaranteed.

§ Performance: generally the simulations are very computer time consuming. So
the performance must be taken more seriously into consideration.

§ Scalability: simulations frequently require a large volume of data, which can be
partitioned and processed by many processors in a distributed memory
environment. So, it is important to allow the increase of processors if required.

§ Portability: the simulations code should have high levels of reusability. So, it is
important for it to be portable, that is, to be used with different computational
environments, in order to take advantage of different existing expertise defined
therein. Specialists frequently interact in building multi-physics simulations.

§ Reliability: computer-generated predictions are of great concern to specialists.
They help, for example to detect critical problems. Reliability of the system is
very important.

§ Simulation Pre-processing: pre-processing of input data is an important task,
since the simulator structures require complex mapping of the real input data.
In addition, the data structure may ease the burden on the global algorithms
complexity, concerning data sharing and data dependence between different
phenomena.

§
5.3.13 Related patterns

The authors did not find any pattern that was specific to algorithm hierarchical
modularisation for simulations based on FEM. There are some works, however, which
present some level of abstraction and modularisation [LAN97, LAN99, PWC97].
Specifically, in the simulation of coupled phenomena based on the FEM, there are
some works under development [LSA01, LSR02b, LSA02b], but not yet in a pattern
form.

122

5.3.14 Known uses

Due to tremendous ongoing activity in the fields of application of the FEM, there is a
need for tools, which could help the development of simulators with a high reusability
degree in both the academic and industrial worlds. The expected users of this pattern
are scientists and engineers who already deal with development of FEM codes in some
level, or, at least, have a basic knowledge of that method.

5.4 GIG-Pattern (Generic Interface Graph)

The use of workflow technology helps the development of more flexible and versatile
computation strategies. So, workflow management systems are a relevant support for
large classes of business applications, and many workflow models as well as
commercial products are currently available [CFM02]. While the comprehensive
availability of tools facilitates the development and the fulfilment of customer
requirements, workflow applications still require simple, generic and adaptive
solutions for the complex task of rapid development of effective applications, in
particular when complex domains are involved.

The Generic Interface Graph for process control (GIG-pattern) was developed after
observing that many numerical algorithms showed the very same organizational
structure when trying to achieve process reuse and flexibility for the adaptation of new
strategies. Such organizational structure in turn allowed for an abstraction, which
resulted in the GIG. As will be seen, in section 5.4.9, it is possible to devise
frameworks to use the GIG pattern in order to implement different processes in a very
flexible and automatic way.

The GIG-pattern describes an abstract workflow solution, whose purpose is to provide
expressiveness and adaptability through simplified workflow programming, control
and use [LSV03a]. Another GIG motivation is to maintain predefined algorithmic
structure, which means that the translation from an algorithmic language representation
of the processes into a computer one must be as direct as possible. This is important
because, the achievement of similarity between the way the programmer has its
algorithmic code organized and the implementation of it can bring simplification in
further required changes. Also, sometimes, developers need solutions that do not make
restrictions on the scale of the process, that is, which need a mixture of small-scale
processes (that execute within applications) and large-scale processes (that execute on
top of applications). Usually this situation happens when designers are also the
programmers.

As a workflow pattern, GIG provides for the separation of process logic from task
logic, which is embedded in user applications, allowing both to be independently
modified and the same logic reused in different cases. The GIG-pattern considers

123

features related to run-time control functions [WMC95], which manage the workflow
processes and the order of the various tasks.
This pattern was devised from the experience obtained during the implementation of
several simulators in the FEM context. Researchers of the Mechanical Engineering
Department – UFPE found the need to organize their code in a way that was easier to
adapt to new strategies and also to allow process reuse. The GIG pattern was the result
of providing an interface for process control dealing with the specific requirements
mentioned.

This pattern’s description is organized as defined previously. It includes some variants
that can extend the pattern and an example of the FEM simulators context.

5.4.1 Pattern Name

Name: GIG-Pattern, Generic Interface Graph for process control.

5.4.2 Context

Many domain specific users, like scientists and engineers, still program in a procedural
style. The reasons are many. Complex numerical systems usually make use of many
different pre-built auxiliary packages (like numerical integrators, solvers for non-linear
and linear systems of algebraic equations, etc) that have their procedures described in
algorithmic language. Therefore, the majority of the work is related to making the
modules compatible in a monolithic architecture, which resembles the structure of the
algorithm. This is a strong force that drives those users towards the procedural style.

During the development of a software system, those developers need functions that
help them to organize their logical processes and related tasks, in a way that makes
easier its future adaptation to new solutions and for the reuse of software components,
avoiding heavy reprogramming. We have repeatedly noticed that many numerical
algorithms have exactly the same organizational structure. This structure comes from
the procedural style of the algorithm representation and can be identified as a directed
acyclic graph. This observation can lead to the definition of a workflow pattern as the
one we are describing.

5.4.3 Motivation Example

Consider, for example the case of a mesh generation algorithm. A mesh can be
described as a partition of a geometric domain into simple geometric entities (triangles,
tetrahedral, hexahedral, etc) called geometric finite elements (or simply elements). In
Figure 5-16 the algorithm for a particular mesh generation is presented, which, given a
plane straight-line graph (PSLG), generates a mesh of triangles.

124

Figure 5-16 Mesh Generation Algorithm

This algorithm can be represented using the graph structure presented in Figure 5-17.
Observe that there are fifteen sub-routines, including the driver (which executes the
procedures I- VIII). This graph structure can be represented in a GIG-pattern (see Figure
5-18). Each one of those processes can be encapsulated in an object of a class,
representing a node of the graph. The proposed pattern describes it as a derivation of a
base class called AlgthmNode.

Figure 5-17 Mesh Generation Graph

Observe that there are many different ways of performing each one of the tasks
described in the above algorithm. For instance, IV.I.I find elements affected by the new
point concerns a search method in a geometric database of triangles, looking for a
triangle whose circumscribed circle contains a given point. There are a lot of search
methods available in the specialized literature, each one with its advantages,
disadvantages and dependence on special data structures. Replacing the current method
by a new one will not affect any other place in the graph.

Entire branches can also be changed as well. For instance, the process IV.I. insert
point, can be changed by plugging in another method to perform that task. That means
that all subsequent processes (children nodes) will also be changed. Besides the

I. Data input (PSLG)
II. Generate the bounding box for the PSLG
III.Build the initial mesh of the bounding box
IV.For each point in the PSLG do
IV.I. Insert point
IV.I.I. Find elements affected by the new point
IV.I.II. Eliminate those elements obtaining the affected region (AF)
IV.I.III Build new elements from the new point and boundary of AF
 Find a line of the PSLG such that it is not an edge of any triangle
 (negative line)
While there still is a negative line do
VI.I Compute the middle point of the line
VI.II insert middle point (see IV.I)
VII. Eliminate those triangles, which have any point of the bounding box as one of their vertices.
VIII.Data output

I

IV.I.I IV.I.II IV.I.III

Driver

II III

IV.I

IV V VI=I VII VIII

VI.I IV.II

125

severity of the change in the methods needed by the algorithm, all substitution work
can be automatically performed.

Then again, the Data Domain of this problem can be decomposed in such a way that all
AlgthmNode objects (subroutines) will have access only to the data it needs. For instance,
the process III. Build an initial mesh for the bounding box will need the bounding box and
will build the initial mesh, which will be stored in a place in order to be accessed by other
nodes. That decomposition will give rise to the classes derived from AlgthmData. The
whole set of data pieces depend on the geometric data structure used by the developer. For
instance, it can be seen that some structures have to be present: (a) PSLG (accessed by I,
II, IV and V); (b) bounding box (accessed by II, III and VII), (c) mesh (accessed by III,
IV.I.I, IV.I.II, IV.I.III, V, VII and VIII), (d) auxiliary data (many, it depends on the
designer). All those pieces of data will be encapsulated in objects of classes derived from
AlgthmData, see Figure 5-18.

GraphNode

Insert point (IV.I.)

AlgthmData

AlgthmNode

AuxData

SkeletonGraph

root

PSGL

GenerBoundBox (II)

BoundingBox

DataInput (I) FindAffecElm (IV.II.)

Mesh

BuildInitMesh (III) . ..

...

MeshGenerator

Figure 5-18 Application of the GIG structure in Mesh generation algorithm

In this example, the mesh generation process is the controlled workflow, see Figure 5-
18. This process includes information about constituent tasks (represented as the
processes (I to VIII). The mesh generation process has requirements related to
modularity and exchange of sub-routines, since it has specific parts that have several
kinds of implementations, which can be exchangeable.

5.4.4 Problem

How to guarantee simplicity in the separation of process logic from task logic, during
the development of complex systems, while maintaining solution independence, reuse
of processes and the predefined algorithmic structure?

5.4.5 Forces

With respect to the defined context, there are different forces, which lead to different
solutions. Some of these forces are:

§ Maintaining predefined algorithmic structure;
§ Simplicity in the process definition;

126

§ Support for different levels of granularity of the defined processes;
§ Domain independence;
§ Dynamic change of workflow processes;
§ Reduction of error occurrences in the coupling of processes;
§ Reuse of processes;
§ Parallelism and processes synchronization;
§ Workflow execution performance;
§ Exploring existing expertise of domains of knowledge.

The following discussion analyses some of these forces, in order to identify how they
are pulling against each other. GIG tries to resolve some opposing forces in the
workflow definition context.

When trying to maintain the predefined algorithmic structure, the definition of some
sub-process could generate pieces of code that are not easily changeable, because they
are monolithically defined as a block of code. Conversely, refined levels of process
partitioning can provide a process definition at statement level, eliminating existing
abstractions (such as blocks or modules). Domain independence and dynamic change
of process requires abstractions such as polymorphism and encapsulation, which are
not present in a procedural style (the predefined algorithmic structure).

The guarantee of simplicity in process definition can be one method of avoiding errors
and stimulate the pattern use. The reuse of already developed and tested processes
helps in the simplification of process definition, similar to the possibility of reusing
entire solutions. However, the reuse of processes can also reduce the simplicity due to
the need for extensions of classes or configuration. Some other opposing forces to
simple process definition are: the guarantee of domain independence, which makes the
process definition more complex; also, to allow the definition of processes parallelism
and synchronization the programmer has to deal with extra levels of complexity.
Simplification can be compromised when parallelism is required for increasing
performance.

Process reuse improves reduction of errors once pre-tested software is incorporated.
Refined levels of granularity, in process definition, provide higher level of tangibility
in the number of processes to be controlled, increasing the reuse of processes. The
guarantee of domain independence also increases the number of reusable process.

Domain independence, avoiding non-monolithic solutions, makes the application of the
workflow solution possible to different applications, improving its reuse. However, in
these cases the existing expertise of a knowledge domain cannot be appropriately
explored to improve the solution. Furthermore, synchronization and parallelism
improve in one-way domain independent applications supporting the required
functionality to existing applications.

127

The dynamic change of workflow processes improves the solution power. However,
gives the programmer the responsibility and complex task of making a suitable
division of code and data, for further exchanging to be pertinent. The reuse of process
is fundamental when the user has to change an existing one for another one, which is
already tested and classified. Maintaining the pre-defined algorithmic structure does
not help domain independence because it does not provide, for example, encapsulation.

Parallelism and processes synchronization are very relevant to allow system
optimisation and higher levels of control. The refined levels of granularity, in process
definition, can allow a more precise level of parallelism definition. The dynamic
change of workflow and the reuse of process increase the synchronization power, in
process exchanging. Synchronization and parallelism improve in one-way the power of
the dynamic change of process (identifying which process are independent or the
dependence order). Conversely this can increase the complexity of the changing of
processes.

Maintaining the predefined algorithmic structure can sometimes improve performance
due to the direct application of some available optimised code; parallelism also
improves performance, since it allows simultaneous execution of process.
Alternatively, simplicity of process definition can decreases the performance, when it
eliminates, for example, the possibility of parallelism definition. The guarantee of
domain independence can also decrease performance once the existing expertise
cannot be appropriately explored. Other forces, which compromise performance due to
the need of extra verification and controls, are: refinement level of the granularity of
process definition; dynamic process exchange; control of errors, reuse of process, and
synchronization.

5.4.6 Solution

GIG can be described as a workflow solution [WMC95]. GIG follows the object-
oriented style for modelling and programming. For simplicity, reasons of use and easy
correctness verification, GIG implements a restricted direct acyclic graph (DAG)
[LSV03a].

Participants (Structure)

The GIG structure is presented in the UML diagram in Figure 5-19.

The GIG pattern is composed of the following participants:

§ GraphNode: this is an abstract class that implements low level operations
related to the interoperability between graph nodes. It controls the relationship
between workflow tasks.

128

§ SkeletonGraph: it has a reference to the driver of an algorithm graph and
encapsulates tools for performing some graph operations. It can be seen as the
root of the workflow process.

AlgthmConnection

AlgthmData A lgthmNode
0..*0..*

SkeletonGraph

+root

ConcreteAlgthmNode1 ConcreteAlgthmNode2

ConcreteConnection

GraphNode
<<abstract>>

0..*

children

0 .. *0 .. *

parent

ConcreteAl gthmData1

Doma inData
<<domain entity>>

ConcreteAlgthmDa ta2

Figure 5-19 Participants of the GIG-pattern

§ AlgthmNode: represent subroutines that compose the application (workflow

tasks). It is used as a base class for all algorithm classes of the application.
§ ConcreteAlgthmNode Implements a specific subroutine for a task. It invokes

other subroutines which can be tasks (defined as its children) or other defined
applications.

§ AlgthmData: represents a data type to be used by an instance of an
AlgthmNode. It is used as a base class for all algorithm data classes of the
application.

§ ConcreteAlgthmData Represents data from the application domain, which is
used in ConcreteAlgthmNode classes.

§ DomainData: represents the complete set of types related to the problem
domain data.

§ AlgthmConnection: this is an AlgthmNode, which references an algorithm
subroutine that was not connected to the graph. This class responsibility is to
fetch, and build (like a proxy [GHJ95]) the related algorithm and replaces itself
with the fetched algorithm. In this way several software processes represented
by SkeletonGraphs can be assembled producing a complex software system.

5.2.8 Collaborations

We can identify the following collaborations between GIG participants, see Figure 5-
20:

§ GraphNode encapsulates the responsibility of providing access to other
GraphNodes, which are its children.

129

§ ConccreteAlgthmNode executes the associated process (subroutine) with the
help of other processes represented by its children, through calls inserted in its
process code. It relies on GraphNode to have access to its children
AlgthmNodes.

driver :
SkeletonGraph

root :
ConcreteAlgthmNode1

data1 :
ConcreteAlgthmData1

son1 :
ConcreteAlgthmNode2

data2 :
ConcreteAlgthmData2

connectionNode :
ConcreteConnection

realObject :
ConcreteAlgthmNode3

<<create>> <<create>>

buildGIG() <<create>> <<create>>

buildGIG()

<<create>>

Iteration over the set of
ConcreteAlgthmNode children

mount()

getRealAlgorithmNode() <<create>>

isInstanceOfAlgthmConnection(son)

return(realObject)
return(RealObject)

Make the reference to
connectionNode points
to realObject

mount()

This node can be a
ConcreteAlgthmConnection too.

If it is true then do
the next action

For each son
do the following steps

mount()

Otherwise, if it is not a
AlgthmConnection

buildGIG()

Figure 5-20 Sequence diagram for GIG building

§ ConcreteAlgthmData provides access to workflow data. The AlgthmNode

communicates with ConcreteAlgthmData objects to have access to its data.
§ The AlgthmConnection provides the dynamic connection for AlgthmNodes. The

way objects of this class interact with its SkeletonGraph or its parent
AlgthmNodes depends on the implementation. The important thing is that it
represents the point where a driver node of a software process/subroutine will

130

be plugged in. It also contains the necessary information about the new
AlgthmNode.

Implementation

There are some implementation issues associated with the GIG participants, described
previously, which need some extra explanation. Other important details about
implementation are related to the design steps to be followed by the user when
applying the GIG-pattern to a new application.

5.4.7 Implementation Issues

The DomainData is implemented by a set of subclasses of the AlgthmData. The
subclasses of AlgthmData describe the specific domain treated in the problem. The
AlgthmData and AlgthmNode objects must be materialised for the workflow they are
serving. The materialization activities, of AlgthmData and AlgthmNode objects, can be
delegated to object factories that are responsible for accessing the data repository and
instantiating the objects. These object factories can have object pools to reuse objects,
see section 5.4.11 (Related patterns) for details about the patterns that can be applied.

The AlgthmNode subclasses need to cast the AlgthmData objects, associated with each
node, to the primitive type. As was shown before, in Figure 5-19, each AlgthmNode
object must have a reference for all of its children and data. This reference can be hard
coded in an AlgthmNode subclass, or in a file, or can be handled by another class,
which has the responsibility to relate each AlgthmNode to its children. An example of
such a class is the DataAlgthmServer use in the example (in section 5.4.9). In this case
each AlgthmNode can ask the DataAlgthmServer for its children and data or the
DataAlgthmServer can be active and responsible for building the GIG.

Design Steps

The following design steps describe which actions the user needs to perform to apply
the GIG-pattern to a problem:

§ Starting from an algorithm in natural language the process is first divided into
different subroutines (algorithm nodes) ehich are organized in the form of a
graph.

§ The division of the algorithm into several subroutines induces a decomposition
of the domain data in order to provide them with an appropriate distribution of
access to the data. The result of this process gives the AlgthmData set.

§ Each AlgthmNode places calls to its children nodes, which implement
subprocesses that take part of the whole process. The logic is defined inside

131

each AlgthmNode subclass and it references the execution of a child algorithm,
independently of the task of that child.

§ Each AlgthmNode is related to a set of AlgthmData, which may be shared with
other nodes.

§ The driver of the whole process is identified.

5.4.8 Variants

(i) Use of the TypeObject pattern [YJ02] to enhance adaptability that produces
independence between the software routines and its data components. This is important
in situations where the same software component is to be used in different situations
and with different pieces of data. The class diagram is similar to the one in Figure 5-
21. With this extension, AlgthmType provides the AlgthmNode with the required
functionality independently of AlgthmData. The relationship between AlgthmData and
DataType can be made at run time. This extension does not affect interactions of
AlgthmNode and AlgthmData with the other participants as already described.

AlgthmNode

AlgthmData DataType

AlgthmTypeAdaptiveAlgthmNode

Figure 5-21 Class diagram for a variant of an AlgthmNode

(ii) Hierarchical levels of procedures can be defined to support software management.
An application of this extension can be seen in section 5.4.9, where three levels of
SkeletonGraphs were defined. For each level one may define specific functionalities
for all their respective AlgthmNodes and AlgthmData. Furthermore, at the level of the
functionalities of SkeletonGraphs, object specific tools can be defined. These
extensions can be oriented for the applications being considered.

(iii) The pattern can be extended to deal with the definition/execution of processes
running in a distributed environment. We will not go into further details because this is
still under development.

5.4.9 Example

This example is related to the application of GIG in FEM simulators. As usual, it is
observed that an algorithm defined for the solution of a problem by the FEM has
repeated hierarchical structures. Therefore a framework considering hierarchical levels
of processes was used, where each level may have several possibilities of algorithms,

132

and can be easily described by a GIG graph. The whole hierarchy is represented
making the connections between the different levels and generating a complete graph.
Global, Block and Group Skeletons, and Phenomena procedures define those levels.
These levels satisfy a number of requirements, such as: (i) to separate less reusable
modules from reusable ones; (ii) to make more comprehensible the decomposition of
the simulation data amongst the several processes; (iii) to make possible the dynamic
re-configuration of the simulator through the replacement of reusable modules.

The global Skeleton articulates the time loop (if present), adapts iterations and defines
processes involving the call of Block Skeletons. Block Skeletons may define different
solution strategies for different Groups, thus, articulating Group processes. Group
Skeletons articulate their phenomena procedures in very specific less reusable ways. It
is at this level that solvers for algebraic systems are applied. Phenomena are the
abstraction of the entities being simulated. All those skeletons can be implemented as
objects from classes following the GIG pattern (see Figure 5-22). Therefore, the GIG
will allow the interoperability of the different levels of computation (by automatically
plugging the lower level skeletons into the higher ones).

GraphNode0.. *0.. * 0..*0..*

Algthm2Allgthm3

...

Algthm1

SkeletonGraph

DomainData

AlgthmData

AlgthmNode

1..11..1

GlobalSkeleton

AlgDat1 AlgDat2

ServerManager

1 .. *1 .. *1..*1..* 1..11..1

BlockSkeleton

Kernel

1..11..1

Simulator

1..11..1

1..11..1

GroupSkeleton

Block

1..*1..*

1..*1..*

 Group

1..*1..*

1..*1..*

Phenomenon

1..*1..*

Figure 5-22 FEM Simulator and GIG classes

In the example described in what follows, we consider a FEM simulator specification.
This kind of simulator is capable of solving, for example, problems involving transient
phenomena, where the phenomena context includes linear temperature-dependent
elasticity, rigid body motion and linear heat transfer (as Example 1 and 2 of Appendix
A). In the present case n blocks are needed. The number of Groups depends on the
phenomena types present in a specific simulation. The number and type of phenomena

GIG

133

depends on the simulation being carried out as well. In the ith-Block Skeleton, Nig is
its number of groups.

Figure 5-16 shows the Global Skeleton1, while Figure 5-23 shows two Block
Skeletons. Figure 5-24 presents the GIG direct acyclic graph to implement Global and
Block Algorithm skeletons.

Figure 5-23 Block Algorithm Skeletons

As noted before, there should be AlgthmData objects, which contain the required
problem and process data needed by each AlgthmNode object. A specialization of an
AlgthmNode is an AlgthmConnection, which is defined whenever a lower level
process is to be called up. Its AlgthmData object includes pieces of information needed
for the identification of the lower level skeleton that will be plugged into the Algorithm
Skeleton Graph. This identification concerns a driver AlgthmNode object (from
another graph, integrating in this way the graphs presented in Figure 5-24), which will
replace the related AlgthmConnection object.

 Figure 5-24 Global Alg.Skeleton graph Block Alg.Skeletons graphs

5.4.10 Consequences

Below we make some considerations about the forces related to this pattern.

We can observe positive forces for the use of the GIG-pattern:

§ Easy translation from algorithmic language into computer processes. It supports
an organisation at a graphic level, providing the distribution of code in a very

1 The example used in the FEM-skeleton Pattern is also used in this subsection GIG-Pattern.

Is-Bi)Retrieve Initial State for Block i (see(I.0)):
Is-Bi.0)For r = 1 until Nig
 Is-Bi.0.0)Group r, compute phenomena initial states
It-Bi)Compute initial time step for Block i (see(I.I)):
It-Bi.0)For r = 1 until Nig
 It-Bi.0.0)Group r, compute Initial time step ∆r
It-Bi.I)Set ∆ti = min 1≤ r ≤ Nig {∆ r }

IV

driver

Is - B.0 .0

Is - B.0

Is - B

I t - B.0 .0

I t - B.0

It - B

I t - B. 1 I

I .0 I .I I . II

II. I .0

I II . II II I . II I

I I I I I

I II . I

I II . 0

I II . I. I I II . I .II

134

flexible way, not compelling a rigid division of code. To improve simplicity in
process definition we try to: avoid unnecessary levels of details and to maintain
similarity to the predefined algorithmic structure;

§ Different users have evaluated this pattern with success, in applications with
different levels of complexity [LSV03b];

§ Support for different levels of granularity of the defined processes. It allows a
flexible representation for a mixture of scales, since it does not restrict the
levels of programming into which the code is defined, as opposed to [MAN01].
The workflow must be defined in terms of a set of node types that have already
been coded in the programming language level;

§ It can be applied to any domain solution, through the definition of specific
domain data classes and algorithms, as can be seen from the pattern
participants, in section 5.4.6;

§ It allows the test of individual parts of the process independently, reducing the
error occurrences in the coupling of processes;

§ It allows the reuse of entire solutions, making changes in specific points. In
GIG, it is easy to change parts of the graph, maintaining the others intact;

§ It allows graph change (that is, the process change) at run-time. This is
achieved through the GIG intrinsic dynamic structure, as was shown in section
5.4.6. Data and process can be defined at run-time, depending on GIG
implementation, once a pattern can be easily extended to incorporate design
patterns such as [YJ02], as presented previously.

 Some negative forces, or restrictions, can also be identified:

§ The pattern makes severe restrictions on the graph structure, requiring it to be
an acyclic graph. The designer is not allowed to define neither recursive
iterations nor loops outside of the node code;

§ The GIG-pattern makes no explicit reference or imposition for the use of a
specific set of process types, in contrast to [MAN01]. We can consider that this
may cause a loss of workflow-refined control (that is, at instruction level). It is
the programmer responsibility to define and manage this organization, if
required by the application;

§ The flow control is inside each node code. This can bring difficulties to some
parts of process adaptation and control;

§ Synchronization is not a GIG-pattern responsibility. A GIG does not define a
specific structure to deal with process parallelism and processes
synchronization. To allow the definition of processes parallelism, the
programmer has to deal with extra complexity. A GIG-pattern requires
unnecessary levels of repetition, that is, the replication of whole of process
graph branches.

We may summarize saying that this pattern is not very appropriate for applications
that are simple and do not require exchangeable processes, modularity or articulation
of sub-routines. In addition, it is inappropriate for applications where there is a need

135

for a high level of refinement in the program code, or if process synchronization and
parallelism are required. In these cases, the Micro-workflow proposal is an alternative,
as described in [MAN01]. However, through the use of the Micro-workflow alternative
one of the worthwhile things you loose is simplicity and the level of granularity; the
translation from algorithmic language is not such a direct mapping, losing in this way
some levels of abstraction. The application of the GIG pattern to simplify applications
can be more expensive then a simple solution. Conversely, it supports reuse, flexibility
for new solutions, and domain independence.

5.4.11 Related patterns

The following patterns, can be used together with the GIG-pattern:

§ Factory Method [GHJ95], which can be used to materialize objects for
workflow management;

§ Template Method [GHJ95], used to define skeletons of algorithms in
DataAlgthmServer classes;

§ Composite [GHJ95], used to implement the AlgthmNode class functionality in
the framework.

§ Proxy [GHJ95], used in the AlgthmConnection class;
§ Strategy [GHJ95], used in AlgorithmNode and AlgorithmData classes
§ Adaptive object-model patterns, such as TypeObject [YJ02], shown in the

variants section.
§ FEM-Simulator Skeleton [LSR02a] can benefit from the GIG approach.

5.4.12 Known uses

Many variations of numerical algorithms show the very same organizational structure,
which was abstracted by the GIG-pattern. Examples include: mesh generation
procedures, geometric reconstruction from planar slices and integration of geometric
reconstruction procedures, etc.

Despite of being a generic solution that can be applied elsewhere, the users of this
pattern have been scientists and engineers. The GIG-pattern has been applied with
success in the development of different FEM simulator applications, and in a variety of
other numerical methods in computational Mechanics. In Plexus we apply GIG as a
general solution for the numerical methods and articulation strategies for solving
groups of phenomena, see section (5.4.9).

5.5 Final Considerations

This chapter proposed patterns, which will give support to FEM simulators solutions
domain: The Computational Phenomenon-Pattern, the FEM Simulator Skeleton Pattern
and the GIG-Pattern.

136

The Computational Phenomenon Pattern represents an abstraction of the collection of
commonalities found in the concepts and process for representing phenomena
simulation through the FEM. It defines higher levels of abstraction and reusability.

The FEM Simulator Skeleton pattern supports the development of FEM simulators. It
deals specifically with algorithm hierarchical modularisation for simulations based on
the FEM. Hence, it is possible to separate complex procedures from simpler ones and
strongly reusable software components from less re-usable ones. One immediate
benefit is the enhancement of re-usability. It is worthwhile observing that each
Simulator built, based on the proposed pattern, and should be able to solve new
problems defined on completely different geometries and sets of phenomena.

The FEM-Simulator Skeleton pattern promoted:

§ Higher levels of abstraction for the main concepts of FEM Simulation Skeleton
pattern modelling, reducing the complexity and improving the correctness of
the systems (simulators) that will be developed.

§ Higher level of hierarchical modularity for the system process organization, by
the use of global skeletons, blocks and group skeletons.

§ A solution, which may consider monolithic, coupled phenomena simulation.
§ Reliability of the computer-generated predictions is improved by means of pre-

defined strategies, numerical methods and templates.
§ A higher level of maintainability, as the pattern separates different levels of

computation and high reusability of the first two and last levels of computation
are guaranteed.

In contrast, the GIG Pattern (Generic Interface Graph for Process Control) provided the
flow process control for the defined simulator. Hence it became easier to translate from
algorithmic language into computer processes, as well as achieving simpler process
definition by avoiding unnecessary levels of details and maintaining similarity to
predefined algorithmic structures. However, the pattern creates severe restrictions on
the graph structure, requiring it to be an acyclic graph; the designer was not allowed to
define neither recursive iterations nor loops out of the node code. Then again, it
allowed the reuse of entire solutions, locating changes in specific points. It also opened
up to support run time adaptivity processes.
These patterns address the following non-functional requirements:

§ System flexibilization: (1) Support adaptability for changing numerical
methods. Numerical algorithms were not hard coded, but treated as
flexibilization points of the simulators abstraction. The algorithms used are
customisable through configuration or extension of defined models; this occurs
in the Computational Phenomena Pattern and also in the Skeleton Pattern. (2)
The definition of an adaptive workflow management framework, where the
designer workflow can be changed dynamically (Generic Interface Graph for
Process Control, the GIG-pattern).

137

§ The support for the definition of new simulation strategies is related to modular
decomposition in parts of the problem, which are intrinsically related to the
kind of global algorithm of the simulators. With proper modularisation,
solution strategies can be changed without changing the basic structure. This is
treated by the simulator model definition and controlled by the GIG-Pattern.
The designer will deal with different kinds of simulators, depending on the
global scenario it wants to use. The simulator will be dynamically adaptive.

§ The reusability was considered in the reuse of: simulator models, simulation
problem data, numerical solutions, and simulator specific data (phenomena,
geometries, components, etc). The reusability requires a good conceptualisation
of reality, which is supported by modelling pattern definition that is
descriptions of abstractions about simulator concepts composition and
functioning. Also the process classification, in different levels of computation
(FEM-Skeleton Simulator), facilitates the process reuse.

This chapter also refers to Plexus Frameworks, that is, the Simulator Framework and
the Computational Phenomena Framework. In spite of not being referred to here, we
can abstract the whole Plexus system as a Framework that has more general hotspots
Figure 5-25.

Figure 5-25 Future Plans for the Plexus Framework

The Plexus Frameworks abstraction considers that, due to Plexus architectural
modularisation, we can have hotspots such as Pre-processors, Simulators and Viewers
that will be included (adapting according to simulation requirements). However this
will be considered in a future work. We can also generalize some common features to
also support a product line definition for the development of FEM simulators. The
product line approach [KLD02] has been specially adapted for the development of
product families, where multi-resolution modelling is explored.

The next chapter makes some final considerations about this work, showing future
activities and suggestions for future work.

Plexus Framework

Plexus Framework Kernel

 Hotspots

Environment

Simulator

Viewer

Pre-processor

Data Structure

The Plexus Framework:
We can pre-view the building of a generic
framework, which presents several flexible
hotspots for the simulator development, such as
the pre-processor, the simulator, the data-
structure and the viewer machine. The
architecture was defined in order to make them.
This work, however was only interested in the
modularisation of the involved components
guaranteeing more independence between the
major processes

 138

Conclusion

This chapter summarizes the objectives and contributions of this work in the
conceptualisation of a Simulation Environment, it describes some identified
limitations, makes a comparison with other approaches, and proposes future
activities.

Chapter

6
4

 139

6.1 Objectives of this Work

The world has seen many advances over the past three decades in modelling and
simulation. However, methods of modelling and simulation are fragmented across
disciplines making it difficult to reuse ideas from other disciplines and to work
collaboratively in multidisciplinary teams [ZPK00].

The motivation of this work is to provide support to engineers and scientists for the
modelling and control of simulators related to coupled multi-physics phenomena based
on the FEM, taking advantage of the polymorphic nature of the method. Thus, a
Simulation Environment, named Plexus, is proposed.

The expected results are the simplification of the definition of new solution strategies,
support of model reuse, and the proposal of higher levels of abstraction related to the
main concepts involved in the development of simulators based on the FEM. We help
the user by providing abstraction mechanisms related to coupled phenomena,
articulating different solution strategies for different phenomena groups; giving
flexibility to define algorithms in several levels of the simulation. The use of data
repositories based on a previously defined modelling patterns may significantly
expand domain knowledge and its accessibility. This is inline with the idea that there
should be a Numerical Analysis software repository that is operated by people with
specific duties in data treatment and control, elected leaders, and public guidelines for
what is deposited [RG00].

There are some related approaches that may provide contributions and improvements
to FEM simulations. They define good practices and fundamentals but the existing
contributions do not treat problems related to abstraction of numerical algorithms;
easier change of numerical methods and strategies; satisfactory abstractions for
couplings that can be defined independently of the actual implementation of the
involved phenomena; abstractions for groups of phenomena, that are solved together;
and abstractions of the relationship between geometry and phenomena.

In order to meet its objective, this work proposed an object-oriented architecture,
which applies framework abstraction and patterns. These framework abstraction and
patterns describe ideas and perspectives that have been observed and analysed during
many daily studies that applied the FEM. Furthermore, the framework abstraction was
used to represent domain specific conceptualisations, giving rise to a promising way of
reusing simulator software designs and implementation. Reusing architectural
structures is an advantage because the architecture is a pivotal part of any system and
costly to construct.

The next section summarises how the work objectives have been addressed, and
discusses their contributions. Some limitations are also presented and a comparison to
other approach is made. Then, further work is suggested to overcome the method’s
limitations, improve it and expand its use. Next, some final remarks are given.

 140

6.2 Contributions

The Plexus Simulation Environment conceptualisation focused on many objectives,
which include: (i) to reduce simulator development complexity; (ii) to support
flexibility in the use of FEM in multi-physics simulations; (iii) to decrease time spent
by engineers in the design and production of simulators and (iv) to support simulation
of coupled multi-physics phenomena.

The main contribution of this work is the conceptualisation of an environment, where
reusable semi-complete applications for FEM simulators can be developed. These
applications are frameworks, which can be specialized and customized to produce
simulator applications. The proposed environment tries to apply relevant and
standardized solutions - in the pattern sense - for FEM simulator domains.

This work elaborates a background description to help to understand FEM simulation
of coupled multi-physics systems, detailing involved processes and concepts particular
to the target project. Important issues related to the FEM simulation area were
identified and existing works and studies were presented. The main proposed
solutions, of this work, include:

i) Proper definition of requirements, through the identification of a flexible
technique (Problem Frames) to describe the real world and also for
specifying the involved requirements for the simulator to be developed;

ii) Definition of a generic architecture for a Plexus Environment, which will
manage commonality across different simulators;

iii) Definition of different patterns for:
§ The computational phenomenon;
§ The simulator modelling, taking benefit of the FEM domain;
§ Control of the involved processes, guaranteeing solution independence

simplicity and adaptability in execution time.

Figure 6-1 Summary of the Proposed Solutions

Figure 6-1 gives an overview of the proposed solutions, and also references the
definition of the Pre-processor Pattern and the Visualization Pattern, which are not an
integral part of this document. However, each of them has references ([LSA02b] and
[VA02] respectively) that will be used in future works for further developments.

Proposed
Solutions

i) Requirement Evaluation
(Chapter 3)

iii) Patterns
(Chapter 5)

ii) Architecture Definition
(Chapter 4)

Pre-processor
Pattern

(not included yet)

GIG-
Pattern

FEM-Skeleton
Simulator

Pattern

Computational
 Phenomenon

Pattern

 Viewer
Pattern

(not included yet)

 141

In the sequence, we make a cross reference between the requirements and the proposed
solutions addressed in this work to satisfy those requirements, highlighting our main
contribution.

The Domain Analysis and Requirement Evaluation, in Chapter 3, presented a way
to describe FEM simulators with the Problem Frames software engineering technique -
one of the most respected software engineering approaches for requirements analysis
and problem domain specification - improving the description of our specific domain.
That chapter detailed the problem domain, analysis requirements and made the
problem decomposition. We evaluated the appropriateness of the technique, discussed
its power of expressiveness and limitations, suggesting what could be improved. The
conclusions of our analysis about Problem Frames are relevant and might be helpful
for other domains of knowledge, which have similar characteristics, such as a strong
multidisciplinary nature, which causes difficulties in the elaboration of abstractions
involving different knowledge domains. The approach addresses the goals related to
the: (i) improvement of domain comprehension, making the involved concepts clearer
and formalized, allowing them to be more correctly implemented, modified or reused;
(ii) simplification of requirements specification, through the identification of the
systems major requirements, which will decrease the number of errors or the lack of
documentation, and simplifying the future processes of requirements analysis.

The Architectural Definition from Chapter 4, proposed a specific way to deal with a
single solution for the development of coupled phenomena simulators based on the
FEM. This architecture, defines a structure for supporting the development (Creation,
Configuration, Setup, Load and Use) of simulators for coupled phenomena problems,
based on FEM solutions. The description of a well-defined architecture was crucial to
guarantee the quality, reusability, and decrease costs and complexity in the definition
of simulation models. This also simplified the definition of new solution strategies. We
can argue that the described architecture gave a high level of abstraction; promoted
reuse of the involved components; supported framework construction; helped to
identify the need to support a distributed and cooperative environment; enabled
framework analysis in agreement with quality attributes. The conceptualisation of the
Plexus environment architecture is considered a relevant contribution, as it is a
mechanism to obtain the required reuse of software components in FEM simulator
systems [LS03].

Frameworks and Pattern definitions are provided in Chapter 5. The FEM simulator
framework definition was very appropriate to our domain where similar applications
are built several times from scratch. Special attention was also directed to the
computational phenomenon abstraction, which was also considered as a framework.
The defined frameworks gave support to ways of reducing the costs and improving the
quality of simulation software. In contrast to an earlier object-oriented reuse technique,
based on class libraries, our work defined frameworks targeted to particular simulation
process units (such as simulators, workflow management, visualization) and
application domain (coupled multi-physics phenomena simulation based on the FEM).
The Pattern Definition includes patterns related to FEM simulator solution domains

 142

(phenomena modelling, process reuse, simulator modeling and process control flow).
Researchers of patterns have shown that patterns are effective tools for reuse. Pattern
definition also promotes the achievement of software quality. Our work addresses this
novel area of FEM simulators where we had great gains in process reuse. Engineers
require specific and better solutions, which could explore in detail the expressiveness
and reusable capacity of their specific domain. Definition of some abstraction
considering the main concepts, such as simulators and computational phenomena, were
a concern, which was explored by framework abstractions.

Examples of FEM simulator problems illustrating coupled multi-physic phenomena
are described and presented in Appendix A. One of them, the Example 1, is used as a
case study during the description of above mentioned patterns.

A Prototype of the Plexus Simulation Environment is under development in LINUX
platform, using C++ language. A pre-defined knowledge base, including FEM
simulators meta-data, was also defined. The database use was encouraged by the need
of more powerful features that reduce time and effort. The use of a DBMS (in our case
the Postgres Database Management System) makes the persistent data management
easier, guaranteeing the control, sharing and reuse of large amount of simulation data
and concurrence control, while supporting data integrity in case of system’s failure.

The current implemented parts correspond to: part of the knowledge base
management implementation and the GIG-pattern implementation. Appendix C shows
some of the prototype interface windows. In future works, our aim is to finish the
whole environment implementation.

6.3 Limitations

Some limitations can be identified. Firstly, considering the applied technique, Problem
Frames, for requirements analysis, we must point out that several concepts require
experience, which could take a long time to acquire. This comes out of the fact that
this technique is neither trivial nor intuitive. However, many existing concepts make it
possible to describe the problem and the knowledge domain in a powerful way, as well
as the requirements specification. Another limitation is that there is no complete meta-
model definition, which represent the whole proposed model. In addition, despite the
supported features that the designer can use, some reasonable familiarity with the
environment and existing framework is required. This demands extra effort before it
starts to meet the provided benefits. Also, the designer has the responsibility to
organize its code and data in a way that will explore the defined advantages of the
Plexus Simulation Environment. An example is the FEM Simulator Skeleton Pattern,
where some limitations can be identified: the model builders require special training,
that is, the designer must understand the proposed abstractions; designers will only
achieve higher levels of reusability if they know how to articulate their strategies and
problems; the simulator performance can decrease due to extra imposed levels of
abstraction. Other limitations, such as not treating simulation distribution, come from
our objective to simplify our first approach to the proposed environment. Most of the
Plexus validation was done through Brainstorming Meeting [], where during several

 143

meetings specialists gave opinion and evaluation of the proposed solutions. The
submission and acceptance of papers related to Plexus also can be considered a
validation aspect. However it is fundamental to make a more rigorous and complete
validation of the environment applying measurement technologies and experimental
methods to the proposed software environment [PKL01, KIT02].

6.4 Comparison between Plexus and other approaches

As we can see from chapter 2 and Appendix B there are several approaches for
scientific simulation development from which FEM simulators can be built. We can
classify them as:
a) Pre-built Libraries such as DIFFPACK [LAN97] and PZ [DP99, DP04], which are

natural complements of general-purpose languages, which allow saving in time and
the guaranty of main advantages (e.g. use of already developed complex and
proved code).

b) General purpose programming environments (e.g. MATLAB [MAT04], SCIRUN
[PWC97]), where there is support for the simulator and simulation development
however they do not explore the FEM characteristics in a higher level (such as at
the level of the simulator, for example). So the user has the possibility to build its
own solution, not being subjected to environment restrictions; however it requires
more knowledge and hard work to develop complex simulators.

c) Domain specific rigid environments (e.g. ANSYS [ANS04]) where, in spite of the
high sophistication level to solve specific problems, there is neither support nor
flexibility to change the way the problems are solved.

d) Domain specific modelling environments where despite of the support of pre-
defined solutions the user has also the opportunity to develop new solutions from
scratch, however with an underlying guide and support to do so (e.g FEMLAB
[FEL04] and Plexus).

Since FEMLAB is the most approximate approach considering our proposed solution,
next we will make a comparison between FEMLAB and Plexus environment.

Our analysis considers some specific points, described next (see also Table 6-1):

A) Levels of proposed abstraction

Despite of the importance of the separation of concerns in a specific field, in order to
reuse knowledge and provide experience and data reuse, there are few approaches,
which describe good levels of abstractions. FEMLAB is a case of a FEM approach,
which includes some specific abstractions, which improve the level of the supplied
flexibility and system power. It supports multi-physic modelling and simulation for
coupling of multi-physic phenomena. You can build complex models by combining
several of the package’s integrated ready-to-use applications modes or using
equations–based modelling. However, it does not support some relevant abstractions,
as the ones used in Plexus for the definition of solution strategies and for the automatic
construction of simulators (presented in Chapter 5).

 144

B) Support for an integral piece of software for coupled phenomena simulations

There is a great need for integral solutions, which give support for the development of
simulations involving several coupled phenomena, and also the need for supporting an
unlimited multi-physics combination of coupled phenomena, as mentioned in chapter
2. FEMLAB provides a multi-physic modelling and simulation environment for
coupling of multi-physic phenomena. You can build complex models by combining
several of the package’s integrated ready-to-use applications modes or using
equations–based modelling. Plexus gives more flexibility, because, in spite of
supporting an unlimited combination of multi-physics phenomena, it also allows
different meshes for phenomena defined in the same geometry. Also, Plexus allows the
user to develop the solution strategies, which define the way and the order in which
each phenomenon is used during the simulation. Femlab does not support this.

C) Flexibility in the implementation of different numerical methods for the same
task

There is a great need for implementing flexibility for changing auxiliary numerical
methods, solution methods, error estimation, adaptation methods, shape functions and
viewers. We can consider for example the support for the definition of a user required
mesh generator. In FEMLAB we can choose from different pre-defined kinds of mesh
generators. However in Plexus we have the possibility to incorporate an unlimited
number of methods for this task.

D) Flexibility in the implementation of different simulators strategies

To our knowledge there is no FEM-specific development environment, which allows
and gives support (through abstractions) for the changing of the simulator solution
schemes. One of the main driving forces for Plexus development was to provide that
kind of support. So, high levels of abstractions were developed targeting that
requirement. In FEMLAB we can identify that at some level the user can make some
articulations in the way the coupled phenomena are connected. However, Plexus goes
further when it provides abstractions, which orient the definition of new simulators
from scratch. After a simulator is built, those abstractions also allow for the simulator
to be reconfigured. Thus, Plexus provides different ways of articulating blocks and
groups of procedures.

E) Support for workflow

The use of workflow technology helps the development of more flexible and versatile
computation strategies, as described in chapter 5 (GIG-pattern). The workflow control
and use provide expressiveness and adaptability through simplification of the system
being developed. Plexus integrates the workflow concept in its solution at the user
level, but FEMLAB does not.

 145

F) Reuse of experience (reusability)

The reuse of experience can be measured through the support of a repository, the reuse
of simulator models (strategies), reuse of problems definition (geometries, phenomena,
etc), and so on. We can notice that Plexus scope of reusability is larger than FEMLAB,
since it stores information considering the knowledge basic level (semi-complete data,
like phenomenon, numerical methods, etc.), simulator level and problem level.

Table 6-1 Comparison between Plexus and other approaches
Criteria FemLab Plexus

A) Levels of abstractions ++ +++
B) Flexibility for solution methods + +++
C) Flexibility in the simulator
 definition

+ +++

D) Support for phenomena coupling +++ +++
E) Support for workflow at user
 level

- +++

F) Reusability ++ +++

So we can notice that Plexus main contributions include aspects related to:
§ Single Software Solution for coupled multi-physic simulation based on FEM.
§ Flexibility in the implementation of different simulators strategies.
§ Make the simulators and problem development easier and faster than before,

through the use of proposed abstractions.
§ Reuse of experience.
§ Support for the definition of new simulation strategies.
§ Support for the implementation of different numerical methods for the same task.

6.5 Final Remarks

There are several alternatives for FEM simulator development. The solutions presented
in this work undertake some of the aspects that have been neglected, such as the need
for specific abstractions, models and process domain definition of the specific area.
The exploration of domain specific solutions makes it possible to achieve better
results, which frequently are more difficult to obtain by general solutions.

The development of FEM simulators is a key activity in many engineering areas.
Special attention must be continuously given to abstraction definition, procedure reuse
and simulator modelling. Another relevant point is considering the involved designers.
Simulator applications are becoming more and more complex and more reliable
systems are needed. To find domain specific solutions is a priority. However, in order
to achieve this, the researcher should be aware of the relevant problems, and should
know what they really need. In this work we try to improve a little bit on domain
comprehension (indicative and optative) moods, as referenced by [JAC01], specific
solutions in the FEM simulation domain were suggested. The development of a
reusable system takes advantages of abstractions based on application examples
applied in many and diverse situations by the area specialists. The continuity of this

 146

task is a challenge, which can bring many gains in different and important areas of
human life, where a FEM application is an effective solution.

6.6 Future Work

Much more must be done to improve our work, and can be considered as future
activities, outside of the scope of this thesis. Some possible future extensions are listed
bellow:
§ To make the simulation environment more automatic, since there are lots of

standard situations and states, which are neither assisted nor guaranteed, which can
be improved through the inclusion of higher levels of expertise;

§ The integral environment detailing and implementation;
§ To include a tool to monitor the simulation process;
§ Explore workflow engine features;
§ Explore and provide parallelism;
§ To ensure consistency, security and performance evaluation;
§ To make an extension of the defined architecture to comply with HLA architecture

standards for partitioning a simulation in different simulations that can be
distributed across multiple computers or processors;

§ Simulations frequently require large volumes of data, which can be partitioned and
processed by many processors in a distributed memory environment. So, it is
important to analyse the scalability with respect to the number of processors and
also to analyse the distribution of data [LF99, LCF00];

§ Despite gains already identified, it is important also to quantify them in order to
demonstrate the Plexus Simulation Environment power;

§ Observing framework leverage domain knowledge to support the development of
product lines, that is, families of related applications [FAY97]. In future works, we
will make some considerations about product lines in simulation environments
based on the FEM, that is, a product line architecture designed to support the
variation needed by the products, and so making it re-configurable;

§ Exploration of the proposed Plexus framework in order to apply it to different
simulation methods, like the finite volume method [VM95]. The main
considerations regard the pre-processing methods and the level of the
computational phenomenon.

 147

[AB00] Appleton, B., “Patterns and Software: Essential Concepts and Terminology”,
2000. Available at http://www.bradapp.net, accessed on 10/01/2004.

[ALX77] Alexander, C.; Ishikawa S.; Silverstein, M.; Jacobson, M.; Fikdahl-King; Angel
S., “A Pattern Language”. England: Oxford University Press, 1977.

[ALX79] Alexander, C., “Small Best Practices Patterns”. England: Oxford University
Press, 1979.

[ANS04] ANSYS Incorporation, “ANSYS”. Available at www.ansys.com, accessed on
02/02/2004.

[AVS02] AVS., “Advanced Visualization System - 2002”. Available at:
http://www.avs.com, accessed on: 3/01/2002.

[BAJ98] Banks, J., “Handbook of Simulation - Principles, Methodology, Applications
and Practice”. John Wiley & Sons, Inc. Georgia Institute of Technology, Atlanta,
Georgia, 1998.

[BBG97] Bateman, R.; Bowden, R.; Gogg, T.; Harrell, C.; Mott, J., “Improvement Using
Simulation”. 5th edition, PROMODEL Corporation, Oem, Utah, 1997.

[BCK98] Bass, L.; Clements, P.; Kazman, R., “Software Architecture in Practice”.
Addison-Wesley, 1998.

[BM002] Bosch, J. et al. “Software Architecture System Design, Development and
Maintenance”. Edited by J. Bosch, M. Gentleman, C. Hofmeister, and J. Kuusela;
Kluwer, Academic Publishers, 2002.

[BUB93] Bubenko, J., “Extending the Scope of Information Modelling DAISD, pp. 73-
97, 1993.

[BUB95] Bubenko, J.; Song, W., Johnesson, P., “Challenges in Requirements
Engineering”. Proceedings of RE’95, pp. 160-163, 1995.

[BUS96] Buschman, F.; Meunier, R.; Rohnert, H.; Sommerland, P.; Stal M., “Pattern
Oriented Software Architecture: A system of Patterns”. New York: Wiley, 1996.

[CFM02] Casati F.; Fugini, M.; Mirbel, I.; Pernici B., “WIRES: A methodology for
developing Workflow Applications”. Requirements Engineering’02, 7(2), pp. 73-106.
Edited by P. Loucopoulos and J. Mylopoulos, 2002.

[CLR01] Cormen, T.; Leiserson, C.; Rivest, R., et all. “Introduction to Algorithms”.
Second edition, MIT Press, 2001.

[CNL01] Clements, P.; Northrop, L., “Software Product Lines: Practices and Patterns”.
Addison –Wesley, 2001.

Bibliography

 148

[COD92] Coad, P., “Object Oriented Patterns”. Communications of the ACM, 35(9), pp.
152-159, 1992.

[COM00] Committee on Theoretical and Applied Mechanics, “Research Directions in
Computation al Mechanics”. A report of the United States Association for Computational
Mechanics, 2000. Available at http://www.usacm.org/org_cm.htm, accessed on
10/01/2004.

[COP01] Coplien, J., “Foundation of Pattern Concepts and Pattern Writing”. Bell Labs/
USA and University of Manchester / UK., 2001.

[COR95] Cook, R., “Finite Element Modelling for Stress Analysis”. By John Wiley and
Sons, Inc., 1995.

[CR96] Crain, R., “Simulation using GPSS/H”. In Proceedings of the 1996 Winter
Simulation Conference, J. Charnes, D. Morrice, D. Brunner, and J. Swain (eds.),
Association for Computing Machinery, pp.31-38, New York, 1996.

[DK02] Dale, K., “The Value of Quality Simulation Conceptual Model”. The Johns
Hopkins University Applied Physics Laboratory, Modelling Simulation Magazine, 1(1), a
publication of the Society for Modelling and Simulation International, 2002.

[DLF93] Dardenne, A.; Lamsweerde, A.; Fickas, S., “Goal-directed Requirements
Acquisition”. Science of Computer Programming, vol. 20, pp. 3-50, North Holland, 1993.

[DP04] Devloo, P.R., “PZ - Environment for developing finite element software”.
Available at www.fec.unicamp.br/~phil, accessed on 29/01/2004.

[DP99] Devloo, P.R., “Object Oriented Tools for Scientific Computing”. Available at
www.fec.unicamp.br/~phil, accessed on 29/01/2004.

[FAA00] Filho, A. “Elementos Finitos – A Base da Tecnologia CAE”, Editora Erica,
2000.

[FAY00] Fayad, M.; Douglas, S.; Johnson, R., “Domain Specific Application
Frameworks: Frameworks Experience by Industry”. Wiley Computer Publishing, 2000.

[FAY97] Fayad, M.; Schmidt, D., “Object Oriented Application Frameworks”.
Communication of the ACM, 1997.

[FAY99] Fayad, M.; Douglas, S.; Johnson, R., “Building Application Frameworks:
Object-Oriented Foundations of Framework Design”. Wiley Computer Publishing, 1999.

[FEL04] Finite Element Modeling Laboratory, “FEMLAB”, Available at
http://www.comsol.com/, accessed on 09/02/2004.

[FJL001] Fiorini, S.; Leite, J.; Lucena, C., Proceedings of CaiSE 2001, LNCS, pp. 284-
298, 2001.

[FP01] Filho, P., “Introdução a Modelagem e Simulação de Sistemas”, Visual Books ed.,
Santa Catarina, 2001.

 149

[GHJ95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides J., “Design Patterns: Elements of
Reusable Object- Oriented Software”. Addison-Wesley, Massachesetts, 1995.

[GKP99] Garlan, D.; Kompanek, A.; Pinto, P., “Reconciling the needs of architectural
description with object-modelling notations”. Technical report, Carnegie Mellon
University, 1999.

[GR02] Grcar, J., “Regarding Numerical Software”. Personal Communication, posted at
Lawrence Berkeley National Laboratory, Mail Stop 50A-1148, One Cyclotron Road,
Berkley, CA 94720 (jfgrcar@lbl.gov), 2002. NA Digest Sunday, March 31, 2002, 02(13),
NA-net. http://www.netlib.org/na-digest-html/02/v02n13.html#5.

[GSP00] Garlan, D.; Sousa, P., “Documenting Software Architectures: Recommendations
for Industrial Practice”. CMU-CS-00-169, 2000.

[GV95] Gomes, J.; Velho, L., “Computação Gráfica: Imagem”. Sociedade Brasileira de
Matemática, 1995.

[HNS99] Hofmeister, C.; Nord, R.; Soni, D., “Describing Software Architecture with
UML”. In proceedings of the First Working IFIP Conference on Software Architecture
(WICSA1), San Antonio, TX, February, 1999.

[HR99] Hilliard, R., “Building Blocks for Extensibility in the UML: Response to UML 2.0
Request for Information”. Integrated Systems and Internet Solutions Inc, Concord,
Massachusetts, 1999.

[IBM02] IBM, “Open Data Explorer”. Available at: http://www.opendx.org, accessed on
3/01/2002.

[JAC01] Jackson, M., “Problem Frames: Analysing and Structuring Software
Development Problems”. Addison-Wesley, 2001.

[JAC02] Jackson, M. et al., “Relating Software Requirements and Architectures using
Problem Frames”. International Conference on Requirements Engineering (RE'02),
Essen, Germany, 2002.

[JAC95] Jackson, M., “Software Requirements & Specifications: A lexicon of Practice,
Principles and Prejudice”. ACM Press, 1995.

[JAC96] Jackson, M., “Four Dark Corners of Requirements Engineering”. ACM
Transactions on Software Engineering and Methodology, 6(1) pp.1-30, 1996.

[JAC97] Jackson, M., “The Meaning of Requirements”. Annals of Software Engineering,
1997.

[JF88] Johnson, R.; Foote, B., “Designing Reusable Classes”. Journal of Object Oriented
Programming 2(1), pp.22-35, Jan-Feb, 1988.

[KG04] Kienbaum, G., “Simulação de Sistemas”. Instituto Nacional de Pesquisas
Espaciais Laboratório Associado de Computação e Matemática Aplicada Simulação de
Sistemas. Available at http://www.lac.inpe.br/~germano/SIMSIS/cap259/curso. htm,
accessed on 10/01/2004.

 150

[KHR04] Khoral Research, Inc., “KHOROS Scientific Environment”. Available at:
http://www.tnt.uni-hannover.de/js/soft/imgproc/khoros/khoros2/ #Solutions, Accessible on
15/01/2004.

[KIT02] Kitchenham, B., “The question of scale economies in software - why cannot
researchers agree?”. Information and Software Technology 44, 2002, pp 13-24.

[KL97] Kalasky, D.; Levasseur G., “Using Simple++ improved modelling efficiencies
and extending model life cycles”. In Proceedings of the 1996 Winter Simulation
Conference, S. Andradottir, K.J. Healy, D. H. Withers, and B. Nelson (eds.), Association
for Computing Machinery, pp. 611-618, New York, 1997.

[KLD02] Kyo, K.; Lee, J.; Donohoe, P., “Feature-Oriented Product Line Engineering”.
IEEE Software, 19(4) pp.58-65, 2002.

[KOR97] Kortright., “Modelling and Simulation with UML and Java”. Nicholls State
Univ. LA, 1997.

[KWD99] Kuhl, F.; Weatherly, R.; Dahmann, J., “Creating Computer Simulation
Systems: An Introduction to High Level Architecture”. Prentice Hall PTR, 1999.

[LAM01] Lamsweerde, A., “Goal-Oriented Requirements Engineering: A Guided Tour”.
Appeared in Proceedings RE’01, 5th IEEE International Symposium on Requirements
Engineering, pp. 249-263, Toronto, 2001.

[LAN01] Langtangen et al., “Finite Element Pre-processors in Diffpack”, Numerical
Objects Report Series (Report 1999-01), Oslo, Norway, 2001.

[LAN97] Langtangen et al., “Increasing the Efficiency and Reliability of Software
Development for System PDEs”. Modern Software Tools for Scientific Computing. pp.
247-268, in Erlend Arge, Are Magnus Bruaset, and Hans Petter Langtangen, eds.,
Birkhauser Boston, Cambridge, MA,1997.

[LCF00] Lencastre, M.; Paiva, M.; Castro, J., Fonseca, D. ,“O Uso da Ferramenta NFR
no Projeto de Banco de Dados Distribuído”. III Workshop Iberoamericano on
Requirements Engineering, R. Janeiro, Brazil, 2000.

[LCS03] Lencastre, M.; Castro, J.; Santos, F.; Araújo, J., “Problem Frames Application
On Finite Element Method Simulators”. 6th Iberoamerican Workshop on Requirements
Engineering and SW Environments (IDEAS'2003), pp. 274-279. Assuncion, Paraguay,
2003.

[LF98] Lencastre, M.; Fonseca, D., “Uma Ferramenta para Projeto de Banco de Dados
Distribuído”. XXIV Conferência Latino Americana de Informática, pp.1081-1092,
Equador, 1998.

[LF99] Lencastre, M.; Fonseca, D. ,“ ProjetoOO - Ferramenta para Apoio ao Projeto de
Banco de Dados Distribuídos”. Logos Tempo e Ciência, Revista do Instituto Luterano
Manaus, Manaus, 1(3), pp. 55-64, Brazil, 1999.

[LJ99] Leite, J., “Are Domains Really Cost Effective?”. Workshop on Institutionalizing
Software Reuse, WISR'9, The University of Texas at Austin, 1999.

 151

[LS03] Lencastre, M.; Santos, F., “An Approach for FEM Simulator Development”;
Journal of Computational Methods in Sciences and Engineering (JCMSE), 2003.

[LSA01] Lencastre, M.; Santos, F.; Almeida, I., “Data and Process Management in a
FEM Simulation Environment for Coupled Multi-physics Phenomena”. Proceedings of
the 5th International Symposium on Computer Methods in Biomechanics and Biomedical
Engineering, Rome, 2001.

[LSA02b] Lencastre, M.; Santos, F.; Araújo, J., “A Process Model for FEM Simulation
Support Development. Proceedings of the Summer Computer Simulation Conference
(SCSC 02), San Diego, California, 2002.

[LSR02a] Lencastre, M.; Santos, F.; Rodrigues, I., “FEM Simulator based on Skeletons
for Coupled Phenomena”. Proceedings of the 2nd Latin American Conference on Pattern
Languages of Programming (SugarLoafPLoP'2002 Conference), pp.35-48, Brazil, 2002.

[LSR02b] Lencastre, M.; Santos, F.; Rodrigues I., “FEM Simulation Environment for
Coupled Multi-physics Phenomena”, - Simulation and Planning In High Autonomy
Systems, AIS2002; Theme: Towards Component-Based Modelling and Simulation. pp.
259-266. A publication of the Society for Modelling and Simulation International,
Portugal, 2002.

[LSV03a] Lencastre, M.; Santos F.; Vieira, M., “Workflow for Simulators based on
Finite Element Method”. Proceedings of the International Conference on Computational
Science (ICCS 2003), Melbourne, Australia and Saint Petersburg, Russia. 1(2), pp. 555-
565, Springer Verlag, 2003.

[LSV03b] Lencastre, M.; Santos, F.; Vieira, M., “GIG-Pattern”. Proceedings of the 3rd
Latin American Conference on Pattern Languages of Programming
(SugarLoafPLoP'2003), pp. 293-307, Pernambuco, Brazil, 2003.

[MAN01] Manolescu, D., “Micro-Workflow: A Workflow Architecture Supporting
Compositional Object Oriented Software Development”. Ph.D, Depart. of Computer
Science University of Illinois at Urbana-Champaign, 2001.

[MAT04] MathWorks, Inc. “MATLAB”. Available at www.Mathworks.com, accessed on
02/02/2004.

[ME99] Medvidovic, N.; Egyed A., “Extending Architectural Representation in UML
with View Integration”. Proceedings of the 2nd International Conference on the Unified
Modelling Language (UML), pp. 2-16, Fort Collins, 1999.

[MM97] Markt, P.; Mayer, M., “Witness Simulation Software: a flexible suite of
Simulation Tools”. In Proceedings of the 1997 Winter Simulation Conference, S.
Andradottir, K. J. Healy D. H. Withers, and B. L. Nelson (eds.), Association for
Computing Machinery, pp. 711-717, New York, 1997.

[MRC02] Martin, R. et al., “Agile Software Development: principles, patterns, and
practices”. Published by Alan Apt Series, Prentice Hall, 2002.

[MY00] Mylopoulos, J.; Yu, E; Chung, L., “Non-Functional Requirements in Software
Engineering”. Kluwer Academic Publishers, Boston/Dordresh/London, 2000.

 152

[NCA01] Nelson, M.; Cowan, D.; Alencar, P., “Geographic Problem Frames”. Poster on
Proceedings of the 5th IEEE International Symposium on Requirements Engineering, pp.
306–307, 2001.

[NEI84] Neighbors, J., “The Draco Approach to Constructing Software form Reusable
Components”, IEEE Transactions on Software Engineering, 10(5), pp. 564-573, 1984.

[NG99] Nordstrom, G., “Meta-modelling – Rapid Design and Evolution of Domain
Specific Modelling Environments”. Dissertation for the degree of Doctor of Philosophy in
Electrical Engineering of the Faculty of the Graduate School of Vanderbilt University
Nashville, Tennessee, 1999.

[OK92] Oren, T.; King, D., “Requirements for a Repository Based Simulation
Environment”. Proceedings of the Winter Simulation Conference, edited by Swain, G. et
al., 1992.

[OMG02] OMG: Unified Modeling Language 2.0. Initial submission to OMG RFP
ad/00-09-01 (UML 2.0 Infrastructure RFP) and ad/00-09-02 (UML 2.0 Superstructure
RFP).: Proposal version 0.63 (draft), 2002. Available at http://www.omg.org/

[OMG03] OMG., “Unified Modelling Language Specification Version 1.5”, 2003.
Available at: http://www.uml.org/, accessed on 10/01/2004.

[PJ70] Palme, J., “SIMULA 67 – An advanced programming and simulation language”,
Technical Report, Swedish Res. Inst of National Defence, 1970.
[PKL01] Pickard, L.; Kitchenham, B.; Linkman, S., “Using simulated data sets to
compare data analysis techniques used for software cost modelling”. IEE Proceedings on
Software Engineering, 148 (6), pp165-148, 2001.
[PR96] Pree, W., “Framework Patterns”. New York: SIGS Books, 1996.

[PSS90] Pedgen, C.; Shannon, R.; Sadowski, R., “Introduction to Simulation using
SIMAN”. McGraw-Hill, 2th ed., New York, 1990.

[PWC97] Parker, S.; Weinstein, D.; Christopher, J., “The SCIRUN Computational
Steering Software System”. In Erlend Arge, Are Magnus Bruaset, and Hans Petter
Langtangen (eds.), Model Software Tools for Scientific Computing, Birkhauser Boston,
Cambridge, MA, 1997.

[RD98] Roberts, C.; Dessouky, Y., “An Overview of Object-Oriented Simulation”, IEE,
Simulation: Transactions of The Society for Modelling and Simulation International,
70(6), pp. 359-368, 1998.

[REC93] Russell, E.C., “SIMSCRIPT II.5 and SIMGRAPHICS Tutorial”. In Proceedings
of the 1993 Winter Simulation Conference, G.W.Evans, M. Mollaghasemi, C. Russell,
and W. E. Biles (eds.), Association for Computing Machinery, pp.223-227, New York,
1993.

[RG00] Ready, J.; Gartling, D., “The Finite Element Method in Heat Transfer and Fluid
Dynamics”, Second Edition, Lewis Publishers Inc. Salesrank, 2000.

 153

[RJ96] Roberts, D.; Johnson, R., “Evolving Frameworks: A Pattern Language for
Developing Object Oriented Frameworks”, University of Illions. Presented at PLoP '96,
1996.

[RM96] Rucki, Miller., “An Algorithm Framework for Flexible Finite Element-based
Modelling”. Computer Methods Application Mechanical. Eng. 136, pp. 363-384, 1996.

[RN02] René, B.; Neves, S., “Component-Based Software Development”. MSc in
Informatics Engineering, FCT, Universidade Nova de Lisboa, Portugal, 2002.

[RN95] Russel, S.; Norving P., “A Modern Approach”. Prentice Hall Series in Artificial
Intelligence, 1995.

[RY01] Revault, N.; Yoder, J., “Adaptive Object-Models and Meta-modelling
Techniques”. Workshop Results; ECOOP 2001, Hungary, Workshop Reader; Lecture
Notes in Computer Science; Springer Verlag, 2001.

[SC03] Silva, C., “Detalhando o Projeto Arquitetural no Desenvolvimento de Software
Orientado a Agentes: O Caso Tropos”. MSc Dissertation, CIN-UFPE-Brazil, 2003.

[SCS02] Society for Modelling and Simulation International, “The value of a Quality
Simulation Conceptual Model”. Modelling Simulation, 1(1), 2002.

[SG96] Shaw, M.; Garlan, D., “Software Architecture: Perspectives on an Emerging
Discipline”. New Jersey, 1996.

[SI01] Sommerville, I., “Software Engineering”. 6th ed., Addison-Wesley, 2001.

[ST97] Stroustrup, B., “The C++ Programming Language”. 3rd edition, Addison-
Wesley, 1997.

[TAS94] Tanir, O.; Servic, S., “A Standard Simulation Environment: A Review of
Preliminary Requirements”. Proceedings Winter Simulation Conf. Edited by. Swain, G.
et al., 1994.

[TO95] Tworzydlo; Oden., “Knowledge - Based Methods and Smart Algorithms in
Computational Mechanics”. Engineering Facture Mechanics, 60(5/6), 1995.

[VA02] Vieira, M.; Freyry, A.; Santos, F., “Ferramenta de Visualização de Simulações
baseadas no Método do Elemento Finito. Graduation Work, Center of Informatics,
Federal University of Pernambuco, Brazil, 2002.

[VM02] Viceconti, M., “Replication of Numerical Studies”. Personal Communication,
posted at biomch-l@nic.surfnet.nl. Sent on: March 27, 2002 3:03 pm Subject: BIOMCH-
L: BioNet controversial topic #5.

[VM95] Versteeg H.; Malalasekera, W., “ An Introduction to Computational fluid
Dynamics – The Finite Volume Method”, Prentice Hall, England,1995.

[WK99] Warmer, J.; Kleppe, A., “The Object Constraint Language, Precise Modelling
with UML”. Addison Wesley, 1999.

 154

[WMC95] Workflow Management Coalition, “The Workflow Reference Model, Workflow
Management Coalition Specification”. Winchester, Hampshire - UK, 1995.

[YB96] Young, K.; Bang, H., “The Finite Element Method (using Matlab)”. The
Mechanical Engineering Series, 1996.

[YH00] K., Young; B. Hyochoong, “The Finite Element Method Using Matlab”. 2th ed.,
CRC Mechanical Engineering Series, United States, 2000.

[YJ02] Yoder, J.; Johnson, R., “The Adaptive Object Model Architectural Style”.
Proceeding of The Working IEEE/IFIP Conference on Software Architecture
(WICSA3'02), World Computer Congress in Montreal, 2002.

[ZB03] Zeigler, B., “DEVS Today: Recent Advances in Discrete Event-Based
Information Technology”. 11th ACM / IEEE International Symposium on Modelling,
Analysis and Simulation of Computer and Telecommunication Systems, Orlando., 2003.

[ZEI00] Zeigler, B.; Praehofer, H.; Kim, T., “Theory of Modelling and Simulation –
Integrating Discrete Event and Continuous Complex Dynamic Systems”. Academics
Press, San Diego, California, 2000.

[ZL97] Zobrist, G.; Leonard, J., “Object-oriented Simulation – Reusability, Adaptability
and Maintainability”. IEE Press, 1997.

[ZPK00] Zeigler, B.; Praehofer, H.; Kim, T., “Theory of Modelling and Simulation”, 2nd
ed., Academic Press, USA, 2000.

[ZP00] Zienkiewicz, O.C.; Taylor R.L., “The Finite Element Method- Solid Mechanics”,
5th Editions, Butterworth-Heinemann, Oxford, 2000.

 155

Examples of Coupled Multi-physic
Phenomena Problems

This appendix presents three different examples of problems involving coupled
Multi-physics phenomena. First we give a description of a simulator that can be
used to solve two of the given problems (example 1 and 2). In addition, in the
first example (number 1) we present extra details about exact mathematical
models, the differential-algebraic system of equations, and the global algorithm
for the problem. These details can help on a more complete understanding of
FEM patterns detailed in chapter 5.

Appendix

A

 156

Appendix A

A.1 A Simulator Description

An example for a FEM simulator specification, which can be used to solve a class of
problems exemplified by examples 1 and 2, can be described considering the following
global scenario [LS03]: a system capable of solving problems involving transient
phenomena; where the phenomena context includes linear temperature-dependent
elasticity, rigid body motion and linear heat transfer; Dirichlet restrictions are
considered through Lagrange multipliers; for simplification reasons, the simulator
process does not include estimation error and adaptation processes (see Figure A-1).

Figure A-1 Simulator specification (global scenario)

Example of Blocks and Groups articulation

In any solution algorithm the phenomena are organized in subsets (Groups), each of
which are solved independently of the others. This allows for different solution
schemes for each Group. The articulation of the solution of Group problems is made by
Blocks of Groups. The justification for the Blocks is due to the fact that some Groups
of phenomena should be solved before other Groups and the articulation involving
some Groups are different from the articulation involving the others.

The specification of the methods used to provide the services offered by each Block
depends on its scenario. In the present simulator, the scenario for the solution of each
Block considers an iteration between the solution for the Lagrange multipliers (requires
stabilization) and the solution for the phenomena themselves. In addition, it assumes
that there are two blocks for:

Block 1:
§ Group 1: Heat transfer and Group 2: its Lagrange multipliers. The number of heat

transfer phenomena depends on the number of simulation regions with this type of
phenomenon. The number of Lagrange multiplier phenomena depends on the

Simulator
- Transient phenomena in the context of linear
temperature-dependent elasticity, rigid body
motion and linear heat transfer (conduction) ;
Dirichlet restrictions are considered through
Lagrange multipliers;
- Equation type in each group is linear

 157

number of restrictions (Dirichlet boundary conditions in this case) defined for all
phenomena of the type heat transfer and

Block 2:
§ Group 3: Elasticity, rigid body motion and Group 4: their Lagrange multipliers.

The number of elasticity and rigid body phenomena depends on the number of
simulation regions with these types of phenomenon. The number of Lagrange
multiplier phenomena depends on the number of restrictions (Dirichlet boundary
conditions in this case) defined for all phenomena of the types elasticity and rigid
body motion.

This type of choice for the number of blocks is due to the fact that the present model of
heat transfer does not depend on the result of the elasticity problem. Thus, the heat
transfer problem (and respective Lagrange multipliers) can be solved before solving
the elasticity/rigid body motion problem (and respective Lagrange multipliers), which
in turn depends on the temperature. Moreover, the solution of both blocks are different,
because both the resulting semi-discrete equations are different from each other.

It is not mandatory for a problem within the above context to have all types of
phenomenon. For instance, it may not have heat transfer phenomena and/or elasticity
and/or rigid body motion. However, when the elasticity phenomenon is included, there
should be a heat transfer phenomenon defined on the same simulation region, because
the elastic material properties depend on the temperature. The heat transfer
phenomenon may be as simple as a tool that provides a known temperature distribution
but it should be present in order to be coupled to the temperature-dependent elasticity
phenomenon. The simulator should be able to take care of the modifications due to the
lack of a phenomenon type.

A.1.1 Example 1

The first example is presented in Figure A-2. This example is used to exemplify
several parts of this thesis. The problem describes the dynamics of a rigid body
attached to an elastic beam, with a temperature dependent constitutive relation, where
both are also submitted to thermal loads. Consider the defined geometry consisting of
two plane sub-domains Ω1 and Ω2. The physical phenomena defined therein are
transient state, and include: linear elasticity with temperature-dependent constitutive
equations in Ω1; rigid body motion of Ω2; linear heat transfer in Ω1 and Ω2. The
geometry components are: 6 points, 7 curves and 2 plane regions.

 158

Figure A-2 Coupled Multi-physic - Example 1

The results an engineer may want to obtain and visualize in a case like this may be for
example the distribution of the stresses in Ω1 and temperature distribution in the whole
beam structure.

Each one of the described phenomena has its own discrete vector field, geometric
domain, couplings with other phenomena, and other relevant data. Further complexities
come from the fact that each phenomenon may require its own geometric mesh in spite
of the fact that there might be other phenomena defined in the same geometric domain.

Usually a phenomenon has an exact mathematical formulation (behavior laws),
comprised of a system of algebraic-differential equations, which govern the behavior
of the phenomenon vector field. Restrictions may be applied to the vector field such as
boundary conditions, and constitutive restrictions, etc.

A.1.1.1 Exact Mathematical Models

The exact mathematical models are as follows:

i) Phenomena in 1Ω : 2

11 :w ℜ→ℜ×Ω + is the displacement of the points in 1Ω and T1

ℜ→ℜ×Ω +
11 :T is the temperature in 1Ω .

i.1) Elasticity (equation of conservation of linear momentum)

 0).(. 1112
1

2

1 =Τ∇−
∂

∂
ws

w
t

ρ

 01 =w on 2Γ
 21 .wßw = on 7Γ

where









×
×

=






 −
=

).(10
).(01

10
01

2

1

2

2

dke
dke

ß
δ

δ

with
















=

M

M

M

u
u

φ
22

1

w

 159

with
7Γ∈−=








= xpxd forM

y

x

δ
δ

Here σ is the stress tensor, nρ is the position of a reference point for 2Ω , and

2
22 :w ℜ→ℜ×Ω + is the vector with the displacement and rotation of the rigid body

with respect to the reference point pM. The stress tensor depends on 1w and 1T .
ℜ→Ω11 :ρ is the mass density of the material in 1Ω ; 2

1: ℜ→Γjn is the outward

normal to the surface 1,3j , =Γ j .

0).,(111 =j? nws on 3,1, =Γ jj

i.2) Heat transfer (equation of conservation of energy)
0)..(11

1
11 =Τ∇∇−

∂
Τ∂

K
t

cρ

2111 0)..(Γ=Τ∇Τ onkn
)()..(111 Τ−=Τ∇ ∞Τ

jjj Thkn on 3,1, =Γ jj

where 22
11 :k ℜ×ℜ→Ω is the conductivity matrix, ℜ→Ω11 :ρ is the mass density

matrix, ℜ→Ω11 :c is the specific heat, 2:n ℜ→Γjj is the outward normal to

1,2,3j , =Γ j , ℜ→Γ jj :h and 1,3j ,:T =ℜ→Γ∞
jj are the coefficient of heat transfer

by convection and the environment reference temperature for the heat transfer by
convection on the boundary 1,3j , =Γ j

7227117)..()..(ΓΤ∇==Τ∇ ΤΤ onq knkn

where 2
77 : ℜ→Γn is the normal to Γ7 pointing outwards 1Ω , and ℜ→Γ77 :g is the

known heat flux on Γ7.
Also,

721 on ΓΤ=Τ

ii) Phenomena in Ω2: 2
2: ℜ→ℜ×Ω +

2w is the displacement of the reference point
pM and ℜ→ℜ×Ω +

22 :T is the temperature on 2Ω . 2w does not depends on x

ii.1) Rigid body motion

 ()[] bdg d
t 2 222

2
2

2 ..
2

2 FgdkF
w

? −Ω×+=
∂

∂
∫Ω

or
 bdg d

t 2 222
2

2

2
2

2 .. FgdkF
w

? −Ω



 ×+=

∂
∂

∫Ω

where 2? is 22× matrix of moments of inertia
, .

2 2 Ω= ∫Ω

Τ dM ßß??

 160

with 2
22 : ℜ→Ωg being the mass density defined on 2Ω ,
















=

M

M

M

M
F
F

2

1

2F

is the force vector acting directly on the reference point pM. And, finally,

∫
Γ

Τ Γ=
7

 .2 dbd fßF

is the force that domain 1Ω exerts over 2Ω through Γ7. That is,

71.nsf =

ii.2) Heat transfer

222
2

22 R)..(=Τ∇∇−
∂
Τ∂

K
t

cρ

)()..(222 Τ−=Τ∇ ∞Τ
jjj Thkn on 6,5,4, =Γ jj

 712 ΓΤ=Τ on .

A.1.1.2 Differential-algebraic system of equations

The differential-algebraic system of equations can be presented in a compact form:

τττττεετεεε qTKUfUTKU =+=++)(and)(
...

MM

Another more compatible with the solution schemes we are going to use, is the
representation below:









=
















+





















ωωωω

ωωµ

µ

ω

ωµµωµ

ωω

ω

ωω

f
f

µ
W

µ

W ..
00
0

..

..

KK
KKM









=
















+





















TTTT

T T

TT

TTT

T

TT

KK
KKM

µµµµ

µ

µ f
f

µ
TT ..

00
0

.

.

where









=

2

1

w
w

W , 







=

µ
µ

ω
fµ , 








=

2

1

T
T

T , []qT µµ =

A.1.1.3 Global Algorithm for the Problem

For elasticity problem we will adopt the Newmark´s method, which is described as
follows:

 161

Algorithm for the global problem:

1) Compute initial states for the heat transfer problem given the initial data T(0)

 1.1) Compute Lagrange Multipliers

)0(.)0()0(TKfµK TTTTTT µϖµµ −=

 1.2) Compute thermal speed)0(
.

T from:

)0(.)0(.)0(.
.

TTTTTTT T
µKTKfTM µ−−=

 1.3) Compute initial TttT µ∆∆ and

2) Compute initial states for the elasticity problem given the initial data (0)W and

(0)
.

W :

 2.1) Compute Lagrange Multipliers)0(ωµ from:

)0(.)0()0()).0((WKfµTK ωµωµωµµ ωωωω
−=

 2.2) Compute acceleration (0)
..

W from:

)0()).0(.()0()).0(.()0()0(.
..

ωωµωωωωω ω
µTKWTKfWM −−=

 2.3) Compute initial ωµω tt ∆∆ and

3) Compute initial 0set t and },,,{min 1 =∆∆∆∆=∆ ωµωµ ttttt TT

4) While max1 T ≤t do:

 4.0) Set ttttt ∆+== 0110 and

 4.1) Solve Heat Transfer problem

 4.1.1) Compute

)()()(
2

)(10

.

01 ttt
t

t TTTT fTTMf +





 +

∆
=

 4.1.2) Set)()(and)()(01
0

01
0 tttt TT µµ =Τ=T

 162

 4.1.3) Set k=0. While convergence is not achieved do:

 4.1.3.0) Compute temperature)(T 1
1k t+ from:

)(.)()(.)
2

111
1 ttt

t
k
TTT

k
TTTT T

µKfTKM
µ

−=





 +

∆
+

 4.1.3.1) Compute Lagrange multiplier)(1
1 tk

T
+µ from:

)(.)()(. 1
1

11
1 ttt K

T
K
T TTTT

++ −= TKfµK µµµµ

 4.1.3.2) Compute error for convergence test based on

µgL

k
T

k
Tw

KK tttt)()(and)()(11
1

11
1 µµTT −− ++

 4.1.3.3) Set k=k+1

 4.1.4) Accept solution as)(and)(1
1

1
1

1 tt k
T

K ++ µT as the solution instant 1t for the heat

 transfer and Lagrange multiplier problems. Store them.

 4.1.5) Compute)(1

.

tT

)()()((
2

)(0

.

011

.

ttt
t

t TTTT −





 −

∆

 4.1.6) Compute next TttT µ∆∆ and

 4.2) Solve Elasticity Problem

 4.2.1) Compute

)() 21(
2

)()()(0

..

0

.

01

~

t
t

tttt WWWW β−
∆

+∆+=

)() 1()()(0

..

0

.

1

~
.

tttt WWW γ−∆+=

 and

)()(01

0~ tt ωωµ µ=

 4.2.2) Set)()(0
0

1
0 tt WW = and)()(01

0 tt ωω µµ =

 4.2.3) Set k=0. While convergence is not achieved, do:

 4.2.3.0) Compute)(1

..

t
k

W from

 163

() −=∆+)()())((11

..

1
2 tttt

k

ωωωωω β fWTKM

)()).(()()).((1
~

11

~

1 tttt
k

ωωµωω µ
ω

TKWTK −−

 4.2.3.1) Compute

)()()(1

..
2

1

~

1

1
tttt kk

WWW ∆+=
+

β

 and

)()()(1

..

1

~

1

1.
.

tttt kk
WWW ∆+=

+
γ

 4.2.3.2) Compute)(1

1

t
k +

ωµ from:

)(1)).(()()(. 1111
1 tttt k

k +−=+ WTKfµK ωµµωµµ ωωωω

4.2.3.3) Set)()(1
1

1

1

~

tt kk ++
= ωω µµ

4.2.4) Compute error for convergence test based on

µ

ωω
gL

kk

w

KK tttt)()(and)()(11
1

11
1 µµWW −− ++

4.2.3.5) Set k=k+1

4.2.4) Accept solution)(and)(1
1

1
1

1 tt kK ++
ωµW as the solution at instant 1t for the

elasticity and Lagrange multiplier problems. Store them.

4.2.5) Compute next ωµω tt ∆∆ and

4.3) Compute },,,{min ωµωµ ttttt TT ∆∆∆∆=∆

A.1.2 Example 2

The second example of a simulation problem is presented in Figure A-3 [LS03]. It is
composed of three rigid bodies inserted into an elastic bounded region, with no heat
transfer. The geometry of the problem is a square plane elastic region with three rigid
bodies inserted in it. Two of the rigid bodies are only partially inserted in the elastic
region, while the third one is in its interior. The rigid body Ω2 will receive a sudden
discharge of energy on Γ5, modelled by an initial nonzero velocity, while all the system
has zero initial displacement. The other bodies have zero initial velocity, with the
exception of the elastic interface with Ω2. The free surfaces Γj, j = 4,6,7,8, has zero

 164

Neumann conditions. Each rigid body has its own point of reference and other
geometric properties.

Figure A-3 Coupled Multi-physic Example 2

The linear elasticity phenomena in Ω1 will be denoted by its vector field w1, and the
rigid body motion of body Ωj will be denoted by its vector field wj, j = 2,3,4.

All vector fields will be governed by the equation of motion (elastic and rigid bodies)
(with the exception of temperature dependence, for which will be given a reference
temperature). There will be 4 phenomena: elasticity and three rigid body phenomena.

A simulator very similar to the previous one can be used in this problem, which is
different from the other geometrically, but not in its essence: the phenomena set and
solution scheme can remain in the same context.

A.2 Example 3

Another problem is shown in Figure A-4 [LSR02b]. Let Ω0 be a cavity filled with a
Newtonian incompressible fluid, which is driven by a piston represented by the moving
region Ω4. The evolution of Ω4 is defined by its known movement as a rigid body, and
restricted by the rigid walls Γ8 and Γ10. The boundary lines Γ11 and Γ9 cannot go
beyond the lines 1-7 and 13-14, respectively.

The material of regions Ω1, Ω3 and Ω5 are elastic and the others are not. Ω2 is an
insulated rigid region, which has no phenomena defined inside it. Region Ω 5 coincides
with the boundary portion Γ13 and is a heat generator. Thus, the heat will be conveyed
by the fluid and transferred to the outside through Ω1 and its boundary Ω3 and through
Ω4 and its boundary Γ9. All blue boundary lines are rigid and insulated. Red boundary
lines are interfaces between the fluids and are either elastic or moving regions and are
not insulated. The displacement of Ω4 will be considered to be small in some sense.

 165

Figure A-4 Coupled Multi-physic Example 3

As can be seen, 16 points, 17 curves and 7 plane regions define the geometry. The
phenomena defined for this model problem are the flow of an incompressible
Newtonian fluid with heat transfer in Ω0; elasticity and heat transfer in Ωi, i = 1, 3, 6;
heat transfer and constrained movement of a rigid body in Ω4; heat generation and
transfer in 1-D with lateral heat exchange by convection with the fluid in Ω 6.

A simulator can help, for example, in the evaluation of the distribution of the involved
phenomena (pressure, fluid velocity, temperature, stress) in the defined geometry

 166

Approaches for Simulation Software
Development

This appendix presents several ways to develop simulation systems, including
some examples of general-purpose languages, simulation languages and
simulation environments. The appendix includes approaches that are specific
and non-specific to FEM simulations.

Appendix

B

 167

B.1. Simulation Software Approaches

There are different approaches for the development of simulation systems. In the
sequence we present some approaches, which deal with several kinds of simulation,
they include:

§ General Purpose Languages in the original form, where the user has to build the
whole program. Examples of these languages are FORTRAN, C, and C++, etc.
This approach is also called Do-it-yourself. The main features of this approach are:
(a) The existence of the pre-existing resources and programmers, resulting in low
costs in the development. (b) The elaboration of simulators being extremely
specialized, for which existing packages do not support appropriate facilities and
functionalities; (c) The integration with other pre-existing programs. Some
disadvantages are the involved time and cost in the development of the program,
which can invalidate the economy originally expected; and the need of high ability
in the programming expertise, which could be not available or can became
unavailable in the future.

§ Pre-built libraries, where routines are used to join programs. Examples are the
GASP, SIMON, DIFFPACK[LAN97]and PZ [DP99, DP04] that is used on finite
element method simulations. The pre-built libraries are a natural complement of
the previous approach (Do-it-yourself). Other examples are pre-built libraries in
FORTRAN, C, and C++, etc. Specially attention must be given to FORTRAN pre-
built libraries, which are largely used in numerical methods and are highly
consolidated.They allow saving in time guarantying the main advantages of the
previous approach. Some disadvantages are relative to the time and cost required
for the program development, the need of a specialist, and the difficulty in reusing
code or libraries, which require good documentation.

§ Simulation Languages, where the programming is done in a suitable syntax.
Examples are SIMULA [PJ70] (pioneer language), SIMAN [PSS90], SIMSCRIPT
[REC93]; and Simple++ [KL97]. Some of the common aspects and supported
features are: (a) the control of the main aspects of event agenda maintenance and
the sequencing of model operations; (b) an appropriate syntax for systems
modelling; (c) facilities for the trace and data acquisition in the simulation
execution; (d) support for the experimentation and results analysis (e) Facilities for
modelling and reduction of time in the program development. Disadvantages
include the need to acquire the appropriate system; requirements of training and the
permanent support offered by the systems fabricants; and the question of high-
specialized employee for developing the models.

§ Programs generators, systems based on interactive graphic interfaces, for
example, ARENA [FP01] (for SIMAN simulation language), PROMODEL
[BBG97] (used on manufactured oriented software). This approach complements
the idea implemented by the diagrams, allowing the representative code generation
of the model. The source code generated can be changed, compiled or interpreted
later. This approach is based on diagrams of activity cycles. It executes consistency
tests in the model, and has complementary facilities for tracking simulation

 168

running, allowing data acquisition and results analysis. Disadvantages include: the
required ability from the programmer with the generated source code; due to the
use of activities cycle diagrams, it creates a stereotyped model of the system,
presenting flexibility also restricted to a class of models, in spite of allowing the
addition and maintenance.

§ Simulation Environments: They offer extra facilities for simulation execution
based on models animated by interactive models of systems. The graphic use is
complementary to the modelling process, the flexibility is maintained through the
use of a language with a specific syntax for modules description. They execute
consistency tests of the model, and also support "debug" facilities. They facilitate
the verification of models and their validation. Experimentations can also be
implemented in an interactive way, and their results can be analysed in graphics,
helping in the experiments design. Additionally, they provide complementary
facilities for the tracking of simulation running, allowing the data acquisition and
results analysis. Disadvantages include: the need to understand, the required effort
and great ability of the programmer to elaborate the complex models. Some
examples of general simulation environments include DEVSIM++, MATLAB
[MAT04], SCIRUN [PWC97], Matematica, Mapple and Khoros[KHR04].

In the next section we detail some existing simulation environments.

B.2. Simulation Environments

This section gives a short description of some environments for scientific computation that
support simulation and are extensively used. We can classify them as: general purpose
programing environment (e.g. MATLAB), domain specific rigid environments (e.g.
ANSYS) and domain specific flexible environments (e.g FEMLAB).

Next we will give a brief description of them:

§ ANSYS [ANS04], is a high reliabile and sofisticated packages specific for FEM
simulations (supporting phenomena coupling) and is used across a broad spectrum
of industries. These environments include pre, post and analysis steps of a
simulation experiment development. ANSYS provides an engineering simulation
software that incorporates design simulation and virtual prototyping into a product
development process. With the ANSYS Software Suite, the user can determine real
world structural, thermal, electromagnetic and fluid-flow behaviour of 3-D product
designs, including the effects of multiple physics when they are coupled together
for added accuracy and reliability.

§ MATLAB is a technical computing environment [MAT04], which offers a set of
integrated products for data analysis, visualization, application development,
simulation, design and code generation. It is used extensively for rapid algorithm
research development (model-based) and system-level simulations, and is highly
applied for FEM simulations. It integrates the SIMULINK, a simulation and
prototyping tools for modeling, simulating, and analyzing real world, dynamic
systems. Simulink provides a block diagram interface that is built on the core of
MATLAB numeric, graphics and programming functionality. MATLAB supports

 169

toollboxes, which are collections of highly-optimized, application specific
functions that extends MATLAB and Simulink. Toolboxes suport applications
involving signal and image processing, control system design, optimization,
finacial engineering, symbolic math and neural works, etc. Tool box functions are
built in the MATLAB language and can be easily viewed and modified.

§ FEMLAB [FEL04] is an interactive environment for modeling and simulating
scientific and engineering problems based on partial differential equations. This
environment was detailed before in chapter 2.

§ SCIRUN, a scientific programming environment that allows the interactive
construction, debugging and steering of large-scale scientific computations
[PWC97]. This environment was detailed before in chapter 2.

§ DEVSim++ environment allows modelers to develop discrete event simulation
models using the hierarchical composition methodology in an object-oriented
framework. The environment combines the DEVS (Discrete Event System
Specification) formalism with object-oriented paradigm [KA97]. The DEVS is a
formalism for discrete event modelling and simulation, which provides a means of
specifying a mathematical object called a system. The insight provided by the
DEVS formalism is in the simple way that it characterizes how discrete event
simulation languages specify discrete event system parameters. Having this
abstraction, it is possible to design new simulation environments with sound
semantics that have a number of benefits to be described [ZB03]. The formalism
specifies direct-events models in a hierarchical, modular form. Within the
formalism one must specify the basic models from which the larger ones are built
and how these models are connected together in a hierarchical fashion. A basic
model, called atomic model, has the dynamics of the model. The reusability of the
framework is based on: (a) reusability of functions in the development of models;
and (b) reusability of models for the development of new models that are slightly
different from the old ones.

§ Khoros [KHR04] is an integrated software development environment for
information processing and visualization. It is used as both a scientific problem-
solving environment and as a software development and integration environment.
Khoros provides: (i) Solutions for scientific and engineering problems; (ii) A
Visual Programming Environment for Solution Creation and Problem Solving; (iii)
Software Development Environment and Tools; (iv) Libraries for Portability,
Scalability, Data Access, GUI creation, Data Visualization; (v) Visualization
Applications. Khoros is made up of different programs and libraries organized into
toolboxes, which contain different capabilities; toolboxes may be mixed and
matched according to the user's needs. Khoros supports solutions for common
engineering and scientific data analysis and visualization problems. It offers
operators facilitate problem solving in a wide variety of application domains used
in research, science, government and industry. All information processing and
visualization programs in Khoros are available via Cantata, which is a graphically
expressed, data flow visual language which provides a visual programming
environment within the Khoros system. This visual language provides support for
simulation and prototyping system.

 170

The Plexus Simulation Environment
Interface

This appendix gives a brief explanation about the Plexus system and also shows
its interface.

Appendix

C

 171

C.1. Introduction

When a problem must be solved using FEM simulation, the designer will understand
the physical problem, construct the mathematical model, discretize its model and select
the computational methods to be applied. At this time, the designer has, in a simplified
view, two ways of solving the problem: use existing software, such as the ones
described in appendix B or develop one.

There are several approaches to develop a simulation, such as general purpose
languages, simulation languages and simulation environments. This work proposed the
Plexus environment for the development of simulators specific for the development of
simulation of coupled multiphysic phenomena based on the FEM. This environment
allows for the solution of simulations that are in interdisciplinary areas of mechanics
such as stress and termal analysis.

Figure C-1 Simulation Process for Problem Solving

Use the available one

Understanding a physical problem

Construct Mathematical Model

Discretization of the Model

Selection of computational methods

Solution of the Discretized Model

Post Processing

Verification

Reconstruction of problem specification Variation in model otimisation

Elect Results for storage learning, etc

Unaccep Acceptable

Non-optimal

Optimal

Is there any commercial software
which can solve this problem ?

Develop your own

 172

C.2 Plexus Environment Interface

Figure C-2 represents on of the main Plexus System processes, the Administration/ System
Loading, which supports the system management and loading of general system data and
basic data type tables, the simulator building/configuration.

Figure C-3, represents the other main processes: Pre-processing, where the user inputs the
problem data, and where dynamic structures for simulation are built; Simulation
Processing, where data are processed to obtain the solution and where verification occurs;
Post-processing, where the solution is processed in order to obtain the quantities of interest
for the user and for the required visualization. This component also deals with system
validation.

Figure C-2 System Overview (Administration)

In Plexus we can think of a process (method) that helps to generate configurable simulators
that represent different types of simulators (e.g.for a type which considers time dependent
simulators). Then again, each simulator is capable of running through several kinds of
proposed problems.

The proposed interface helps to answer the following questions: What are the specific steps
of the proposed method? What kinds of simulators are available? How can we register a
new one? What are the steps in a new Simulator creation? How to select a kind of
simulator? How to build a specific kind of simulator? How to configure the simulator?
What raw data must be supplied for a problem to be solved?

To support the high level of abstraction, flexibility, reusability, and data security, available
in the Plexus environment, there is a repository manager, which maintains the general
abstract data related to the context, the algorithms that take part in different simulation
strategies, the simulation problem’s data and also the simulation’s intermediary data and
results. Bellow we present some of the main window interfaces.

1. Administration/SystemLoading/

Administrator

Designer

-Input data to build simulation
 Strategies

 Query for previously ones
 -Build/Configure Simulator

 - Table loading
- Input basic system data
- Create users, groups of

users, system backup

DBMS

 173

Figure C-3 Plexus System Overview (Simulation Components)

C.3 Plexus Use Cases

This section presents Plexus use cases, see Figures C-4 to C-7. Details about the involved
users and package information were described in chapter 3.

PlexusUser

User Designer
System

Administator

Figure C-4 Existing actors

2.Pre-Processing

Application-User
 - Input problem’s data

- Definition of Breakpoints
 for data storage

3.Simulation Processing

Application User

- Simulation
 Execution

- Verification

Simulation data

4.Post-processing

Application-User

- Validation
- View and query
 simulation results

Build dynamic data
for pre-processing

DBMS

 174

SimulatorConstruction

SimulatorModeling

SimulatorsCatalogue

<<extend>>

SimulatorBuilding

<<extend>>

SimulatorConfiguration

Designer

Figure C-5 Simulator Construction Use Case

Simulation Running

SimulatorExecution PostProcessing

Pre-processing

<<include>>

<<extend>>

User

SimulationVisualization

Figure C-6 Simulation Running Use Case

ProblemCreation

Problem Catalogue

User

ProblemDefinition

<<include>>

Figure C-7 Problem Creation

 175

C.4 Plexus System Windows

Figure C-8 presents the Plexus main window. The “Register” option will be responsible for
registering basic information. This includes data that can be used in simulator definition
and also in simulation problems definition. Information such as integration rules and shape
functions are stored as code.

Figure C-8 Plexus Main Window

Figure C-9 presents the generic Phenomenon registering, which can be further reused in the
simulation problems definition. There are several pieces of information defined for a
phenomena, which include a weakform, see Figure C-10, which is a piece of code
associated to the respective phenomena.

 176

Figure C-9 Phenomena Registration (basic data) Window

Figure C-10 Phenomenon-Weak Form Registration

 177

The simulation model is described during the simulation registering. As described in
chapter 3, in the simulation model the user must define the Global Scenario, which is
composed of several options (see Figure C-12), the Global Skeleton which is associated
with the simulator model. It can be suggested by the interface or defined by the user (Figure
C-13) and the Phenomena Context (which must be selected from the one previously defined
in a specific table of Phenomena context).

Figure C-11 Simulator Register

During the simulator registration, the simulator configuration is also available. There are
default values or they can be defined afterwards.

 178

Figure C-12 Global Scenario

Figure C-13 Global Skeleton Code

 179

Figure C-14 Group Definition

 180

Figure C-15 Geometry Registration Window

 181

Figure C-16 Simulator Scenario Window

Figure C-17 Simulation Problem Phenomena Window

