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Abstract  
 
 
 
 
 
In this work we address the conceptualisation of a Simulation Environment for the 
development of multi-physic simulators based on the Finite Element Method (FEM). 
Simulators are economical means of understanding and evaluating the performance of 
abstract and real-world systems. Our simulation perspective is the class of simulations 
for phenomena represented by a set of functions distributed in space and possibly in time, 
whose behaviour is based on the FEM. The importance of these simulators has to do with 
the effectiveness of the FEM, a general-purpose numerical method, which can easily be 
developed to analyse and solve various kinds of problems frequently found in human 
daily life, and in its power to provide accuracy and reliability in the solution of partial 
differential equations. FEM Simulations consider systems of possibly millions of 
algebraic equations, numerical integrations, mesh generations, matrix and vector 
manipulations, solutions of linear and non-linear systems, and so on. These features 
undoubtly justify the development of a specific computational environment. This work 
emphasizes the adaptation of software engineering practices and methodologies for 
organizing and reusing the specific domain of simulators formulated using the FEM. The 
work defines an environment and its architecture for the development of simulators. It 
also proposes some specific patterns for solving relevant problems of our domain of 
knowledge, and describes their application through a case study. 

 
Key words: Modelling and Simulation, Framework, Patterns, Finite Element Method, 
Problem Frames, Requirements Analysis and Knowledge Domain. 
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Resumo 

 
Este trabalho tem como principal objetivo a conceitualização de um ambiente de 
simulação para o desenvolvimento de simuladores multi-física, baseados no 
Método de Elemento Finito (MEF). Os simuladores são meios econômicos de 
compreender e de avaliar o desempenho de sistemas abstratos e do mundo real. 
Nossa perspectiva de simulação é a classe das simulações para os fenômenos 
representados por um conjunto de funções distribuídas no espaço e possivelmente 
no tempo, cujo comportamento é baseado no MEF. A importância destes 
simuladores tem a ver com a eficácia do MEF, um método numérico de propósito 
geral, que é facilmente desenvolvido para análise e resolução de vários tipos de 
problemas encontrados freqüentemente na vida diária, e devido ao seu poder de 
fornecer exatidão e confiabilidade na solução de equações diferenciais parciais. 
As simulações baseadas no MEF consideram sistemas possivelmente de milhões 
de equações algébricas, de integrações numéricas, de geração de malhas, 
manipulações de matrizes e vetores, solução de sistemas lineares e não lineares, e 
assim por diante. Estas características justificam, sem dúvida, o desenvolvimento 
de um ambiente computacional específico. O trabalho realizado enfatiza a 
adaptação de práticas e de metodologias da tecnologia de programação para 
organizar e permitir o reuso do domínio específico dos simuladores formulados 
usando o MEF. O trabalho define um ambiente e a sua arquitetura para o 
desenvolvimento de simuladores. O trabalho também propõe e define padrões de 
modelo e de projeto específicos para a solução de problemas relevantes no 
domínio do conhecimento sendo tratado. A aplicação destes padrões foi realizada 
através de um estudo de caso. 

 
Palavras chave: Modelagem e Simulação, Framework, Padrões, Método do 
Elemento Finito, Problem Frames, Análise de Requisitos e Domínio do 
Conhecimento. 
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Introduction 
 

This chapter presents the main motivation for this work; describes the importance 
of simulators, the impact of computational mechanics and the use of the Finite 
Element Method on several contexts. Then, it details the contribution of this work, 
which is the conceptualisation of a Simulation Environment for the specification 
and control of simulation models for coupled multi-physics phenomena. The target 
users of this proposed environment are the developers of numerical programs, 
academics and researchers. Finally, the organization of this work is presented.  
 

Chapter 

 1      
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1.1 Motivation  

We can guess that in the future computers will properly fade into the background in at 
least two ways – into appliances that play some part in our lives, and into simulations 
that present us with intriguing environments in which we interact. Such environments 
range from the fanciful worlds of science fiction, interactive games and animation to 
engineered simulations of complex systems that exist only in the mind; and to 
environments in which individuals can learn and groups can be trained as teams 
[KWD99]. 
 
In this work we will focus our attention on simulation, which is a highly relevant 
method for solving many real world problems. Simulation is used to describe and 
analyse the behaviour of a system, ask what-if questions about real systems and aid in 
their design. Both real and conceptual systems can be modelled and simulated. 
Simulators provide an economical means of understanding and evaluating the 
performance of both abstract and real-world systems. Unfortunately, the design and 
implementation of simulators is almost as complex as the systems being simulated. 
Therefore, in order to be efficient, simulators must be able to adapt to an ever-
increasing system complexity. 
 
Modelling is an important and perhaps the primary tool for studying the behaviour of 
large complex systems [BAJ98]. In physical sciences, models are usually developed 
based on theoretical laws and principles. These models may be scaled up to physical 
objects (iconic models), mathematical equations and relations (abstract models), or 
graphical representations (visual models). The usefulness of models has been 
demonstrated in describing, designing, and analysing systems. In [BAJ98], one can 
find some principles of modelling:  
§ Conceptualising a model requires system knowledge, engineering judgment and 

model-building tools.  
§ The secret of being a good modeller is the ability to remodel. 
§ The modelling process is evolutionary. The resulting correspondence between the 

model and the system not only establishes the model as a tool for problem solving 
but also provides system familiarity for the modellers and act as a training vehicle 
for future users. 

 
Developing a validated simulation model involves three basic entities: real/conceptual 
world system under consideration, a theoretical model of the system, and a computer 
based representation of the model. The activity of deriving the theoretical model from 
the real world system can be referred to as simulation modelling, and the activity 
whereby the computer based representations derived from the model can be referred to 
as simulation programming [GV95] (see Figure 1-1). 
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Figure 1-1 Basic entities of a simulation model development 

 
Scientists and engineers write most of their own technical software. It is not likely that 
someone from another field could write a program from what they found in numerical 
analysis journals, because those papers are very mathematical [GR02]. It could be 
speculated that numerical analysis specialists would be dispersed among the sciences; 
so maybe those people are doing the programming. If so the development of numerical 
analysis software is even more of a concern. This happens, because most software 
engineering techniques do not emphasize specific development methodologies to 
support these types of developers. Therefore, numerical analysts are required to go 
deeper in the computer world, spending time developing proper abstractions and 
having to deal with problems not of their specific area and interest. 
 
When a designer defines a computational model for a mathematical formalism, he/she 
has to deal with model complexities used to limit the assessment of their correctness 
(model verification). Usually, the designer produces restricted documentation about 
the generated code, and does not provide or use high levels of abstraction. Thus, the 
experiments with those models can hardly be replicated without access to the entire set 
of numerical models and solution techniques. Hence, the issue of information reuse 
goes beyond the support provided for restricted communities of researchers.   
 
This work describes a method for improving the development of simulators in the 
specific domain of Computational Mechanics. Computational Mechanics has had a 
profound impact on science and technology over the past three decades. The 
Computational Mechanics software industry moves several billions of dollars per year. 
However, in many aspects, it applies software engineering development techniques 
related to the seventies. The success of Computational Mechanics is due to its 
effectiveness in solving problems that interest society and in providing deeper 
understanding of natural phenomena (physical facts like motion and heat transfer) in 
engineering systems. We can define Multi-physics as a qualifier for a set of interacting 
phenomena, in space and time. These phenomena are usually of a different nature 
(deformation of solids, heat transfer and electromagnetic fields) and may be defined in 
different scales of behaviour (macro and micro mechanical behaviour of materials). 

Reality (nature) Real World System 

Simulation modelling

Simulation programming 

Humankind comprehension 
about nature  Theoretical Model of the System 

Computer based representation 

A paradigm for the computational 
representation of interacting 

complex phenomena. Ex: Finite 
Element Method 
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Sometimes a multi-physics system is also called a coupled phenomena system. As an 
example of multi-physic analyses, one may consider:  
§ Analysis of air conditioning (environment thermal comfort): evaluation of 

temperature distribution, and air movement inside a room. 
§ Analysis of air resistance, considering the airflow around cars and airplanes in 

movement.  
§ Thermal stress analysis: engineers can simulate gradual or rapid temperature 

changes and predict deflections or stresses occurring in an object, whose resistance 
to mechanical efforts depends on temperature. 

 
The enormous success of Computational Mechanics resides in its predictive power, 
making possible the simulation of complex physical events and the further use of these 
simulations in the design of engineering systems. This is done through the so called 
computer modelling: the development of discretized versions of the theories of 
mechanics, which are amenable to digital computation, together with complex 
processes of manipulating these digital representations to produce abstractions of the 
way real systems behave [TO95]. The Finite Element Method (FEM) has been 
frequently used in the field of Computational Mechanics, which has come to rely 
heavily on this technique. Gradually the FEM is becoming the most popular analysing 
procedure within various fields of design [VM02].  
 
The FEM is a way of obtaining a numerical approximation of a mathematical theory, 
which describes physical behaviour. This method is considered a powerful 
computational technique for the solution of differential and integral equations that 
arise in various fields of engineering and applied science [COR95]. There is an 
important feedback in developing simulators using the FEM due to its great 
applicability in making previsions in several contexts, such as:  
§ Systems involving fluids, which can range from simple fluids like water up to more 

complex ones such as blood, air or petroleum. 
§ Damage evolution mechanisms, for example, describing damage arising and the 

development in materials (from airplanes to biological organs). 
§ Heat Transfer Systems, involving conduction, convection and/or radiation. 
§ Solid Systems such as vehicles parts, civil construction, biologic organs. 
§ Chemical Reactions: (i) In the environment: water quality (biologic environment 

where chemical reactions occur); air quality; pollutant dispersion; (ii) Reactors 
(industrial reactions). 

 
This work is part of the Plexus1 project, whose objective is the development of a 
computational environment to help the design, implementation, validation and 
verification of a simulation software for coupled phenomena based on FEM [LSA01]. 

                                                           
1 Plexus’s catchy name came from the involved complexity treated in the project. 
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The work focuses on the simulation of chemo-thermo-mechanical interactions, which 
occur inside a given system, and between this system and its surrounding environment. 
Our case studies are based on applications related to Petroleum (damage evolution in 
pipeline networks conveying fluids) and Medicine (integration of image acquisition 
systems and simulation systems) that are parts of current research projects carried out 
in the Mechanical Engineering Department, UFPE, Brazil. 
 
The simulation perspective, used in this thesis, deals with the class of simulations for 
phenomena represented by a set of functions distributed in space and possibly in time, 
which are applied to part of a specific domain of Computational Mechanics - the 
Simulation of Coupled Multi-physic Systems - using the FEM. This work investigates 
ways to support flexible techniques to help the construction of these types of 
simulations.  
 
The method to be developed should be: (i) adaptable to new technologies and trends 
(such as: intelligent systems, distributed simulation, cooperative work, and open 
systems), (ii) extensible and flexible to incorporate new knowledge in the form of new 
models and solution algorithms.  
 
The next section describes the major contributions of this thesis. 

1.2 Contribution 

The use of some paradigms and the extension of modern software engineering 
solutions represent some of the aspects that make possible the achievement of new 
degrees of attained satisfaction and gains in FEM simulators conception and project 
development. The important idea of domain-oriented reuse is stressed in this work. In 
fact, in order to be effective, reuse has to be performed at a high level of abstraction, 
that is, at the domain level [NEI84, LJ99]. In this work we explore the FEM domain. 
 
The objective of this work is to reduce the gap between software engineering solutions 
and the way our specific domain of knowledge (the FEM domain) has been 
conceptualised up to now.  
 
Thus, we propose a Simulation Environment, called Plexus, which takes into account 
existing expertise and facilitates improvement of software features through use of 
valuable scientific methods and techniques. By definition FEM is deeply polymorphic, 
which means that highly versatile FEM based-simulators may be produced. Such 
generality does not exist in classical analytical methods [COR95, RG00]. Hence, we 
describe a domain specific proposal to detail the systematic way to define, organize 
and implement the FEM data and processes. 
 
The main contributions of this thesis are presented in Figure 1-2: 
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§ Exploration and adaptation of some software engineering techniques, such as 
Problem Frames [JAC01], emphasizing the importance of a good description and 
analysis of the problem domain, increasing the problem completeness and 
comprehension, independently of the proposed solution strategies.  

§ The analysis and indication of domain specific ways for FEM representation and 
implementation, decreasing the difficulty, time spent and development costs of 
FEM simulators. This is realized through the definition of: 
§ The Plexus Simulation Environment architecture for the domain being 

considered; focusing on process reuse. It specifies an abstract process for the 
solution of coupled phenomena simulators, based on pre-defined scenarios. It 
supports a framework for the construction of semi-complete simulators; which 
can be further configured for the definition of more specific ones. 

§ Specific patterns2 applied to the Plexus architecture, such as the ones intended 
to: (i) guide the development of simulators models based on FEM; (ii) define 
and control simulator process flows, taking into account some specific 
requirements of the domain being treated, assisting in the design and reuse of 
programs, (iii) encapsulate simulators low level and complex procedures and 
relationships, which are very specific to the FEM model of single phenomenon 
behaviour laws.  

§ Development of case studies, to validate the proposal. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-2 Simulation Environment Conceptualisation 
Our thesis includes: 

§ The use of object-oriented simulation as a basic paradigm. The FEM mathematical 
representation already has many properties, which are directly linked to object-
oriented concepts [ZL97], such as: abstraction, polymorphism, encapsulation, and 
modularity.  

                                                           
2 Patterns describe ideas and perspectives [FAY99]. A pattern is a small collection of atomic units and a 
description of their relationships. To be relevant, a pattern must express a general recurrent theme that has 
proven to be useful.  
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§ Adoption of well-known software engineering techniques such as: Frameworks 
[FJL01], Adaptive Object Models [YJ02], and Workflow [MAN01]. They seem to 
be relevant and suitable to improve the architectural definition of FEM simulators. 

§ Definition of a collection of patterns for FEM, to be used to describe abstractions 
for the conception of simulators, and the main complex steps and solutions for a 
simulation process definition. This improves the way in which software 
components can be developed.  

 
This proposal covers from requirements engineering up to the design of a simulator 
engine, which is part of our specific domain of Computational Mechanics. The results 
of this work point to simulator architecture, implemented by a specific framework, 
which supports more flexible and rich computational solutions for the development of 
FEM simulators. Our focus is on software quality, reuse of models and data, pattern 
definition, and process improvement. 
 
We can summarize and distinguish the different and interdisciplinary areas involved in 
our work: 
a) Computer Science, specifically in the following sub-areas: 
§ Simulation Modelling: to study and model simulations, which involve a set of 

dependent and distributed functions (that develop over time or not). 
§ Software engineering: explored for a specific Domain of Knowledge. The 

conclusions obtained might also help other domains of knowledge that have similar 
characteristics, increasing the relevance of the achieved results: 
§ Development and evaluation of a method for modelling and analysing 

requirements in a complex domain of knowledge [LCS03]. 
§ Development of a specific architecture (framework) that focus on quality 

attributes such as process reuse and system flexibility [LSR02b]. 
§ Proposal of new patterns, for the specific domain of computational mechanics 

considered [LSR02a], which could be further applied to similar domains. This 
includes: the definition of abstract processes and structures [LSA02b], giving 
support to specific simulator components development; workflow analysis in 
our specific domain [LSV03a]. 

b) Computational Mechanics, where the final users will gain more powerful and 
specific abstractions and techniques for the development of FEM simulators.  

 
The next section describes the organization of this thesis. 

1.3 Organization of this Work 

This chapter presents the main motivation for this work, which is related to the power 
of simulators in multi-physics systems, within the field of Computational Mechanics. 
The thesis contribution was also presented, giving a brief description of the involved 
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solutions and research areas. The remainder of the work is organized in the following 
way. 
 
Chapter 2 provides a background for simulations of coupled multi-physics 
phenomena using the FEM. It details the processes and concepts involved. This leads 
to the identification of some important issues that allowed for a better understanding of 
the design of finite element programs. Generic requirements for the development of 
FEM simulators are presented. Finally, related work illustrating what is currently being 
developed is shown. 
 
Chapter 3 investigates a suitable description technique for the specific domain of 
mechanics, that is, the FEM simulators development for coupled multi-physics 
phenomena. It considers the Problem Frames technique to improve the description of 
the Plexus Simulation Environment. The main characteristic of Problem Frames 
technique is that it separates the domains into problem and solution domains. The 
problem is not at the computational interface – it is routed inside the world, further 
away from the computer. 
 
Chapter 4 presents the Plexus Simulation Environment architecture for supporting the 
simulation of coupled phenomena, based on FEM solutions. The chapter presents 
architectural components and the interaction between them and their functionalities. 
This architecture gives a clear perspective of the whole environment and the control 
required for its development, and tries to reflect some system requirements and quality 
attributes such as reuse, modularity and flexibility. 
 
Chapter 5 describes some architectural abstractions, such as frameworks and domain 
specific patterns, whose purposes are the specification of domain solutions (features 
and structural characteristics) to be used in the Plexus Simulation Environment. The 
patterns include: a Computational Phenomena Pattern (a pattern which standardizes 
the complex model of a phenomenon and makes intuitive and easier the representation 
of data sharing and dependence between different phenomena); a FEM-Simulator 
Skeleton Pattern (a pattern for modelling FEM simulators based on algorithm 
skeletons for coupled phenomena), a GIG-Pattern (a pattern based on a Generic 
Interface Graph for process control). A case study is presented and applied during the 
description of these patterns. 
 
Chapter 6 summarizes the objectives and contributions of this work in the 
conceptualisation of a Simulation Environment, it describes some identified 
limitations, future activities and contains some final remarks.  
 
Appendix A presents three different examples of problems involving coupled multi-
physics phenomena. First we give a description of a simulator that can be used to solve 
two of the given problems (example 1 and 2). In addition, in the first example (number 
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1) we present extra details about exact mathematical models, the differential-algebraic 
system of equations, and the global algorithm for the problem. These details can help 
on a more complete understanding of FEM patterns 
 
Appendix B presents several ways to develop simulation systems, including some 
examples of general-purpose languages, simulation languages and simulation 
environments (specific and general purpose).  
 
Appendix C gives a brief explanation about Plexus system and also shows its 
interface.  
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Simulation of Coupled Multi-physic Systems 
using Finite Element Method 

 
 
This chapter provides a background for simulations of coupled multi-physics 
phenomena using the FEM. It details the processes and concepts involved. This 
leads to the identification of some important issues that allows a better 
understanding of the design of finite element programs. Generic requirements for 
the development of FEM simulators are presented. Finally, related work illustrating 
what is currently being developed is shown. 

  

Chapter 
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2.1. Introduction 

Real physical systems are highly complex encompassing several factors. The 
modelling of such systems chooses the most relevant variables to be represented, 
reducing their complexity. Sometimes, the translation of the “domain” of the problem 
into a different one may be convenient. This is the case whenever one wants to model 
structures of complex (and irregular) shapes. The FEM simplifies the modelling by 
splitting the original surface into small regular pieces, which “cover” the whole object 
to be modelled. This technique may provide the answers to some interesting questions, 
for an example see Figure 2-1.  

 
  
 
 
 
 
 
  
 

 
Figure 2-1 Example of an Engineering Problem 

 
The visualization technique, used in conjunction with engineering analysis, tries to 
provide the most meaningful way for engineers to view both “input” and “output”. The 
complete process is described by a sequential cycle composed of the following steps: 
build a model, analyse it, view results, review its behaviour, then, change the model 
and repeat the cycle until a satisfactory result is obtained, see Figure 2-2. 

 
 
 
 
 

 
Figure 2-2 Cycle of engineering analysis process 

 
The functions, which take place before and after analysis, are often described as “pre-
processing” (it takes real data and generates data in the form accepted by the models) 
and “post-processing” (that takes analysis output and generates data required by the 
user in the form accepted by the viewer). 
 
Many models applied to engineering and applied science problems are governed by 
differential or integral equations. The solutions to these equations would provide an 

A complex structure like a helicopter can be 
simulated on a computer so that the helicopter's 
physical properties can be studied to determine how 
well the design will perform under real world 
conditions. The computer models permit the design 
team to examine a wide range of options to detect 
design flaws long before the prototype stage. 
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exact solution to the particular model of the problem being studied. However, 
complexities in the geometry, material properties and in boundary conditions - that are 
seen in most real world problems - usually mean that an exact solution is not available. 
For such classes of problems, where the analytical solutions are not available, 
computational solutions have a great impact on the way the search for solutions occurs 
and in the way engineering projects are made.  

 
Many typical modern engineering and analysis techniques used in computational 
solutions are based upon discretizing a problem domain into small pieces or elements. 
For each element an approximate function is used to represent the behaviour of the 
element in terms of unknown solution variables. These variables are gathered into 
large systems of equations and then solved on a computer. The results of this, permits 
the definition of the desired approximate solution. Engineers try to find convergence in 
the approximate solution, considering that if errors can be estimated and models can be 
adapted, then results can be improved. In particular, we are interested in methods, 
which are used in the development of approximate procedures that can be applied in a 
general context, inside the limits of the acceptable precision of the engineering 
problem taking into account reasonable use of time and money.  
 
The FEM has been considered as one of the major methods for finding approximate 
solutions to systems of coupled partial differential equations. One of the main 
advantages of the FEM is that it allows the development of computational systems 
aimed at solving various classes of problems [YB96]. The FEM proposes to solve 
complex problems modelled as phenomena that occur in continuous media represented 
as vector fields defined in these media. By continuum we mean a body of matter or 
simply continuous region of space in which a particular phenomenon is occurring. This 
can be a piece of metal subjected to a difference of temperature, a region of space 
under a magnetic field or a fluid subjected to a mechanical load. In any case, we are 
after the distribution of the field variable resulting from imposed conditions and 
behaviour laws. 
 
The FEM has been extensively used in the analysis of structural designs for over three 
decades. This method has become the de facto industry standard for solving multi-
disciplinary engineering problems that can be described by Integra-algebraic-
differential equations. Its influence cuts across several industries by virtue of the 
applications – solid mechanics (civil, aerospace, automotive, mechanical, biomedical, 
and electronic), fluid mechanics (geophysics, aerospace, electronic, environmental, 
hydraulics, biomedical, and chemical), heat transfer (automotive, aerospace, electronic, 
and chemical), acoustics (automotive, mechanical, and aerospace), and 
electromagnetism (electronic and aerospace), etc. 
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The usual method for developing and making the required analysis is to select or 
derive a mathematical model, appropriate for the physical problem in mind, which can 
accept as input the geometry, material properties, known restrictions, initial conditions 
and other pieces of data. Typically the mathematical models produced by this process 
are systems of partial differential equations, see Figure 2-3.  
 
 
 
 
 
 
 
 
 

Figure 2-3 Input and Output of a Simulation Based on the FEM 
 
The construction of a geometric model describing the problem geometry is used to 
create the geometric data needed for the analysis. The same analysis model can 
conceivably be used to solve a number of states of behaviour (e.g. different loads and 
initial states) in different geometries. 
 
The FEM solves the problem through an approximation method, where it computes the 
solution of an algebraic system of equations. The solution to that system is a vector of 
coefficients of a linear combination of known functions, which is the approximate 
solution. Thus, the produced outputs are the approximate vector field and desired 
response variables computed over the geometric domain and based on that 
approximate solution. 

 
The Exact Problem 
 

The planning of a simulation should consider, from the beginning, the definition of all 
physical phenomena and respective vector fields. A physical phenomenon can be 
abstractly defined as a fact or occurrence, which can be described by a certain finite 
number of pieces of information, which, in turn, have to obey a set of behaviour laws. 
For example, fluid flows and heat transfer.  
 
An exact problem definition includes: 
§ Exact Geometry where the phenomenon is defined; 
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§ Vector Field, which denotes a vector-valued function that describes a phenomenon, 
defined over the exact geometry. In Figure 2-4 there are some examples of vector 
fields.  

§ Phenomenon Behaviour Laws is an exact mathematical formulation of a 
phenomenon, comprised of a system of Integra-algebraic-differential equations, 
which governs the behaviour of the phenomenon vector field. There is one 
behaviour law for each vector field. Restrictions may be applied to the vector field 
such as boundary conditions and others. There is an equivalent way of describing 
the behaviour laws, which is called the exact weak form. The latter is the form 
used by the FEM. 

 
 
 
 
 
 

 
Figure 2-4 Vector Field Examples 

 
Differential equations are, for example, the ones that describe the displacement of a 
material body and temperature distribution. Figure 2-5 shows an example of a 
behaviour law, which can be used for one-dimensional linear elasticity and heat 
transfer. It includes the boundary conditions 0)1(,0)0( == uu . These laws will be 
applied later, in this section, for the representation of phenomena occurring on a 
geometry (a curve), represented in Figure 2-9. 
 
 

 
 

 
Figure 2-5 Example of a Behaviour Law represented by a Differential Equation 

 
This chapter is organized in the following way. Section 2.2 details the major FEM 
concepts. Section 2.3 introduces coupled phenomena and provides some application 
examples. Section 2.4 presents the identification of the major issues and requirements 
for the development of FEM-based simulators for coupled multi-physics phenomena 
is. Furthermore, some related works are described in section 2.5. Finally, some 
considerations are presented in section 2.6. 
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2.2 FEM Concepts 

Classically speaking, almost all the FEM variants have a lot in common, for instance: 
§ A specific way to describe the behaviour laws of the involved phenomena (the so 

called exact weak form). 
§ A geometry where phenomena are defined (exact geometry). 
§ A discretization of the exact geometry into a collection of simple geometric forms 

(the geometric mesh). Those simple geometric forms are called finite elements. 
§ Definition of special functions based on a given mesh (shape functions). 
§ Use of shape functions for the definition of the basis for two finite dimensional 

spaces of functions: the discrete trial set and the discrete test space. 
§ Definition of the approximate solution as a member of the discrete trial space, 

through a linear combination of the components basis (the coefficients are the 
unknowns of the problem and may be time dependent or not). 

§ Definition of the discrete behaviour law (discrete weak form) based on the exact 
weak form, of the approximate solution (discrete vector field) and on the discrete 
test space. The discrete weak form may still be modified for reasons related to 
numerical stability and/or solution method requirements. 

§ If the problem is not time-dependent, the final result of the discrete behaviour law 
is either a linear or non-linear system of algebraic equations, whose unknowns are 
the coefficients used in the definition of the approximate solution. 

§ If the problem is time-dependent, the final result of the discretization is either a 
linear or non-linear system of ordinary differential equations (the so called semi-
discrete equations), whose unknowns are the time-dependent coefficients of the 
approximate solution. For time-dependent problems, a scheme for discrete (in 
steps) time progression is defined in order to compute the state of the problem at 
each time instant, starting from a given initial state. 

§ The solution of a system of non-linear/linear algebraic equations. 
§ Auxiliary methods, which execute specific processes such as: mesh generation, 

numerical integration at the finite element level; a posterior error estimations for 
the discretization and models; adaptations of discretization and of models; and 
solvers for non-linear and linear systems of algebraic equations; etc. 

We can summarize by saying that a system of algebraic equations is the result of a 
process, which involves the discrete sets of shape functions (trial and test), the discrete 



 
 

 
 
 
 
 
 
 
 
 
 
 

16

weak form, the discrete vector fields, the geometric mesh and other data (see Figure 2-
61). 

Test Space

Discrete Test Space

related to

System of Algebraic Equations Matrices and Vectors)

Exact Weak Form

requires

Discrete Trial Space

Discrete Weak Form
requires

equivalent to

based on

Trial Space related to

Shape Functions

used to define

used to define

Discrete Vector Field

belongs to

requires

Behaviour Law equivalent to

Vector Field

owner

belongs to

approximation of

Exact Geometry

defined on

defined on

Geometric Mesh based on

defined on

approximation of

 
Figure 2-6 Summary of FEM concepts 

 
In the next subsection we will detail the description of what composes the approximate 
(discretized) problem. Also we will consider the algorithm for the solution of the 
system of algebraic equations, which is obtained by the discretization process.  

 
2.2.1 The Approximate Problem 

 
By the discrete formulation of a phenomenon we mean the system of algebraic 
equations (either linear or non-linear) obtained through the application of a finite 
element discretization technique (discretization process) to the exact formulation. 
 
A discretization process involves the approximation of the problem geometry (mesh of 
finite elements), the approximation of the phenomenon vector field and the 
approximation of the respective behaviour laws (see Figure 2-7). The most used 
method for storing the required information of the system of algebraic equations is 
using vectors and matrices. If the problem is time-dependent, a time progression 

                                                           
1 This figure represents a UML class diagram which objective is only to represent the association 

between the major FEM concepts.  
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numerical scheme should be applied and the result is again a system of algebraic 
equations. If an algebraic system is linear, the vector-matrix symbolism is K.d = r, 
where d is a vector of unknowns (coefficients of the trial shape functions in the 
discrete vector field), r is a known vector, and K is a known matrix.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2-7 Typical FEM process 

 
Even when a system of algebraic equations is non-linear, its solution frequently uses a 
solution of linear systems of algebraic equations, e.g. when using solution algorithms 
related to the Newton-Raphson method [ZP00]. Therefore, the explanation about the 
processes involved in solution algorithms for the FEM can be restricted to the 
assembling and solution of linear systems of algebraic equations. For those types of 
systems, a typical FEM program performs the following tasks: 
i) Generates a mesh for the given geometry; 
ii) For each finite element from a given mesh: 

§ Compute a specific matrix (element matrix); 
§ Compute a specific vector (element vector); 
§ Assemble the element matrix in a large given matrix (global matrix); 
§ Assemble the element vector in a large given vector (global vector); 

iii) Solve the linear system of algebraic equations with the matrix as the global 
matrix and the global vector as the right-hand side of the eqaution. 

 
Below each involved concept is detailed. As an example, we will consider the one-
dimensional example defined in Figure 2-5. 
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a) Discretized Geometry 
 
The exact geometry is composed of geometric entities, which could be 0-D (point), 1-
D (curve), 2-D (surface) or 3-D (volume), embedded in spaces of either equal or higher 
dimensions. A phenomenon can be defined in any of these geometric elements. 
 
The exact geometry is approximated by the union of simple geometric parts (geometric 
finite elements), with disjoint interiors. The set of all those finite elements is called the 
geometric mesh. Those geometric finite elements can be represented by edges, 
triangles, quadrilaterals, and tetrahedrons or hexahedrons, etc. In the example 
presented in Figure 2-8 the triangular geometric element is used to build the mesh. 
These elements can have distinct sizes and orientations, adapting themselves to the 
features of the original geometric domain. The so-called mesh generator automatically 
generates a mesh. There are several methods available for building a geometric mesh 
given a geometric domain. In order to look for the best numerical methods among the 
many techniques used to implement the FEM, it is very important for a simulation 
environment to be able to shift from one mesh generation method to another.  
  
The geometry of an element is mapped into a known Geometric Reference Finite 
Element (GRFE), which is the same for a large set of those elements (usually, for all 
of them). The GRFE is defined with respect to a certain local coordinate system, and is 
responsible for providing data to important calculations. See Figure 2-8  
 
 
 
 
 
 
 

Figure 2-8 Reference Finite Element Geometry 
 
One example of the important calculations on the GREF is the numerical integration 
process, which is used to compute element matrices and vectors. The integration is 
originally defined over each finite element. However, it is transformed to the local 
coordinate system of the GRFE. Therefore, since the GRFE is fixed, the integration 
points and weights are independent from the finite element where the process was 
originally defined. Other pieces of data, important for numerical integration, are the 
inverse of the Jacobean matrix and the Jacobean, which depends on the mapping that 
map the finite element onto the GRFE. Those functions should be evaluated at the 
integration points. The GRFE is also important because it allows for the definition of 
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shape functions independently of a specific finite element. Therefore, the only pieces 
of data, which actually depend on a specific finite element are those related to the 
Jacobean matrix, as already mentioned. This approach simplifies tremendously the 
computation of matrices and vectors for each finite element.  
In our one-dimensional problem, the considered geometry is a curve. The geometric 
finite element is represented by segment of a curve, that is, just an interval inside the 
geometric domain defined by the interval (0,1). For instance, we consider a mesh 
composed of three finite elements, as shown in Figure 2-9. 

 
 
 
 
 
 
 
 

Figure 2-9 Mesh example used in the algebraic system generation 
 
b) Approximate Vector Field 
 
The discrete vector field means a vector field, which is a linear combination of the 
components of the known basis for the discrete trial space. Its coefficients are 
determined requiring that it should satisfy a certain discretized version of the exact 
behaviour law. The approximation of the phenomenon vector field is obtained using 
trial shape functions defined over a geometric mesh (see Figure 2-10 and Figure 2-11). 
They are built in such a way that it is possible to define a polynomial vector space of a 
specific order over each geometric finite element. High order shape functions can be 
used whenever a higher accuracy is desired. 
 
 

 
 

Figure 2-10 Example of Vector Field 
 
The mesh definition is very important for the definition of the spaces of shape 
functions used in the approximation of the exact solution. When an order of 
approximation is given for a finite element of a given shape, the definition of the shape 
functions should be immediate. Relating the shape functions to vertices, edges, faces 
and volumes of the reference finite element does this. For instance, there will be shape 
functions related to the vertices, to the edges (which should vanish on the vertices), to 
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the faces (which should vanish on the edges) and to the volumes (which should vanish 
on the faces). It is possible to prove that in this way one can obtain a basis for the 
polynomial space of the required order.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-11 Shape Functions 
 

As can be seen, there is a set of pieces of information, which is related to each shape 
function: the coefficient, which is called the nodal value and its dimension; the index 
of the shape function (indicating its order inside its associated geometric entity, i.e., 
vertex, edge, face or volume) and its connectivity (a number, which is important for 
the assembling of element matrices and vectors). All those pieces of information we 
relate to the notion of node. Thus for each shape function there will be a node carrying 
the correspondent data inside. The dimension of the nodal value is called the number 
of nodal degrees of freedom2. The sum of all the nodal degrees of freedom corresponds 
to the system dimension. 
 
 

 
 

 
Figure 2-12 Abstraction of a Geometric Element and its Nodes 

 
                                                           
2 By degree of freedom we mean the largenesses that will be user 
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Figure 2-12 shows an example of nodes represented in a triangle finite element (7 
nodes are identified). Therefore, the polynomial space defined in this triangle is of 
order 2, plus an extra third order shape function, which is the seventh one. 
 
Now, provided the shape functions are continuous over the whole domain, finite 
elements should share nodes whenever they share vertices, edges and faces, 
respectively. As can be seen, there is a one-by-one correspondence between the nodes 
and the shape functions. All the nodes of a mesh are numbered (connectivity) without 
missing any intermediate number. In this way the connectivity number defines the 
position in global matrices and vectors, related to the coefficient of the associated 
shape function. 
 
In our example, the discrete trial and discrete test spaces will have dimension 4, 
because there are four nodes and the dimension of the nodal value is 1, see Figure 2-9. 
The approximation uh is shown in Figure 2-13. However, if the boundary conditions 
are taken into consideration, we can conclude that a1 = 0 and a4 = 0. Therefore, the 
discrete trial and discrete test spaces can be restricted to a subspace of dimension two, 
spanned by ? 2 and ? 3. As a consequence, the discrete vector field culminates as shown 
in Figure 2-14. Those spaces can be restricted assuming the boundary condition 
described before in Figure 2-5.  

Figure 2-13 Approximate Vector Field  

Figure 2-14 Approximate Vector Field  
 

The two functions, which span the two discrete spaces, are shown in  
Figure 2-15, which are equivalent to the ones presented in Figure 2-11. 

 
 

 
 
 
 
 

Figure 2-15 Shape functions for the example 
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Phenomenon mesh is a set of data distributed over a given geometric mesh, which 
describes the approximation order of the discrete vector field on that mesh. It is 
comprised of a set of phenomenon finite elements – on a one-to-one relationship with 
the geometric finite elements - and related phenomenon nodes. Those nodes are related 
to the trial set of functions - which also have a corresponding meaning for the test 
space - of the phenomenon being considered. Each phenomenon finite element (of a 
phenomenon mesh) represents the order of approximation of the discrete vector field 
on that element.  
 
In the example, the phenomenon mesh only indicates the polynomial order equal to 1 
in each finite element. 
 
c) Approximate Behaviour Laws 
 
As an example, we consider the problems described in Figure 2-5. An equivalent 
formulation for the phenomenon behaviour laws is provided by the exact weak form, 
which are integral (see Figure 2-16) forms obtained from the (possibly Integra-
algebraic) differential equations (see Figure 2-5). In the approximation method for this 
behaviour law, the first step is to select discrete trial and test spaces and assume an 
approximate solution uh(x) (discrete vector field) in the discrete trial space, which 
depends on unknown coefficients to be determined and will substitute the exact 
solution u(x). Once the approximate solution is defined, we substitute it into the weak 
form, which should be satisfied for all functions wh(x) replacing w(x) in the discrete 
test space (see Figure 2-16). The accuracy of an approximate solution is dependent 
upon the proper selection of the discrete trial and test spaces. A discrete weak form 
represents the discrete behaviour laws for the discrete vector field.  
 

 
 
 
 
 

 
Figure 2-16 Exact Weak Form  

 
Since the approximate solution depends on a finite number of unknown nodal values 
(coefficients) and since the test space is a finite dimensional, the result is a system of 
algebraic equations, which is solved for the nodal values. Note that the last term on the 
left side of Figure 2-16 represents values at the boundary of the geometric domain. 
Those values are defined by the boundary conditions, which should be prescribed for 
each simulation using the same behaviour law. 

[ ] 0´
1

1

0

1i

=−





 −+= ∑ ∫

=

+n

i

x

xi

wudxxwwu
dx
du

dx
dw

I

 



 
 

 
 
 
 
 
 
 
 
 
 
 

23

If what is to be solved is just a linear system – which happens to be the case - and the 
solution method does not require different auxiliary systems to be solved, the simulator 
may just assemble the matrix and the right-hand side of the system and apply a given 
method to solve it. However, it is very important to note that the solution method is the 
piece of information that defines which matrices and vectors are to be assembled, what 
system is to be solved and what information is to be used to carry out the processes. 
Thus, it is the solution algorithm, which will define what contributions a weak form 
should provide at each finite element. 
 
Let us explain the above process with more details. Figure 2-16 shows the exact weak 
form, where u and w represent the exact solution and a generic test function, 
respectively. In this case, the discrete weak form is obtained by the substitution of the 
trial and test spaces by the discrete trial and test spaces, respectively, keeping the 
whole structure of the exact weak form. So, a member of the discrete trial space, the 
discrete vector field, substitutes the exact solution uh. A generic member of the discrete 
test space, wh, substitutes the test function w.  
 
As we have seen in our example, the basis of the discrete test space has two functions 
? 2 and ? 3. Since the dependence of the weak form with respect to the test function is a 
linear one, the discrete weak form can be defined by using only the components of the 
basis of the discrete test space. The consequence is that the discrete weak form can be 
represented by two equations, as shown in Figure 2-17, obtained by the substitution of 
functions ? 2 and ? 3, respectively. 
 
 

 
 
 

 
 
 

 
Figure 2-17 Discrete Weak Form for each element 

 
Figure 2-18 shows the transformation of the discrete weak form into an algebraic 
system of equations, by substituting the expression of uh into the relations of Figure 2-
17. Figure 2-18 shows the integration decomposed into a sum of integrals of each 
finite element. Thus, it illustrates the fact that one can build the same system of 
algebraic equations adding up contributions that come from each one of the finite 
elements. 
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Figure 2-18 Transformation to the Algebraic Linear System of equations 
 

Whenever the solution algorithm asks for the solution of a system of algebraic 
equations, a loop is made over all the finite elements from its phenomenon mesh. The 
required vector and matrix quantities are calculated for each finite element. Those 
element wise matrices and vectors are assembled into the global matrix and vector. 
Afterwards the solution of the system can be solved for the nodal values (coefficients). 

 
2.2.2 Algorithm for the Solution of Algebraic Systems 
 

There is no single solution algorithm for solving the whole system. The one to be used 
should be formulated in detail and may require the decomposition of the whole 
solution in iterations that involve solutions of auxiliary problems (systems of algebraic 
equations), which will be effectively solved. The whole process may be decomposed 
into typical sub-processes: 
§ Production of a finite number of vectors and matrices, which are designated to be 

produced for each finite element and assembled into global matrices and vectors at 
certain stages of the solution algorithm. Such matrices and vectors may depend on 
discrete vector fields from other phenomena and, then is said to be coupled. 

§ Assembling of linear algebraic linear systems, which means the assembling of the 
matrices and vectors calculated for each finite element. The computations follow 
the definitions coming from the discrete weak form and use the shape functions, 
reference elements and integration rules needed to perform the tasks. 

Solutions for 2a  and 3a  are 2a = 0.0488 and 3a = 0.0569. This is the approximate solution: 
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§ Operations with vectors and matrices, that can occur at finite element level or not: 
linear combination of vectors and matrices, matrix-vector multiplication; vectors or 
matrices scalar product; vector vectorial product; multiplication of vectors and 
matrices by a scalar, etc. Many of these operations may be needed during the 
execution of processes defined by the solution algorithm, 

§ Solution of algebraic linear systems: the solution algorithm defines which type of 
solver is required for each linear system to be solved. 

§ After a final solution is obtained, posterior error estimation can be computed, 
which can be used for adaptation procedures: adaptation of the space and time 
discretizations, adaptation of the distribution of approximation order and 
adaptation of the distribution of models.  

 
2.2.3 FEM Users 

The typical FEM users ask what kinds of elements should be used, and how many of 
them. They can also ask: Can the model be simplified? How much physical detail must 
be represented? Is the important behaviour static, dynamic, non-linear or what? How 
accurate will the answers be and how will they be checked? The user must understand 
how elements behave in order to choose suitable types, sizes and shapes of elements, 
and to guard against misinterpretations and unrealistic high expectations. A user must 
also realize that the FEM is a way of implementing a mathematical theory of physical 
behaviour. Accordingly, assumptions and limitations of theory must not be violated by 
what the software supports. In some dynamic and non-linear analyses, algorithms by 
which theory is implemented must be carefully chosen, to avoid inappropriate 
algorithms, and to avoid interpreting results produced by algorithmic quirks or 
limitations such as actual physical behaviour. 
 
A responsible user must understand the physical nature of the problem and the 
behaviour of finite elements well enough to prepare a suitable model and evaluate the 
quality of the results. Competence in using FEM for stress analysis does not imply 
competence in using FEM for (say) magnetic field problems. Engineers who use the 
software are responsible for results produced, not the software developer, even if 
results are affected by errors in the software. 
 
An important problem, that users of numerical analysis techniques have to deal with, is 
computed discrete data set itself does not promote an immediate understanding of the 
behaviour of the quantities of interest, which were computed during the simulation. 
Commonly, analysis executed in personal computers can generate hundreds of 
megabytes of floating-point numbers. So, visualization techniques, when built in a 
suitable way, represent the key technology needed to extract information from large 
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volumes of discrete data. There is a need to provide the interaction between the 
simulator and those pieces of information and visualization tools. 

 

2.2.4 Typical Errors in FEM Solution 
 

The three main sources of errors in a typical FEM solution are: (i) Discretization 
error results from transforming the physical system (continuum) into a FEM, which 
can be related to modelling the boundary shape, the boundary conditions, etc; (ii) 
Formulation error results from the use of vector fields that do not precisely describe 
the behaviour of the physical problem. For example, a particular vector field might be 
formulated on the assumption that it varies in a linear manner over the domain. Such 
an assumption will produce no formulation error when it is used to simulate a linearly 
varying physical problem, but would create a significant formulation error if used to 
represent a quadratic or cubic varying vector field; (iii) A Numerical error occurs as a 
result of numerical calculation procedures, and includes truncation errors and round-
off errors. These errors occur at developer or user levels (for example, by specifying a 
physical quantity to an inadequate number of decimal places).  

 
Important and relevant applications can be considered, when one is capable of 
adequately solving coupled phenomena systems, that is, a set of interacting 
phenomena, in space and time. The next section introduces and details these systems. 
 

2.3 Coupled Phenomena 

During the definition of a computational model for mathematical formalism, using the 
FEM in the context of coupled phenomena, the designer has to deal with problems 
such as data dependency and sharing. These issues are not trivial as to treat in a 
homogeneous way because they are very dependent on the specific problem being 
considered. It is difficult to provide reasonable high levels of abstractions, which could 
represent the main components, properties, relationships and operations involved. 
Without those abstractions, even when making use of sophisticated FEM libraries, the 
tasks involved in building and accessing new methods could become very costly and 
time consuming due to the lack of modularity and reuse. On the other hand, as far as 
we are concerned, there is no standardized solution for multi-physic systems (see 
chapter 1), that is, the control of coupled phenomena, making the integration of 
reusable code a very difficult task. 
 
Examples of coupled phenomena, represented by coupled partial differential equations 
are: the displacement of a material body and temperature distribution in the same body. 
See equations 1 and 2 in Figure 2-19. 
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Figure 2-19 Examples of Coupled Differential Equations 
 
The simulation of coupled phenomena involves many processes, which are described 
in the solution algorithm. A solution algorithm is tailored for the solution of the system 
of algebraic equations that is defined by the discrete behaviour law (in discrete weak 
form). A popular way of solving problems with many phenomena is dividing it into 
many problems involving only few phenomena (auxiliary problems). Thus, a sequence 
of procedures, which dictate the order in which each one of the auxiliary problems 
should be assembled and solved, is defined in the solution algorithm. Usually, this is 
an iterative procedure. Since the phenomena are coupled, the computations of matrices 
and vectors by a given phenomenon at the level of the finite elements may need 
evaluations of vector fields (at a given state) from other phenomena at the integration 
points (data dependency). Although different phenomena may share a geometric mesh 
(data sharing), this is not a requirement, making information management even more 
complicated. Those relationships are illustrated in Figure 2-20 
 
 
 
 
 
 

Figure 2-20 Phenomena Relationship 
 
The FEM conventional process can be extended to treat coupled phenomena. One 
extension is the incorporation of information on vector fields from other phenomena, 
see Figure 2-20, and in the description of behaviour laws (weak forms) of a given 
phenomenon. Another important extension is the consideration of the solution 
algorithm as an input (data) to the problem. Thus, the processes described therein can 
be put into higher levels of abstraction through a hierarchical modularisation and 
pattern identification, improving reusability. There are other extensions, which due to 
simplicity are not detailed here. 
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An example of coupled multi-physics phenomena is water flow in estuaries and the 
chemical and biological (organic/inorganic chemical substances and living species) 
dynamics of the water quality. Some couplings are related to the evolution of chemical 
substances and biological species, which are coupled with the water flow and several 
predefined inputs to the system. Some more specific and detailed examples can be seen 
in Appendix A. 

 

The solution of coupled phenomena problems can be used in different kinds of 
applications, which require modelling of different classes of simulators. A class of 
simulators can be defined by a set of pre-defined functionalities defined by a class of 
solution algorithms. For example, a class of solution algorithms may define processes 
specific for time-dependent phenomena possibly with model and discretization 
adaptivity. The class of problems a simulator can tackle can be defined by the types of 
discrete weak forms (behaviour laws) for respective types of discrete vector fields 
(describing the physical phenomena), which are defined on types of physical domains 
(geometry) and for which there exists known types of boundary conditions and initial 
conditions. The objective of the simulation is to compute some quantities of interest, 
which are functions of those discrete vector fields. The post-processor computes those 
quantities. It is important to mention that very frequently a post-processor procedure 
resembles tasks, which are typical of a phenomenon. 
 

Running a simulation for a problem involving coupled phenomena consists of 
simulating a set of physical phenomena. The phenomena can be transient, i.e. time 
dependent, or otherwise stationary. Finite element meshes can be adapted during the 
simulation with the objective of keeping estimated errors below given tolerances. The 
simulation result – as already mentioned - is composed of discrete vector fields and 
post-processed quantities, which are also produced by special Computational 
Phenomenon objects. An important simulation (pre-processed) data, for each 
phenomenon, is its phenomenon and geometric meshes representing the spatial 
distribution of the approximation order and discrete geometry, respectively. 
 
In the following sections, the main problems related to the development of simulators 
based on coupled multi-physic phenomena are identified and commented on. 
 

2.4 Issues in the Development of FEM Simulators 

The main issues related to the development of FEM simulators for coupled multi-
physics phenomena are, on the one hand, the need for simulators that could simulate a 
large amount of coupled phenomena based on the FEM and, on the other hand, the 
need for computational environments or techniques, which could help the construction 
and configuration of those simulators. 
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However, other issues are also relevant: 
§ Difficulty to replicate published numerical studies. Experimental physics imposes 

on the other disciplines a formal way to describe an experiment, wherein basically 
all the information required to replicate it is defined and should be given. The 
replication of a given experiment, by multiple independent researchers, is a 
fundamental step in the establishment of a scientific truth. Purely theoretical 
studies allow any reader to access the experiment. To replicate it just one tool is 
needed, the researchers brain [VM02]. Among experimental studies there are the 
numerical studies. A numerical model relies on a variety of specificities associated 
to the numerical implementation of the theoretical model being used. Let’s use, for 
example, the FEM model, which is the focus of this work. A FEM model relies on 
a theoretical model, which can be described exhaustively in writing, but it is very 
difficult to describe all the conditions involved in the universe of possible 
numerical methods. It is up to the designer to select the conditions and numerical 
methods that make sense and build the appropriate solution. Seldom, all those 
details, needed to replicate a numerical experiment, are published together with the 
experiment description. 

§ The question of reliability of computer-generated predictions is of great interest to 
specialists. Without some confidence in the accuracy of simulations, their value is 
obviously diminished. Today, remarkably accurate and reliable simulations are 
obtained routinely in many application areas while others are, at best, qualitative 
and capable of depicting only trends [COM00].  

§ The reuse of models, replication and extension. The Committee on Theoretical and 
Applied Mechanics emphasises that the selection of the mathematical and 
computational model is quite often the single most important step in obtaining 
valid computer simulation of physical events [COM00]. Model selection is a 
largely heuristic process, based on the judgment and experience of the modeller 
and on testing and experimentation. But it is frequently purely a subjective 
endeavour: different analysts may select different models to describe the same 
physical phenomena. Until now, there are few advances for making this selection 
step easier. It is quite relevant to support model reuse, replication and extension 
and persistence of previous simulation data and results.  

§ The achievement of higher levels of sophistication in simulation design can be 
obtained through the use of cooperative systems, where several technicians define 
and implement solutions together following the same patterns, thus improving the 
quality of the whole solution. The need for this cooperation is based on the fact 
that, frequently, there are stakeholders that are specialists in modelling and 
simulation of different classes of phenomena. 
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§ In the simulation of coupled phenomena applications, specifically, there is a need 
for software packages, which could tackle the problem of multi-physics simulation 
(as can be seen in section 2.3). Most of the existing tools in this area treat each 
phenomenon independently, not achieving the required results, because sometimes 
the solution simply cannot be given in a partitioned form. Furthermore, without 
other alternatives, different software components have to be used together, when 
simulating coupled phenomena, giving rise to problems of data transfer and 
integration. 

§ Scientists and engineers require demanding tools to fulfil their research 
requirements and needs. There is an increasing need for flexibility in the 
construction of different solution strategies, support for the implementation of 
more suitable numerical methods, and a request for superior quality in simulation 
software component design, implementation and analysis. The main issue behind 
this is the fact that, due to the increasing complexity of the models and numerical 
methods, the construction of simulation software has become a major part of the 
scientists and engineer’s work.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-21 General Problem Identification – Existing reality 
 
Some of the causes that justify the strong need for more powerful simulation 
development environments are presented in Figure 2-21. In order to improve the 
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simulation software for coupled multi-physic phenomena, several objectives are 
required to be satisfied (see Figure 2-22). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-22 Objectives towards an improvement in Simulation Environments 
 

2. 5 Related Work 

Due to the great relevance of simulation in different application areas, the community 
of simulation researchers is very active and we can name several existing initiatives, 
which are related somehow to our work (FEM simulation or other types of simulation). 
It is not the objective of this work to make a complete list of them, but we would like 
to refer to a few of them, due to their importance and achievements:  
 
§ DIFFPACK [LAN97] addresses an object-oriented strategy for the development of 

software for solving systems of partial differential equations (PDEs). The proposed 
strategy encourages reuse of modules capable of solving the involved sub-
problems. It extends the basic ideas of an object oriented numerical library to a 
higher level where the objects reflect partial differential equations. It also opens the 
possibilities of building repositories of solvers for single PDEs that can be 
combined with each other in a flexible way. In [LAN01] a pre-processor is used to 
generate geometric input data required by FEMs. It also defines an abstraction for 
simulating coupled problems by operator splitting techniques. 

§ In [RM96] an algorithm framework for flexible FE based modelling is presented. 
Its goal is to explore the development of applications, accommodating the addition 
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of new modelling capabilities or the adaptation of existing ones, which can be 
applied by users. It offers families of algorithms that can be easily accessed and 
changed dynamically, providing algorithm flexibility. Distinct algorithms can be 
used in different parts of the model. 

§ [TO95] presents an overview of consecutive logical stages of technical aspects of 
the design process for modelling the behaviour the FEM structure. The process 
begins with the identification of the physical problems and design objectives and – 
usually after several modifications – yields a model of a product performing 
specific functions that satisfies design criteria. During the design process, 
knowledge about the model is enriched, modified, and used at further stages of the 
design. The simulator process development using FEM is composed of: 
Understanding a physical problem; Mathematical Modelling of the structure; 
Discretization of the Model; Selection of computational methods and strategies; 
Numerical analysis of the discrete model solution; Generalized pos-processing; 
Verification of the finite element solution; Modification of the model, that is, the 
construction of problem specification or variation in model optimisation; and 
accumulation of experience. 

§ SCIRUN, a scientific programming environment that allows the interactive 
construction, debugging and steering of large-scale scientific computations 
[PWC97].  SCIRun allows scientists to: (a) design and change simulations 
interactively using a dataflow programming model; (b) design and change and 
view the geometry model; (c) change interactively simulation parameters and 
boundary conditions; (e) change the level of mesh adaptation needed to make a 
more accurate numerical solution and (f) visualize interactively simulation results. 
O SCIRun gives access to already built modules, integrate scientific libraries and 
also allows the development of new modules. It uses dynamic sharable libraries to 
allow the user to recompile only a specific module without having to make a 
complete re-link. The application programmer has the responsibility to break the 
application into suitable components, and also has to guarantee that the parameters 
change make sense considering the underlying physical problems. Modules 
represent computational algorithms or operations, where a set of input and output 
ports defines its external parameters. A port is a connection point to data routed for 
different stages of connection. Ports can be added or removed of a module 
dynamically. Output ports can maintains a cache for sets of data, avoiding re-
computation. Output ports can be connected to several input ports. However input 
ports accept only a single connection. The process of writing a new module 
involves writing a new C++ class.  

§ FEMLAB [FEL04] is an interactive environment for modelling and simulating 
scientific and engineering problems based on partial differential equations (PDEs) 
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– equations that are the fundamental basis for the laws of science. With 
FEMLAB’s multi-physics features, you can simultaneously model any 
combination of physics by choosing from these modelling approaches: (i) use the 
ready-to-use application modes to create a model by directly defining the physical 
quantities rather than the equations; (ii) Use equation-based modelling to have the 
freedom to create custom equations;(iii) Combine both approaches for multi-
physics modelling. FEMLAB offers CAD tools, interfaces for physics or equation 
definitions, automatic mesh generation, equation solving, visualization and post-
processing – all in an integrated environment. With the package’s MATLAB 
interface you can extend the FEMLAB models through a powerful technical 
programming environment. The combination of an easy-to-use graphical user 
interface and the flexible programming capabilities make FEMLAB an 
unprecedented package for multi-physics simulations. 

 
In appendix B some other existing approaches for simulation software development 
are described.  
 
Most of these works support good practices and fundamentals, useful for defining 
worthy simulation systems solutions and capabilities. However, despite the richness of 
their contribution, in the case of the FEM solutions, we did not find an integrated 
environment that satisfies the demanded features for coupled phenomena environments 
described in earlier sections. There are still important questions related to abstractions 
of numerical algorithms that remain unsolved, such as: (i) mechanisms to allow easy 
interchange between numerical methods and strategies; (ii) repository organization and 
management and its relationship with simulation instances; (iii) satisfactory 
abstractions of couplings, which could be defined independently of the actual 
implementation of the participating phenomena; (iv) abstractions of groups of 
phenomena, which are to be solved together, making it possible to organize operator 
splitting strategies in different forms; (v) higher abstractions of the phenomena-
geometry relationship, in order to decide whether each phenomenon will or will not 
share its mesh with other phenomena (defined in the same geometry); etc. 
 

2.6 Final Considerations 

There are many advantages in the use of the FEM for the simulation of coupled multi-
physics problems, as the method can handle: complex geometry; many phenomena in a 
homogeneous way (such as heat transfer, solid and fluid mechanics); complex analysis 
types (steady and transient states, linear and non-linear behaviour laws); complex 
geometry-related data: (boundary data, domain-embedded data); and complex 
constraints. In addition FEM can handle bodies comprised of non-homogeneous 
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materials: material properties may be given as functions or the geometry may be 
divided with each component being assigned different material properties. Special 
material effects can be handled, for example temperature dependent properties, and 
plasticity, etc. Special geometric effects can be modelled (such as large displacements, 
large rotations, and contact conditions). 
 
For the development of FEM simulators a powerful computer and reliable FEM 
software are essential. The input and output data may be large and tedious to prepare 
and interpret. The FEM pre-process is also susceptible to user-introduced modelling 
errors: (i) Poor choice of element types; (ii) Distorted elements; (iii) Geometry not 
adequately modelled.  
 
The main issues in FEM simulation systems development are related to their 
complexity and the consequent requirements of high investments of time and money, 
which can frequently make their development impracticable. Even though there has 
been great advances in software engineering in the past years, in FEM context there 
are only a few simulation tools and techniques that support high levels of abstraction, 
software reuse, friendliness, and maintainability of simulators based on the FEM for 
coupled multi-physic phenomena simulation.  
 
In our work, we analyse the existing requirements in this specific domain of 
knowledge. We consider current trends in software engineering development and 
propose an environment to support FEM simulator development for coupled multi-
physic simulators. In this thesis we define a structure, which improves the quality of 
simulator designs. The approach tries to avoid problems that are intrinsically related to 
some symptoms of poor design [MRC02] when: it is hard to change; it is hard to reuse; 
it is hard to do the right thing; there is needless complexity; there is needless repetition 
and disorganized expression of the world. The result is the proposal of a deep analysis 
of the problem domain, and the definition of architecture based on some specific 
patterns, which try to fill the existing gap in the development of FEM simulators. 
In this thesis, FEM specific solutions can be gathered in a Simulation Environment for 
the development of FEM simulators. Many applications are to be developed, within 
the specific domain; so the timesaving of reuse will recover the time invested to 
develop it. However, developing a reusable system requires abstractions that do not 
become obvious until the application examples are tested in many situations. This 
work results from the experience obtained during the implementation of several 
simulators in the FEM context, from which important abstractions have been defined. 
These implementations were evaluated and from this experience conclusions have 
been drawn, which are used in our analysis.  
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Analysing and Describing FEM Simulators with 
Problem Frames 

 
The development of FEM simulators is complex and the search for standard 
solutions for its development is appropriate. This chapter improves the description 
of the specific domain of FEM simulators through requirement analysis and the 
problem domain specification. The existing world without the existence of the 
Plexus solution is presented, and then the proposed environment with the respective 
functional and non-functional requirements is specified. In order to help developers 
with problem analysis, decomposition and description of FEM simulator solutions, 
some specific classes of problem solutions (problem frames) are proposed. These 
patterns include meta-models, which help to define the involved context.  
 
This chapter also investigates the suitability of the Problem Frames technique, 
which is applied for the improvement of the description of our specific domain of 
FEM simulators. The study evaluates the appropriateness of the technique, 
discussing its power of expressiveness and limitations and suggests what can be 
improved. 
 
 

Chapter 
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3.1. Introduction  

The development of low cost and high quality complex software is a continuous 
challenge for the software engineering community. Different techniques, 
methodologies and frameworks have been proposed to improve software quality. 
Independently of the nature of the software, the elicitation, analysis, negotiation, 
specification and management of requirements are fundamental for the development 
of quality software.  
 
This work focuses on the conceptualisation and design of a simulation environment 
to support the development of simulators. In this context we must identify and use a 
flexible technique to describe the problem domain, that is, the real world (physics, 
mathematics, chemistry, biology, etc.) and the FEM concepts, as well as for 
specifying the requirements for the simulators to be developed. For this purpose we 
applied the Problem Frames [JAC01] technique. One of our objectives is to evaluate 
the use of this technique in the context of FEM simulators environment 
conceptualisation. 
  
We can summarize Problem Frames as a software engineering technique 
appropriate to the description of problem domains, defining requirements and 
decomposing the problem into sub-problems. A problem domain is composed into 
several concepts (such as entities, events and states) that we can observe in the real 
world and also the relationships between them. Some domains are controllers and 
others are controlled, and others are simply symbolizations of concepts and their 
relationship. Collections of these concepts can be grouped forming a part of the 
world that can be distinguished and conveniently considered – a domain.  
 
This chapter is organized in the following way. Section 3.2 presents Problem Frame 
technique. Then, using the described concepts, in section 3.3, we first locate and 
limit the scope of the problem (which motivates the development of a FEM 
simulator environment), clarifying the distinction between the machine to be 
developed and the world, and the relationship between them. In section 3.4 the 
proposed environment (machine) is described, exploring the decomposition of the 
involved problems into smaller and simpler sub-problems. In addition the involved 
domains1 are detailed. Furthermore, in section 3.5 some of the machine sub-
problems are described; they are specific to the area of FEM simulator development. 
This definition is made by the identification of common patterns in the simulators 
context and the recognition of elementary problem frames. Section 3.6 evaluates the 
application of Problem Frames to the FEM simulator domain. Finally, in section 3.7 
remarks about  this chapter are made.   
 

                                                           
1 Despite the order of the chapter sections, the problem domain (independent of the machine) and the 
requirements can be explored iteratively. 
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3.2. Problem Frames Technique 

The Problem Frames [JAC01] technique objective is to help in progressing from 
problem identification to problem structuring, while focusing on the domain 
concept. Domain is a particular part of the world that can be distinguished because it 
is conveniently thought of as a whole, and can be considered, to some extent, 
separately from other parts of the world. The technique emphasizes the separation of 
problem and solution domains.  

 
A general belief is that one should focus on the problem before the solution, that is, 
one should focus on what the system will do, before focusing on how it will do. 
However, it is often hard to distinguish a problem from its solution, nor any easier 
to distinguish what from how. The Problem Frames technique considers that it is 
more helpful to distinguish where, that is, to recognize that the solution is located in 
the computer and its software, and the problem is outside in the world. The 
computer can provide solutions to these problems because they are connected to the 
world outside. The connections between the computer and the world enable the 
computer to play its role in the solution, see Figure 3-1. 
 
 
 
 
 
 
 
 
 

Figure 3-1 The Environment - Problem and the Solution 
 

Sometimes the word “system” is used for the whole combination of the world and 
the computer together. So it is quite appropriate to say that the first step is to 
describe the system: in a wider sense, the system is where the problem is. But the 
word “system” also has the narrow sense of being the computer and its software. So 
there is an ambiguity between the wide and narrow sense. So, Jackson [JAC01] uses 
the term machine instead of system. A machine is that piece, which must be 
eventually built and installed to solve a problem. 
 
Developing software is building a machine to solve a problem in a given domain to 
meet customer’s needs, requirements. The machine is a general-purpose computer 
specialized by software. Problem decomposition gives rise to many sub-problems 
and also many machines [JAC95]. Note that the machine in one sub-problem may 
be a part of the problem domain in another sub-problem. The customer’s 
requirement (property or behaviour) is in the problem domain. Requirements add 
constraints to the domain’s intrinsic properties or behaviour. The machine is the 
solution and the problem is outside the machine. The machine and the problem 
interact at the interface defined by their shared phenomena. By phenomena we mean 
elements of what we can observe in the world, such as events and states.  

The computer and 
its software 

The world outside 
the computer 

The problem 
is here 
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world and the 
computer 
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here 
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The machine, the world and requirements are the main part of the software 
development problem. The solution task is to construct a machine so that the 
interactions with the world will ensure satisfaction of requirements. The existing 
problem in the world is described through indicative properties (what is known). On 
the other hand, the requirement and the machine are described as selected options, 
that is, what is being desired and planned to solve the existing problem in the world. 
  

3.2.1.  Indicative and Optative Moods 
 
The environment is defined as the portion of the real world relevant to the software 
development project [JAC96, JAC01]. The requirements’ specification includes 
statements in the:  
§ Indicative mood: this describes the environment as it is in the absence of the 

machine or regardless of the actions of the machine. This mood describes the 
domain of knowledge. It indicates the objective truth about domains (what is 
true regardless of the machine’s behaviour). For example, the definition of 
what composes the formulation of a FEM simulation for multi-physic 
phenomena (as described in chapter 2). 

§ Optative mood: this describes the environment as we would like it to be and, as 
we hope it will be, when the machine is connected to the environment. It can 
be separated in requirements (options that customer has chosen) and 
specification (machine desired behaviour). For example, the system 
requirements for implementing configurable FEM simulators. 

 
The indicative properties are at the heart of one’s analysis. One relies on the domain 
properties to bridge the gap between specification of phenomena, that the machine 
can directly sense and cause, and the required phenomena that the customer is 
interested in. So, our subject includes problems, not only solutions. Since problems 
are in the world, being more precise about problems and their domains means being 
more precise about the world and its phenomena.  
 

3.2.2. Phenomena 
 
Jackson [JAC01] suggests that we must understand appropriate abstractions of 
phenomena, that is, of what we can observe in the world. This is necessary at 
specific levels of individual problems and domains. A phenomenon can be 
classified into three types: (i) Individuals, which are phenomena that can be named 
and distinguished from every other individual (a concept which has a specific 
meaning, structure and behaviour, so its features can distinguish it from other 
entities), examples are cars, or events identification such as the first time a person 
drives a car; (ii) Relationship, an association among two or more individuals (for 
example, a car revision represents a relationship between a broken car and a fixed 
car); (iii) any pattern or structure among phenomena of a domain. 
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Individuals can be further classified into:  
§ Entity, an individual that is mutable over time, that is, an individual that 

persists over time and can change its properties and states from one point in 
time to another. Examples include cars, people, and so on. In our work, 
examples are simulators and geometries. 

§ Event, an individual that is an occurrence at some point in time, regarded as 
atomic and instantaneous. For example, pressing a lift bottom, or in our work 
the process of starting a simulation. 

§ Value, an individual that is not subject to change, that is, an individual that 
exists outside time and space. For example, integers and strings. In our work, the 
values (strings) that determine physical phenomena context, such as “heat 
transfer” and “elasticity”. 

 
Relationships can also be further classified into:  
§  States, that is, time changing relations over non-event individuals (which can 

be true at one time and false at another, also an element of a state transition 
diagram), for example, the fixed car state. In our work an example is the 
simulator built state. 

§  Truths, unchanging relations over non-event individuals (a relationship that is 
either true at all times or false at all times). Then individuals are always values, 
and the truth expresses mathematical facts. One example is GreaterThan (5, 3). 

§ Roles represent the participation of individuals on events, in other words, a 
relation between an event and individuals that participate in it in a particular 
way. Each role expresses what one might otherwise think of as one of the 
arguments of the event. Roles are fixed; they do not change over time. In the 
event fix a car we have the roles of the object to be fixed (the car) and of the 
mechanic (the person who will fix it).  

 
One can also distinguish two categories of phenomena: 
§ Causal phenomena, which include events, roles and states (relating entities). 

They are directly caused or controlled by some domain, and they can cause 
other phenomena in turn. Examples are input/output devices, arithmetic and 
logical units, buttons, lights, sensors, motors. In our work an example is the 
simulation, which is caused by a simulator, and in sequence causes simulation 
results; 

§  Symbolic phenomena, which include: values, truths, and states (relating only 
values). They are used to symbolise other phenomena and relationship among 
them. Some examples are input and output, a database held on one or more 
disk drives, an object structure inside a machine, a file held on a tape.  In our 
work we have symbolic data representing stored data about existing kinds of 
physical phenomena or geometries. 

 
Jackson gives a symbol for each kind of phenomena. For example, Y represents 
symbolic phenomena (for example, Y4); C represents causal phenomena (for 
example, C2). 
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Plexus phenomena are natural physical phenomena, so they are included as a subset 
of Jackson’s phenomena. We must be careful here not to generate confusion. Note 
that Plexus refers to natural phenomena (a computational abstraction of physical 
phenomena, such as elasticity, heat transfer, rigid body motion, and so on).  
 

3.2.3. Domains 
 
A domain can be thought of as a collection of related phenomena, for example the 
simulator domain is composed of phenomena like simulator’s strategies, the way 
natural phenomena are grouped and organized to be solved, simulators skeletons, 
and so on. Domains may share phenomena. Indeed the only way two domains can 
interact is through the interface of shared phenomena. 
 
Based on phenomena categories, Jackson distinguishes different kinds of domain 
[JAC96, JAC01]. 
§ A Causal domain is a domain whose properties include predictable causal 

relationships among causal phenomena (include events, roles and states); these 
relationships allow one to calculate the effect of the machine behaviour at an 
interface with the domain. An example is the car mechanics shop domain, 
which can start events such as car repair and painting and which includes states 
such as car repaired. 

§ A Biddable domain usually consists of people such as operators or users. In our 
work we have, for example, the simulator designer. 

§ A Lexical domain provides the significance of data, for example, input and 
output, a database etc. A definition can be found in [JAC96]: a physical 
representation of a symbolic phenomenon such as data, for example a database 
about simulations knowledge. 

 
By considering the defined concepts of existing problem domains (which define the 
indicative properties) and the requirements and the specifications (the optative part 
of the desired machine), Jackson [JAC01] defines what he calls Problem Frames. 
 

3.2.4. Problem Frames Diagrams 
 
A problem frame defines an intuitively identifiable problem class in terms of its 
context and the characteristics of its problem domains, interfaces and requirements 
[JAC01]. A general representation of a problem frame is presented in Figure 3-2. 
The scripted rectangle represents the machine one wants to build. The plain 
rectangle represents the part of the world that interacts with the machine. The solid 
line connecting the two rectangles represents an interface of shared phenomena (for 
example, shared events and shared states). The dotted ellipse represents the 
requirement; the dotted arrow indicates that the requirement is a description, which 
is a predicate over the phenomena of the world. 
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Figure 3-2 Generic Problem Frame Diagram 
 

A frame diagram is just a slightly fancier generic problem diagram. It is different 
from an ordinary problem diagram in the following ways: 
§ The names of the parts are chosen to suggest their involvements in the general 

form of the problem: control machine, controlled domain and required 
behaviour (see Figure 3-2).   

§ The sets of interface and reference phenomena are denoted by short stylised 
names, like the names C1 and C2 (Figure 3-2). The names on interface 
connections also include the usual control prefixes (like CM for control 
machine and CD for controlled domain).   

 
The control machine (CM) is the machine to be built (Figure 3-2). The controlled 
domain (CD) is the part of the world to be controlled. The requirement, giving the 
condition to be satisfied by the behaviour of the controlled domain, is called the 
required behaviour.  

 
In Figure 3-2, the interface of shared phenomena with the machine consists of: C1, 
which is controlled by the machine (CM), and C2, which is controlled by the 
controlled domain (CD). The machine affects the behaviour of the controlled 
domain through the phenomena C1; the phenomena C2 provides feedback. The 
requirement is expressed in terms of C3 phenomena of the controlled domain. These 
are the requirement phenomena. In general C3 will be different from C1 and C2. 
This gap must be bridged by indicative domain properties by the controlled domain.  
 
A concern is an aspect of a problem demanding the developer’s attention. For 
example, the completeness concern ensures that a description is complete and the 
initialisation concern ensures that the machine and the problem domains are in 
appropriate states at the start of the execution. Each frame has a concern that must 
be addressed in any problem of the class. The concern identifies the descriptions 
one must fit together properly in a correctness argument: requirement, specification 
and domain. In conjunction with the characteristics of problem domains, the frame 
concern gives rise to the particular concerns that distinguish the problem class. If 
one tries to fit a problem into an inappropriate class, the resulting development will 
certainly be awkward and probably unsuccessful.   
 
Jackson also describes the concept of a composite frame, a familiar class of 
problems that demands decomposition into sub-problems in accordance with a 
standard structure. The sub-problems have frame concerns and other particular 
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concerns; interaction amongst them gives rise to fresh composition concerns. The 
possible combinations of simple sub-problems are unlimited, but many composition 
concerns can be identified by examining some of the combinations in terms of 
problem domains common to different sub-problems. These concerns include 
consistency (between indicative or optative domain descriptions), precedence 
(between inconsistent domain descriptions), interference (between different 
interactions with a domain) and synchronism.   
 
Problem Frames take part of the problem decomposition. Generally before its 
definition a context diagram is built for the computational system being defined, this 
diagram will influence the identifications of the system required problem frames. 
 

3.2.5. Context Diagram 
 
The Problem Frames context diagram is the first representation of the proposed 
problem [JAC95]. It is fundamental to determine where the problem is located, and 
what parts of the world it concerns. It gives an opportunity to structure the problem 
as a number of separable domains, together with the machine to be built, and to 
show how the domains interact with each other and with the machine. The 
structuring of the problem context is an essential step towards problem analysis, and 
choice of each sub-problem.  
 

 
 
 
 
 

 
 
 

 Figure 3-3 Context Diagram 
 
Figure 3-3 exemplifies a generic context diagram composed of the machine to be 
built and five problem domains; it also shows the interfaces between domains, that 
is how the machine is connected to problem domains and how problem domains are 
connected to each other (through interfaced phenomena a, b, c, d and e). The 
domain with a single vertical stripe indicates that it is a domain that the developers 
must design (e.g. DOMAIN 1 in Figure 3-3). The other problem domains with no 
stripe are all given parts of the world. All the domains in the context diagram are 
physical. The interfaces can be understood as events, states and values shared 
between domains. By physical domain we mean parts of the world where the 
customer can check for observable effects. It can be divided into: 
§ Machine domain: this is the computer program which one must design and 

build; 
§ Designed domain: this is the physical representation of some information, for 

example stored on: a magnetic stripe card, or a tape or a floppy disk or a hard 
disk, or even on a screen or printed output. It is a description or model that the 

PROBLEM 
DOMAIN 1 

 

 MACHINE TO 
BE BUILT 

 
PROBLEM        
DOMAIN 2 

 

 PROBLEM     
 DOMAIN 3 

 

PROBLEM        
DOMAIN 4 

 

PROBLEM 
DOMAIN 5 

 

a b 

d c e 



 

 43

developer is free to design (free to design and specify its data structure, to 
some extend, its data context; 

§ Given domain: this is a problem domain whose properties are given, that is, we 
are not free to design this domain. However, this does not mean that it already 
exists when you start the problem, only that you have information about its 
definition.  

 
According to Jackson [JAC01], the following issues must be considered, although 
he does not impose order on them: 
§ Locating and bounding the problem, that is, expand and clarify the distinction 

between the machine and the world, and the relationship between them. The 
world is always structured as a collection of interconnected domains, pictured 
in a context diagram. Customer’s responsibility and authority bound the 
problem context. The built machine must not change the parts of the world that 
the customer has not authorized, and in analysing the problem one must not 
ignore relevant parts of the world for which the customer is responsible. 

§ Explore the decomposition of problems into smaller and simpler sub-problems. 
Each decomposed sub-problem has its own projections – its partial views – of 
the world and of the machine, taken from the original problem. It shows each 
sub-problem in a problem diagram. That is like a context diagram with the 
addition of a requirement. 

§ After one has roughly identified what the problem is about, the next step must 
be to look into it more deeply. One can look more closely at the interface 
between the world and the system. For example, it could discover, decide, 
analyse or design more details of the messages in data-flows, or more detail of 
the dialogues for the use cases. Also the terminals and the actors can be 
explored, and there is no reason to restrict it to what can be seen at the 
interface with the computer.  

 
Note that one does not have to draw the context diagram before analysing the 
requirements. It must explore the context and the requirements iteratively.  
 

3.2.6. Repertory of base Problem Frames 
 
Jackson identifies a repertory of five base problem frames [JAC01], which are 
recognized problem classes, with associated characteristics and solution methods. 
Within these structures, specializations can emerge and incremental advances be 
obtained, which otherwise could not be achieved by attempts on a more abstract or a 
broader front. The repertory of elementary problem frames, available in [JAC01], 
includes the following intuitive notion of each problem2: 
§ Required Behaviour: “There is some part of the physical world whose 

behaviour is to be controlled so that it satisfies certain conditions”. The 
problem is to build a machine that will impose that control; 

                                                           
2 There are some variants of these basic problem classes, most of them result from adding further domains to 
the problem world. All these variants raise additional characteristic concerns in the structure. 
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§ Commanded Behaviour: “There is some part of the physical world whose 
behaviour is to be controlled in accordance with commands issued by another 
operator”. The problem is to build a machine that will accept the operator’s 
command and impose the control accordingly; 

§ Information Display: “There is a part of the physical world for which certain 
information (about its states and behaviour) is continuously required.” The 
problem is to build a machine that will obtain this information from the world 
and present it at the required place in the required form; 

§ Work-pieces, “A tool is needed to allow a user to create and edit a certain class 
of computer processable text or graphic objects, or similar structures, so that 
they can be subsequently copied, printed, analysed or used in other ways”. The 
problem is to build a machine that can act as this tool; 

§ Transformation, “There are some computer readable input files whose data 
must be transformed to give a certain output file. The output data must be in a 
particular format, and must be derived from the input data according to certain 
rules”. This machine will produce the required outputs from the inputs.  

 
In the next section we apply Problem Frames for Plexus problem description – the 
Indicative description - also called knowledge domain. Then, section 3.4 presents 
the Plexus machine to be developed – the Optative description. 
 

3.3. Locate and limit the scope of the Problem in the world  (Indicative) 

When engineers want to develop a new simulator/simulation based on FEM they 
must have a clear notion of the involved abstractions and their relationships, the 
concerns of the stakeholders, and reusability of the data and code. Generally they 
have to deal with the problem from the beginning, describing FEM abstractions, 
processes details and requirements for the new simulator. Furthermore, the 
multidisciplinary and interdisciplinary nature of multi-physics problems, induce 
unorganised domains, which adds to the great number of possible ways for 
knowledge representation, processing and use. High levels of abstraction and 
problem decomposition are required, in order to achieve a state where software 
reusability, maintainability and adaptability become commonplace together, with 
the possibility of easier software evolution. However, it is difficult to identify which 
kind of requirement modelling technique or architectural abstractions are relevant, 
appropriate and complete to understand the whole problem, especially if we aim at 
reuse and evolution of solutions. 
 
An engineer using a FEM simulator can perform an analysis such as the one defined 
in Figure 3-4.  Some requirements for performing a specific FEM-based simulation 
analysis are described by [COR95]:  
i) A problem must be solved; problem data and simulation objectives are 

defined at the application level;  
ii) Develop a plan for an initial Finite Element (FE) model, that is, define the 

problem data, discretization and solution methods;  
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iii) Pre-process, which means processing the problem’s input data, to obtain a 
set of data structures, which are needed for the simulation process; 

iv) Execute the solution algorithm, which means a sequence of operations that 
represent the simulation itself; 

v) Post-process, which means further processing the FEM simulation results in 
order to compute (based on the simulation results), store and display the 
required data.  

vi) Validate the results. The physical behaviour must have been anticipated. 
vii) Revise the plan if needed. 

 
Figure 3-4 Conventional FEM Analysis Process [COR95] 

 
FEM design and procedure can be clearly divided into two types of processes: one 
which involves performing large-scale algorithmic computations and data 
processing; secondly processes involving decision-making, which require 
perception, intelligence, knowledge and reasoning power [TO95]. Engineers, 
expected to master the expertise necessary to use finite element software effectively 
in the design process, traditionally perform the decision-making process. The 
human expertise in the decision–making process represents a major part of the time 
and effort to perform analysis and design. To overcome these problems, several 
research efforts are currently underway, attempting to formalize the decision-
making criteria and to develop intelligent automated software to supplement the 
human designer [TO95]. The problem we want to solve is related not only to 
decision making-process but also to ways of organizing processes and data (related 
to large-scale algorithmic computations and data processing) in a way that will 
facilitate further exploration of process and data distribution and reuse. 
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3.3.1 Plexus Indicative Mood 
 
The world under study for the development of a new application, without the Plexus 
System (machine), can be structured as a collection of interconnected domains. In  
Figure 3-5 the problem domain, related to the development of simulators using the 
FEM, is organized as a number of separable domains, commonly found in most 
conventional FEM simulator worlds (based on Figure 3-4 which documents the 
domains of study). 

Problem Domain  (P)

User Domain (U)

U:formulates
Visualization Domain  (V)

Pre-Processor Domain  (PP)

P:supplies 
problem data

Real World Domain (RW)
U:acquires  

knowledge from

PP:Uses 
discretization 

methods

U:observe problem in the nature

Simulation Domain (S)

V:display results 
based on specific 
simulation results

Simulator Domain (S)

PP:supply 
pre-processed data

S:implement
solution 

numerical 
methods

S:Supplies 
simulation results

Figure 3-5 Plexus Indicative Mood (Problem domains and their interaction) 
 
The existing domains include: 
§ The Real World, where humans acquire expertise. It gives a clearer 

understanding of what the designer has to deal with; 
§ The Problem Domain, which includes problems to be solved through the 

simulation;  
§ The Simulator Domain, simulator main characteristics, and strategies, etc; 
§ The Pre-processor Domain, is represented by the input data mapped to the 

simulators requirements, and also some applied structures or machines used to 
do this mapping;  

§ The Simulation domain, which consists of simulation results;  
§ Visualization Domain, where more elaborate and appropriate results are 

generated and viewed.  
§ The User Domain is composed mainly of engineers and scientists.  

 
Note that in Figure 3-5, we can identify some problem frames phenomena, which 
are part of the phenomena interface between existing domains. For example, 
between the User Domain and the Problem Domain we have an event controlled by 
the User Domain (U: Formulates, indicating that the User controls the problem 
formulation), etc. Those domains include a lot of information explained in Chapter 
2 about FEM Simulation.  
 
Next, we describe each of the involved domains. Some of them include existing 
commercial machines, which can be available in a FEM simulation analysis, such as 
commercial simulators (in the Simulator domain), mesh generators (in the Pre-
processor domain). During this chapter, in the domains description we present meta-
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models, whose objective is to describe the involved concepts, syntax and semantic. 
Some of the meta-models represent the concepts that will help the formulation of 
the simulation problems and solution strategies in the FEM context. UML class 
diagrams will be used to represent the domains relationship. In particular, we define 
the following stereotypes: domain and phen-entity (which represents phenomena 
classified as entities).  
 

3.3.2 Real World Domain 
 

According to the context diagram, the Real World Domain is the scientific world 
where the engineer obtains information. In other words, it refers to the mathematical 
domain, where whole information about the problem to be simulated and respective 
solution methods come from. The mathematical world domain (Math World) is 
derived considering the physical world domain (Physic World), the geometry 
domain (Geometry World). The mathematical world domain (Math World), is in 
turn composed by the domain of exact mathematical world (Exact Math World), the 
domain of solution strategies (Solution Strategies World), and the domain of 
discretized mathematics (Discretized Math World). The FEM Domain is based on 
mathematical discretization of exact mathematical behaviour laws. The FEM 
Domain also restricts the Solution Strategies World, and is composed of Geometry 
Discretization and Phenomena Discretization sub-domains. The Real World Domain 
and the involved sub-domains are described in Figure 3-6. 
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Figure 3-6 Real World Domain 
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From Chapter 2, Figure 2-6 and Figure 2-7 we can identify several concepts, that is, 
problem frames phenomena, which compose the involved domains [JAC01]: 
§ Entities: Exact Vector Field (in Physical World), Exact Behaviour Laws (in 

Exact Math World), Exact Geometry (in Geometry World), Discretized 
Behaviour laws (in FEM), Geometric Mesh (in Geometry Discretization), 
Discrete Vector Field, Shape Functions (in Phenomena Discretization), etc 

§ Event: Discretization of Behaviour Laws (in FEM), Mesh Generation, Exact 
Behaviour Laws Formulation (in Exact Math World), and Physical Model 
Creation (in Physic World), etc. 

§ Values: Finite Element Geometric Shape = Triangle (in Geometry 
Discretization), and Mesh Generation Method = Restricted Delaunay (in 
Geometry Discretization), etc.  

§ States: Geometry Discretized or Mesh generated (in Geometry Discretization), 
Behaviour Laws Discretized (in Phenomena Discretization), and Solution 
Strategy Defined (in FEM Discretization), etc. 

§ Truth: Discrete Weak Form equivalent to the System of Algebraic Equations 
(in FEM domain), and Mesh Generation Method ShouldBeCompatibleWith 
finite element geometric shape (in Geometry Discretization), etc. 

§ Roles: Triangle defines Finite Element Shape in Mesh Generation (in 
Geometry Discretization), etc. 

 
The domain phenomena (problem frames phenomena), that compose the domains in 
Figure 3-5, was be exemplified by a small set of concepts, because our purpose is 
only to illustrate how these definitions can help the understanding of the involved 
domain information (events, entities, truths and states, etc). 
 

3.3.3 Problem Domain 
 
The Problem Domain includes the exact and discretized problem: 
§ The exact problem consists of obtaining the exact vector fields, which satisfy 

the exact behaviour laws (coupled multi-physics) defined on a given exact 
geometry.  

§ The approximate (discrete or discretized) problem consists of obtaining the 
discrete vector fields defined on an approximated geometry, which satisfies the 
system of algebraic equations, which resulted from the discretization 
procedures applied to the exact behaviour laws. 

 
In order to define a problem several pieces of data are needed and must be supplied 
by the User Domain. For instance: the exact geometry, phenomena data, 
phenomena-geometry relationships, phenomena-phenomena relationships, and 
auxiliary methods (e.g. mesh generation method), etc.  
 
As seen in chapter 2, the discretization processes starts with the application of a 
FEM technique (from a FEM domain) the exact problems (in a Exact Math World 
domain), which will be transformed into the approximate (discretized or discrete) 
problem (from a FEM domain) by geometry discretization and phenomena 



 

 49

discretization methods (from a Geometry Discretization domain and Phenomena 
Discretization domain, respectively).  
 
Some of the problem frames phenomena, identified in the Problem Domain are, for 
example: (i) Entities such as the discretized geometry and discrete vector field. (ii) 
Events such as discretization; (iii) States such as DiscretizedProblem, which is a 
state of a given problem. 
 
 

3.3.4 Pre-Processor Domain 
 
Remembering that the definition of the discrete (or discretized) problem considers 
for granted several pieces of data. Some pieces are not usually given by the user and 
should be generated and their relationship with the discrete problem should be 
established before the simulation itself begins. For example, the geometric mesh. 
The “pre-processing” phase is responsible for the transformation of the user input 
problem data into data structures in the form acceptable by the analysis.  
 
The Pre-processing domain includes problem frames phenomena such as: (i) the 
relationship between phenomenon and geometry entities, the relationship between 
phenomenon-phenomenon entities, and the definition of phenomena methods and 
processes; (ii) Events such as phenomena generation and geometry generation; 
mesh generation (geometric and phenomenon), and simulator configuration, etc.  
 
The extent and complexity of the pre-processing phase depends on the level of 
abstraction supplied by the simulation system for the problem and solution 
definitions. Particularly, for coupled multi-physics problems, the pre-processing 
phase can become very intricate if high levels of abstractions are not considered. 
 

3.3.5 Simulator Domain 
 
This includes the computational system, which is used for the simulation itself, 
which means the computation of the solution to a given discrete problem. It 
executes processes such as: step estimation in the time progression scheme, model 
(physical and mathematical) and discretization adaptations, solution of systems of 
algebraic equations, and Error Estimation, etc. In spite of the commercial software 
available, which support FEM simulation, many problems are still beyond their 
scope. When defined/implemented from scratch, a simulator for complex problems 
demands hard work. Frequently simulators and simulations need to be redefined 
many times, which, without the definition of a standardized reusable way, implies 
heavy reprogramming. The main processes involved in a simulation were detailed in 
Chapter 2. 
 
We can identify several concepts, that is, problem frames phenomena, which 
compose the Simulator domain. They include: (i) Entities such as: Pre-
ProcessedProblem, SystemofEquations, and SimulationResults, etc; (ii) Events such 
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as SimulateProblem, CalculatePhenomenaContributions, SolveSystem, and 
CalculateNextTimeStep, etc; (iii) States such as Error Estimated, and 
InitialTimeStepCalculated, etc; (iv) Values such as kindofsystem = ‘Linear’, 
Method = ‘NewtonCotes’, etc; (v) Roles such as SimulateProblem 
(Pre_processedData, and SimulationResults), etc. 

3.3.6 Simulation Domain 
 
This domain represents the entities that correspond to data generated during a 
simulation or the simulation result. It represents hard work, but frequently neither 
stored nor maintained. This domain must be verified and validated for the guarantee 
of proper results. So, some problem frames phenomena found in the Simulation 
domain includes: (i) Entities, such as Simulation Results and Pre-Processed 
Problems; (ii) States such as Problem Solved.  
 

3.3.7 Visualization Domain 
 
This domain corresponds to the “post-processing” that takes analysis output and 
generates the data required by the user in the form accepted by the viewer. The 
domain can include an appropriate machine (visualization environment), which 
helps this visualization; the physical problem solution (its result) is processed in 
order to obtain the quantities of interest for the user and for the required 
visualization. An important aspect is that the existing visualization environments 
require the data for visualization in a specific format. 
 
Some problem frames phenomena found in the Visualization domain are: (i) 
Entities, such as Images, format, and visualization environment, etc; (ii) Events such 
as: View a specific Distribution (e.g. view the distribution of the involved stresses 
and temperatures in a structure), etc. 
 

3.3.8  Users Domain 
 
This domain includes persons that are responsible for events such as: building of 
simulators, running simulations and the visualisation of simulation results. They are 
composed of entities such as engineers, scientists and students, etc. That is, FEM 
simulator designers, developers and users, which are considered as problem frames 
phenomena entities. 
 
In this section the knowledge domain (indicative mood) was described. We did not 
give many details because the FEM method has already been explained in Chapter 
2. In the next section, the Plexus proposed environment (opative mood) is presented. 
The existing domains will be described together with some specific machines and 
given domains, which compose or interact with the Plexus machine. 
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3.4. Proposed Environment for the Development of FEM Simulators (Optative) 

Our goal is to propose specific solutions, which can be gathered in a Simulation 
Environment for the development of FEM simulators (the Plexus System). Many 
applications are going to be developed, within the specific domain; so the 
timesaving of reuse will recover the time invested to develop it.  
 
The desired Simulation Environment must improve domain comprehension 
(through abstractions and pre-defined data); support reusability of simulation 
models and numerical solutions; simplify requirements specification; focus on 
application specific functionality; and implement specialist routines for automatic 
programming, see Figure 3-7.  
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3-7 Non-functional Requirements 
 
The proposed environment also requires the management of great volumes of data, 
previously built components, phenomena, phenomena coupling, algorithms 
components, definition of persistent data and simulation knowledge reuse. There are 
also some systems, which may interact with the Plexus system, such as: (i) CAD 
systems, to input information related to geometries and so on; (ii) library 
components, since there are programs available that can be coupled to Plexus e.g. 
BLAS (Basic Linear Algebra Solvers); (iii) Image reconstruction systems; (iv) 
Visualization systems; (v) Virtual modelling systems. 
 
The new Plexus environment must include features such as: 
§ Provision of a knowledge base management. 
§ Abstractions and pre-defined data for problem definition. 
§ A pre-processor machine, which helps the data treatment. 
§ Allow the use of different numerical methods in the simulation machine; 
§ Help simulator building and configuration, supporting the reusability of 

different simulators strategies. 
§ Support modularisation of simulator structuring. 
§ Definition of a systematic method to organize and describe processes in the 

FEM context in order to reuse them. FEM simulator process and process reuse, 
based on processes their types and levels of computation inside a FEM 
simulator. For processes to be reusable, we need to express common elements 
and variables within one process. 
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The general objective of our approach is to facilitate and shorten the development 
time of FEM simulators. To achieve this, the definition of a group of solutions for 
the FEM domain was considered: the definition of a specific domain architecture 
(applying abstractions which promote reuse), the definition of customisable and 
modular solutions, considering existing software engineering standards (i.e. 
reference models); management of commonality across different simulators; 
definition of adaptative models, and to explore process reuse. See Figure 3-8 . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-8 Solutions Decomposition 
 

3.4.1 The Plexus System  
 
The proposed environment will assist in the construction of simulators, based on 
meta-data information. It will support the development of various different classes 
of simulators, specified by the designer (engineer), not just one specific simulator. 
The developed simulator uses complex structures (that represent data and software 
components) to implement coupled phenomena simulators in the FEM context. The 
environment allows the design of an integral piece of software, which is able to 
solve the coupled phenomena problem as an integrated solution for the 
considered/defined coupling. Figure 3-9 gives an overview of the Plexus system 
input and output. This figure does not follows a specific notation, is only 
illustrative. 
 
 
 
 
 
 
 
 
 
 
 

                                       Figure 3-9 Plexus Environment -Desired Machine        
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In this work, however, we strive for the construction of reusable simulators, which 
take into account several requirements that will be further detailed. In Figure 3-10 
we propose a general process for FEM simulation development, which involves the 
following activities: (i) Defining a meta-simulator model. (ii) Building the required 
simulator, that is, a semi-complete simulator based on the designer simulator model 
is constructed. (iii) Configuring this simulator, using defined articulation strategies3, 
resulting in the final simulator. This simulator could also be reconfigured later. (iv) 
Using the final simulator for the definition of a general problem scenario. This, in 
turn, will run different requested simulations. Finally the visualization process can 
be used for a better understanding of the results.  
 
In Figure 3-10, the correspondent states encapsulate the systematic similarities 
amongst simulators, allowing software FEM simulator developers to readily extend 
the framework components into applications that address specific simulator 
requirements. It provides a process organisation, which supports the required 
encapsulation for exploring reusability in the development of a new application. 
More details will be seen in the Plexus architecture, in Chapter 4. Hence, developers 
could write new applications with a proven design and assure the reuse of code and 
data. 
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Figure 3-10 Simulator Building and Simulation -Problem Definition and Solution 

 
An example of the application of the process is described as follows. Imagine that a 
specialist wants to build a simulator for the following scenario/requirements: a 
simulator capable of solving problems involving transient phenomena; the 
phenomena context includes temperature-dependent elasticity, rigid body motion 

                                                           
3 The simulator main solution algorithm is here considered as an articulation of pre-defined processes. Hence, 
it occurs at a higher computational level then the “classical” simulator processes. 
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and heat transfer. First, the designer defines these models through the Plexus 
system. Then, the designer asks the Plexus system to build it. The Plexus identifies 
the proper global algorithm, taking into account the feature supplied and matches 
them with some pre-defined global algorithm skeletons, for the simulator and 
generates a semi-complete simulator. Then the designer configures the simulator 
with the phenomena articulation strategies, that is, identifying how phenomena will 
be grouped (their contexts) and solved in further simulated problems. As a result the 
simulator will be ready for the execution of simulations. At this stage, users of the 
simulator will define several scenarios for running simulations. In this work we will 
apply this approach. Two examples of problems that can be solved by the defined 
simulator are described in Appendix A. After or during execution of a simulation, 
the user can view data through a specific visualization tool. 
 
Through the simulation environment the user is capable of decomposing the 
geometry into relevant components, where phenomena are defined. It is also 
possible to copy and selectively distribute geometry data between phenomena. The 
user can also define different solution strategies for different phenomena groups. 
Moreover, the user has the flexibility to define algorithms as data in several levels 
of the simulation, to integrate pre-built software components to the environment, 
and run local or remote simulations.  
 
In the following subsection, we will consider simulator development problem 
decompositions (structuring) [JAC01]. 
 

3.4.2 The Plexus Context Diagram 
 
The Plexus context diagram is presented in Figure 3-11. It is composed of the 
desired machine and the domains with which it interacts. Note that there are new 
domains, which were defined to give support to the new system, like Knowledge 
Base Domain and the Pre-Processed Data Domain, which were not present in Figure 
3-4, and are part of the defined domains to give support to the machine. Also the 
User Domain was enriched with new users and now is called Plexus User Domain.  
 
Some of the Plexus domains include sub-machines, which satisfy some of the 
defined requirements for the Plexus machine. They try to complement the 
automation of the existing world, described in Figure 3-5. These sub-machines are 
the ones described in Figure 3-24 and each one will take part of a specific domain. 
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Figure 3-11 Plexus Context Diagram 
 
Note that Figure 3-5 and Figure 3-11 represent different diagrams. The first presents 
a diagram of the indicative mood, while the second explains the machine to be built, 
together with the domains that will interact and support the required Plexus 
machine.   
 

3.4.3 Real World Domain  
 
This domain is the same as the one presented in the section 3.3. It is the outside 
world, which will supply information to users and to the knowledge (stored in the 
Plexus System).  

3.4.4 Plexus User Domain 
 
The Plexus User Domain (U) is composed of different users: Designer, Simulator 
User and Administrator, see  
Figure 3-12. Remember that the Problem Frames represent people as biddable 
domains. The Designer Domain is, in turn, composed of scientists and engineers; 
they are responsible for the simulator model definition, or to supply the general 
information for the Knowledge Base Domain. The designers select information 
from the Knowledge Base Domain in order to specify a configurable simulator. The 
Simulator User Domain represents final system users, who will rely on the simulator 
for different problem solutions and running different simulations and post-
processing. The persons that are responsible for the system configuration and table 
loading represent the Administrator domain; they are not necessarily FEM simulator 
specialists. 
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Figure 3-12 Designer, User and Administrator Domain 
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The Plexus Users Domain is intrinsically related to the Knowledge Base Domain. 
 

3.4.5 Knowledge Base Domain  
 
The Knowledge Base (KB) domain represents the discretized information 
(Geometry and Phenomenon Discretization domains, see Figure 3-6) that will take 
part of the system knowledge. The Knowledge Base domain is composed of: Basic 
Knowledge Domain, Simulator Knowledge Domain, and Problem Knowledge 
Domain. The Basic Knowledge data is the most reusable data; it helps Plexus users 
in the definition of simulators and simulation problems. The Simulator and Problem 
Knowledge domains are composed of data related to simulator and simulation 
problems respectively. 
 

Basic Knowledge
<<domain>>

Simulator Knowledge
<<domain>>

Problem Knowledge
<<domain>>

0..*0..*1..*1..*1..11..1

KnowledgeBase
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Figure 3-13 Knowledge Base Domain 

 
In the sequence we present them in more detail. 
 
a) Basic Knowledge Domain 
 
This domain consists of the Geometry, Component and Phenomenon domains (see 
Figure 3-14).  
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<<domain>>
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<<domain>>
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Figure 3-14 Basic Knowledge Domain 

 
The Phenomenon Domain abstractly defines phenomena as a fact or occurrence, 
which can be described by a certain finite number of pieces of information, which, 
in turn, have to obey a set of behaviour laws (for example, fluid flows and heat 
transfer). This domain is composed of semi-defined phenomena, which will guide 
and further help simulation phenomena definition in the Problem Knowledge 
domain. 
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The Component Domain is an abstraction that represents software components, used 
for implementing parts of processes, e.g. simulator skeletons and phenomena 
methods. Hence, they represent the most reusable parts of the Plexus system. 
 
The Geometry Domain consists of the supplied geometries. Each of the geometries 
is represented hierarchically4, from the definition of the highest dimension 
geometric part, for instance - volume, down to the definition of the lowest 
dimension parts (i.e., points). 
 
Other information that is part of the basic knowledge domain is related to existing 
possible classifications, such as: phenomena contexts, types of phenomena 
coupling, types of boundary conditions and restrictions. 

 
b) Simulator Knowledge Domain 
 
This domain is composed of the Algorithm Skeleton, Simulator Model and 
Configuration Domains, described below. 
 
The Algorithm Skeletons Domain represents algorithms defined by a simulator 
designer, for a simulator. By skeletons we mean those parts of the solution process, 
which can be replaced, making it possible to build different simulation strategies 
(configuration).  
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AlgorithmSkeleton
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Figure 3-15 Simulator Knowledge Domain 

 
The Simulator Model Domain includes the characterization of several simulators 
(see Figure 3-16). It is composed of:  
 
§ The Simulation Scenario determines the main features of simulation strategy: 

phenomena classes (transient, steady, etc.), estimation error (in space, time and 
model), adaptation (in space, time and model), etc. Each Simulation Scenario, 
also called Skeleton Specification, represents the classes of problems that a 
simulator will be able to tackle in a broad sense; it includes a list of simulator 
major features (type of phenomena, estimation error options and adaptation 
options).  

§ The Phenomena Context describes phenomena classification groups, e.g. heat 
transfer in solids or liquids, flow of Newtonian fluids, and linear or non-linear 
elasticity. 

                                                           
4 Plexus uses the boundary representation method (B-rep) for geometry management. 
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§ A Global Skeleton, which is an algorithm skeleton used to implement the 
highest level of the solution scheme of a simulator. It implements the simulator 
scenario. 
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Figure 3-16 Simulator Model Domain 

 
The Configuration Domain is related to simulator configurations. Each simulator 
configuration is represented by simulator articulation strategies, which describe the 
way involved phenomena will be solved together. Articulation strategies can be 
defined at block level (which consider different groups of phenomena) or group 
level (a group of phenomena); they are represented by Block Data and Group Data 
properties, described in Figure 3-17. More details, which justify the definition of 
blocks and groups of phenomena, can be seen in Chapter 5 (FEM-Simulator 
Skeleton Pattern). 
 
Block Data is defined by: 
§ Block context, which represents the general classification of the phenomena 

grouping. We can have, for example, the heat transfer and elasticity block 
contexts. This means that in a specific problem we can have the heat transfer 
problem solved as one block, while another block solves the elasticity 
problem. Each of these blocks involves groups of phenomena compatible with 
its context.  

§ Block Skeleton, which is an algorithm related to the block level of 
computation. Represents processes involving groups of phenomena in the 
simulation. 

§ Block Method, which is a method (another skeleton) used by a block. 
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Group Data is defined by: 
§ Group Context, which is the general classification of phenomena grouping, 

considering the phenomena contexts. 
§ Group Skeleton, which is an algorithm related to the process in the group level 

of computation, representing strategies for solving groups of phenomena;  
§ Group Method, which is a method (another skeleton) used by a group. 

 
Examples of Block and Group Skeletons and Context can be found in the Chapter 5, 
which details a FEM-Skeleton pattern. 
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Figure 3-17 Configuration Domain  

 
So far we have described the Basic and Simulator Knowledge Domains (according 
to Figure 3-13). Now we will describe the Problem Knowledge Domain that is 
related to problem data, which will be solved by the defined simulators. 
 
c) Problem Knowledge Domain 
 
This domain consists of several simulation problems to be solved by a simulator. 
Each problem is composed of: the geometry where the problem takes place, 
phenomena under study, simulation regions, representing the geometry entities 
where these phenomena occur and blocks and groups of phenomena (see Figure 3-
18). By group, we mean a set of phenomena, which are going to be solved 
monolithically (together). By block, we mean a set of groups of phenomena, which 
will be articulated in a solution branch independently from other blocks. The 
definition of more than one block is justified in the case where a problem can be 
partitioned into either independent or coupled sets of groups of phenomena. For 
each group of phenomena the user must specify the scenario (front tracking, type of 
linear solver, equation type, etc) that will generate specific algorithm skeletons and 
constrain the group methods.  



 

 60

Block
<<phen-entity>>

PhenGroup
<<phen-entity>>

Phenomenon
<<phen-entity>>

1..*1..*

Problem Knowledge
<<domain>>1..*1..*

1..*1..* 1..*1..*

Geometry
<<phen-entity>>1..*1..*

SimulationRegion
<<phen-entity>>

1..*1..*

1..11..1

1..11..1

 
Figure 3-18 Problem Knowledge Domain   

 
Phenomenon is composed of complex abstraction tools responsible for providing 
the contributions of a natural phenomenon to the algebraic equations to be solved in 
each instant of the solution process.  
 
Having described the Knowledge Base Domain (KB) we can now move on describe 
the Simulator Domain (S). 
 

3.4.6 Simulator Domain   
 

The Simulator Domain consists of (see Figure 3-19): 
§ The Simulator Builder, which corresponds to the software program and data 

used to construct the simulator. 
§ The Simulator Configurator. 
§ Simulation Data corresponds to the pre-processes data supplied by the Pre-

processor. 
§ The Simulator Kernel, which is a workflow that executes a simulator 

specification, applying the Simulation Data. 
§ The Simulator Domain is described in sequence. 
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Figure 3-19 Simulator Domain 

 
The Simulator Builder Domain is composed of a machine (tool) and data, which are 
capable of building a semi-complete simulator considering a defined or selected 
simulator model. A Semi-complete simulator represents a framework, which is 
responsible for the control of the main process flow (Simulator Kernel), i.e. the 
user’s simulation strategy implementation, which will guide the remaining 



 

 61

processes (pre-processing, simulation, and post-processing). It is built from a series 
of decisions about the kind of problem that the strategy will satisfy, for instance the 
type of phenomena (transient, pseudo-transient), error estimation and type of 
adaptation (if it exists). Hence, it represents the basic infrastructure for simulation 
execution. It is the class that can be customized with the possible simulations, which 
represent the main process. Thus, it maintains the core of simulation through the 
global algorithm skeleton.  
 
The Simulator Configurator Domain represents the machine (tool) and data for 
configuring a simulator. A configured simulator means a simulator state where data 
about the desired articulation strategy has already been supplied for the semi-
complete simulator. By articulation strategies we mean: simulator configuration 
data following the specified simulation scenario, which determines the block and 
group skeletons, the number and type of blocks and groups of phenomena, their 
skeletons and relationship and execution order.  
 
The Simulator Kernel Domain is the main process (engine) that executes the 
simulator workflow. Figure 3-20 presents a defined workflow process to be 
controlled. In Plexus, the main skeleton defined for a simulator represents the 
workflow business process. The invoked applications include the Block and Group 
Skeletons, and the Computational Phenomenon (which is the complex abstraction 
tool responsible for providing the contributions of a natural phenomenon to the 
equations to be solved in each instant of the simulation solution process). The 
Kernel is represented by the Simulator component detailed in Chapter 4. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-20 Business Process Workflow controlled by the Simulator Kernel 
 
Simulation Data Domain is composed of the Problems Data - Phenomena, 
Geometry, and Finite Element Domains - after the appropriate discretization. 
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3.4.7 Pre-processor Domain   
 
The Pre-processor Domain includes a machine (a tool) that will map the users input 
data (Problem Data) to the suitable Pre-processed Data structure (Figure 3-21). It is 
independent of the simulator itself, and is related only to the data structure used by 
the simulator. 
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Figure 3-21 Pre-processor Domain 

 
The Pre-Processor Domain is composed of specific managers, which deal with 
objects used in the generic pre-processor control (Object Manager Domain), 
geometry (Geometry Manager Domain) and phenomena (Phenomena Manager 
Domain), see Figure 3-21. It also includes sub pre-processors, which deal with 
specific data mappings. More details about these tools are given in chapter 4, the 
pre-processor subsystem section. 
 

3.4.8 Simulation Domain   
 
The Simulation Domain is composed of the following domains: the first is the 
Simulation Problem, which corresponds to the problem which will be solved by the 
simulator and that will be mapped to the appropriate Simulation Data, after the pre-
processing. The second is the Simulation Result Domain, which corresponds to the 
data obtained after a simulation run (see Figure 3-22). 
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Figure 3-22 Simulation Domain 

 

3.4.9 Visualization Domain  
 
The visualization domain is composed of several domains described bellow and 
presented in Figure 3-23. 
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Figure 3-23 Visualization Domain 
  

§ Simulation results are the data generated for a problem simulation. 
§ An Extractor selects, gather and maintain relevant data to be used for 

visualization (the VisualizationExtractedData). 
§ ExtractUsedFormat is the specific data format used by the Extractor to 

maintain the extracted data. 
§ The Viewer is responsible for mapping the extracted data to a format that can 

be understood by an existing Visualization Environment. 
§ The data in the appropriate format (known by the visualization environment), 

generated by the Viewer is called the MappedData. 
§ Visualization Environment (the applications available in the market, e.g. Data 

Explorer [IBM02] and AVS [AVS02]). 
§ Visualization Results (which are relative to the final data presented by the used 

environment).  
 

3.4.10 Classification of Plexus concepts according to Problem Frames 
 
Remember that following [JAC01], the domains existing concepts are problem 
frames phenomena. They can be classified into: entities, events, values; states, truth, 
relations and roles. This classification helps to understand Plexus’s concepts: 
§ There are some basic entities such as Simulator, Phenomenon, Geometry, 

Groups of Phenomena, Algorithm skeleton, Group of Phenomena and 
Numerical Methods.  

§ There are some defined values, such as: (i) types of phenomena coupling such 
as: weak, strong, etc; (ii) phenomena contexts, for instance, heat transfer in 
solids or liquids, flow of Newtonian fluids, Linear elasticity or non-linear 
elasticity. Boundary Conditions Types (which can be for example: Dirichlet, 
Neuman and Mixed) 

§ A Simulator can have the following states: (i) modelled simulator, which 
indicates that a specification of a simulator using a pre-defined model has been 
developed; (ii) built simulator, indicates when the simulator code has already 
been built; (iii) configured simulator, used when data about the desired 
articulation strategy have already been supplied for the simulator; (iv) 
simulation done, after a simulation has been finished. 

§ Existing events are for example: (i) input simulator model, (ii) input 
articulation strategies, (iii) build simulator, (iv) start simulation running, (v) 
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change simulator configuration, alter block and group articulation; (vi) input 
knowledge data; (vii) input problem data. 

§ Event roles, that is, the participation of one or more individuals in an event: 
BuildSimulator (Simulator_x, SimulatorM1l), Configuration (Simulator_X, 
Articulation_Strategies_Y); SimulationRun (Simulator_X, Preprocessor_K, 
ProblemScenario_Y, Results). 

 
Until now we have described the Plexus context diagram, the involved domains and 
phenomena. In the sequence, for a complete analyse of the problem and 
specification, we will introduce the Plexus Problem Decomposition. The context 
diagram influences this phase, since the identification of the system required 
problem frames takes part of the problem decomposition. 
 

3.4.11 Plexus Machine Structuring 
 
The Plexus approach for the construction of simulators consists of sub-problems. 
Figure 3-24 shows the Plexus machine, which is composed by other sub-machines. 
This decomposition was based on the previous described context diagram and other 
information related to the proposed solution (e.g. the requirements of knowledge 
base management and simulator configuration): 
 
§ Knowledge Base Manager: is responsible for the maintenance of all 

information to be built and reused by the simulator.  
§ Simulator Builder: construction of a simulator based on a selected global 

scenario. Its concern is to ensure the right construction of a semi-complete 
simulator (based on the defined simulator model) responsible for simulator 
functioning. It ensures that the designer can further re-configure it, supplying 
the desired articulation strategies.  

§ Simulator Configurator: redefines simulator configuration from some designer 
supplied data. It changes the built simulator articulation strategies (see 
configuration domain for more details) by selecting other ones; and allows the 
designer to change the relationship between phenomena grouping.   

§ Pre-processor: responsible for the mapping/transformation of the user input 
data into a specific and appropriate defined data structure, which will be used 
by the simulator. It is described in more detail further on this chapter. 

§ Simulator: corresponds to the machine, which will be able to execute several 
desired simulations. It can be considered as a simple workflow structure that 
executes the constructed and configured Simulator, using Simulation Data, 
which includes Computational Phenomena (see GIG-pattern in Chapter 5).  

§ Viewer: allows further post-processing of simulations result data. 



 

 65

 
 
 
 
 
 
 
 

 
Figure 3-24 Problem’s decomposition – Plexus Sub-machines 

 
This decomposition was based on the requirement for building an environment for 
the development of simulators, following FEM conventional analysis approach. 
Next we will detail the main Plexus machine and each involved domain. Since the 
main Plexus problem frame is very complex, it must be decomposed into several 
simpler problem frames. In order to give an illustration of the representation of a 
class of sub-problems, we will detail the Simulator Builder Problem Frame and the 
Pre-processor Problem Frame in section 3.6. 
 

3.5. The Plexus Problem Frames 

The identification of a set of problem frames, specialized in FEM simulator 
development, will assist developers in system description and analysis. To illustrate 
the Plexus problem frames we choose to describe the Simulator Builder and the Pre-
processor Problem Frames. Each decomposed sub-problem has its own partial views 
of the world and machine, taken from the original problem and is shown in a 
problem diagram. As described in section 3.2, a problem diagram has a concern, is 
composed by a machine, parts of the world with which the machine interact 
(involved domains which can be given or designed), the requirement description 
and the interface of shared phenomena (the specification phenomena) and the 
requirement phenomena (a predicate over the phenomena). 
 
In a complete description, the defined Plexus Problem Frames could be further 
decomposed into instances of Jackson’s basic problem frames [JAC01]. For 
example, the Knowledge Base Generator frame can be further decomposed into 
simple work-piece frames and the Pre-processor and the Simulator Builder into 
transformation frames. This identification helps in further descriptions, once 
Jackson details the way of describing each of them. 
 

3.5.1 Simulator Builder Problem Frame 
 
This problem frame concern is to ensure the construction of a simulator from a 
selected global scenario with a default configuration, Figure 3-25. The Simulator 
Builder finds the information related to the stored simulator model specified by the 
designer (through the global scenario and global skeleton). It constructs the 
simulator considering the default configuration (group and block skeletons) supplied 
by the knowledge base. The process of building the simulator is mainly concerned 
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with the integration of the global, block and group skeletons defined by the 
configuration data. 
 
 
 
 
 
 

 
 

Figure 3-25 Simulator Builder Problem Frame 
 
In order to simplify the diagram in Figure 3-26, a decision was made to use letters 
(a,b,c,..) in the specification phenomena, instead of including the controlling 
domains which will be presented next, following [JAC01] notation. The interfaced 
phenomena and the domains that control them are represented in the diagram (the 
Simulator Builder machine and the other involved domains: Designer, Knowledge 
Base and Simulator).  
 
The requirement specification, in a problem frame, includes the indicative mode 
(what exists independently of the machine defined) and the optative mood (the 
requirements of the defined machine). The domains the machine interacts are 
represented by the indicative mode (see Figure 3-6) (Knowledge base, Designer and 
the Simulator). The optative mood is represented by the specification phenomena 
(see Figure 3-27) and the requirement phenomena (see Figure 3-28). Note that, in 
one problem frame the optative mood can be the indicative mood and in the other 
not. E.g. the Knowledge Base, which is optative in the Knowledge Generator is 
indicative in the Simulator Builder. 
 
 
 
 
 
 
 
 
 

 
Figure 3-26 Indicative Mood – Simulator Builder Problem Domain 

 
Note that the machine Simulator Builder (SB) controls some actions:  
§ It interacts with the designer to get the required simulator model, and validates 

input data. 
§ It asks the knowledge base for the simulator model data, that is: the simulator 

scenario and algorithm skeletons, etc. 
§ It sets the default configuration. 
§ It builds the simulator. 

Problem Domain (Indicative Mood) 
 

The Simulator Builder Machine interacts with the following domains:  
§ The Designer, is a biddable domain, which selects simulator global 

scenarios and algorithm skeletons and starts simulator building; 
§ The Knowledge Base Domain is a lexical domain, which supplies 

information about the simulator model; 
§ The Simulator is the built domain that is a causal domain. 
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Figure 3-27, details some examples of the interfaced phenomena and which domain 
is controlling them. A list of phenomena is associated with each controller domain, 
and describes the phenomena it controls. The symbol ! separates the list of 
controlled phenomena from the controller domain. The controller domain is 
identified by an abbreviation using uppercase letters (like D and SB). For example 
D!{Select_Simulator_Model} means that the designer selects a specific simulator. 
In turn, the Builder gets this information from the Knowledge Base 
(SB!{Request_Simulator_Model}). 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 

 
Figure 3-27 Optative Mood: Simulator Builder Specification Phenomena 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 3-28 Optative Mood: Simulator Builder Requirement Phenomena  
 

3.5.2 Pre-processor Problem Frame 
 
This problem frame is concerned with the processing and constructing of dynamic 
structures (called pre-processor control structures) that will generate suitable 
simulator internal data, from the problems input data, see Figure 3-29. This data is 
related to mathematical and physical information (e.g. geometry, boundary 
conditions and vector fields). The system required states are presented in Figure 3-
31. 

Requirement phenomena (Optative Mood) 
 

The system requires that: 
Someone selects a pre-defined simulator model and start the simulator building: 
 s1: {Simulator_Model_Selected, Simulator_Building_Requested}  
The existing selected model be retrieved from the knowledge base: 
s2: {Simulator_Model_Given}   
A simulator is built, if everything is ok: 
s3: {Simulator_Built}  

 

Specification phenomena (Optative Mood) 
 

The simulator builder “requests the Simulator Model” and the designer “selects, 
through the available ones”: 
a: SB! {Request_Simulator_Model} 
     D! {Select_Simulator_Model, Start_Simulator_Building} 
The simulator Builder requests from the Knowledge Base the respective 
simulator data, which answers with the requested data 
b: SB! {Request_Simulator_Data} 
    KB!{Give_Global_Skeleton_Data, Give_Default_Configuration }  
The simulator Builder, constructs the simulator with a default configuration: 
c: SB! {Set_Default_Configuration, Build_Simulator} 
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Figure 3-29 Problem Frame Pre-processing 
 
The Pre-processor machine interacts with the following domains, see Figure 3-30: 
Knowledge Base (KB), which stores existing reusable data (e.g. problem data); User 
(U), a biddable domain which desires to solve simulation problems; Pre-processed 
Data domain (PD), which is a given lexical domain, which represents the data 
structure that will be used further in the simulation. It also has to interact with the 
Pre-processor Control Structure Domain (PCS), which is a causal domain that 
represents appropriate controllers for the input data mapping of the simulator data 
structures.  
 
 
 
 
 
 
 

 
Figure 3-30 Indicative Mood: Pre-Processor Problem Domains 

 
Figure 3-31 describes the desired states to be achieved by the Pre-Processor 
machine, such as Pre-processor control structures are mounted. 
 

 
 
 
 
 
 
 
 
 

Figure 3-31 Optative Mood: Pre-processing Requirement Phenomena 
 

Requirement phenomena, that is desired states (Optative Mood) 
The system requires that:  
s1: A problem is identified, and the pre-processor started 
s2: Problem data is retrieved 
s3: Pre-processor control structures are mounted 
s4: Simulator data is generated 

        Problem Domain (Indicative Mood) 
 

The Pre-processor Machine interacts with the following domains:  
§ User (U); 
§ Knowledge Base Domain (KB),   
§ Pre-Processor Control Structures (PCS) 
§ Pre-Processed Data (PD) 
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Note in Figure 3-32, that the Pre-processor machine (PP) controls events such as: 
Geometry Pre-processing, Phenomena Pre-processing, Group and Block Pre-
processing, Block Pre-processing, Geometry Mesh Generation, Phenomena Mesh 
Generation, Geometry Copying and Collapse and so on. Each one can be 
decomposed into a problem frame. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 3-32 Optative Mood: Pre-processing Specification Phenomena 
 
We can identify that the Pre-processor includes one of Jackson’s basic 
Transformation problem frames [JAC01], which describes a machine where some 
readable input files data is transformed to a certain output file (with a particular 
format), according to certain rules. In the pre-processor we can identify: some input 
domains (Knowledge Base and Designer), output domains (Pre-processor Control 
Structures and Simulator Data) and requirements. Although Pre-processor control 
structures are output, they are also internal data, which will be further transformed 
to generate the output simulator Data. 
 

3.6. Problem Frames Evaluation 

In this chapter, we choose the Problem Frames technique for our complex 
engineering domain description due to several aspects. Some were related to the 
separation of the problem domain and the machines (indicative and optative 
moods), others due to the use of Problem Frame diagrams to represent particular 
solutions of classes of problems. In this work, we described a sequence of steps for 
FEM simulator structuring that promotes reuse of components and data. Some 
advantages and problems are enumerated below (establishing the benefits, and 
suggesting that the approach is valuable, however not complete). 
 
The complex domain of FEM involves different sub-domains. Engineers need a 
technique, which uses common and compatible terms with their 

      Specification phenomena, that is some of the possible events 
 

      The pre-processor “requests the Problem Scenario” and the user “selects,   
      through the available ones”: 

a:PP! {Request_Problem_Scenario} 
   U! {Identify_Problem_Scenario, Start_Pre-processing} 

      The Pre-processor requests from the Knowledge Base the respective problem   
      data, which replies with the requested data 

b:PP! {Request_ProblemData} 
   KB!{Gives_Problem_Data (Simulation_Regions, Phenomena,…)}  

      The Pre-processor, runs several sub-pre-processes and generates the  
      simulator data   

c: PP!{PP!{PreprocessGeometry, PreprocessPhenomena, PreprocessGroup, etc}  
d: PP! {Generate_Simulator_Data}  
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scientific/engineer’s terminology. As FEM is complex, simplicity in modelling is 
also a desire. The extensibility and reuse of the previous solutions helps to reduce 
development time, and improves the level of correctness. It is also important to 
represent the rationale and design decisions for the requirements, which are not 
considered in this chapter.  
 
We can make four general observations about the advantages of the use of the 
Problem Frames technique [JAC01] in FEM simulators:  
§ First, related to the appropriateness of the provided terms: the term domain is 

commonly used in mathematics, and also the term machine is applicable to 
simulator development. However, we have problems with the term 
phenomena, which cause confusion, since it has different meanings in Plexus 
(where we consider physical natural phenomena) and in the Problem Frames 
approach (where it means anything in the world). Also the term domain can be 
seen as very strong.  

§ Second, regarding reuse. Problem frames are one of a number of ways of high 
level grouping problems by type. Problem frames are similar to design patterns 
- elements of reusable object-oriented software, but are problem oriented rather 
than solution oriented. Problem frames make it easier to solve a problem once 
the type of problem is classified. In FEM, we use problem frames to capture an 
abstraction of a class of problems, for example the construction, configuration 
and pre-processing of simulators. Hence, it allows the definition of problem 
frames to be reused and detailed in a standardized way. This is reinforced by 
the fact that FEM is a domain specific application, where we can take 
advantage of existing expertise such as the reuse of skeletons.  

§ Third, the levels of detail are very appropriate. Problem frames have a 
distinctive characteristic, which is very attractive: they clearly separate the 
indicative and optative mood. In FEM this feature is used to describe the 
existing problem in a modularised way identifying the definition of a simulator 
exploring a reusable form through meta-models. Also the concept of 
phenomena, which involves the concepts of entities, states, and events, allows 
a clear enumeration of the involved data, and operations, and so on. In FEM 
we have for example the following states: Simulator Modelled, Constructed 
and Configured. This simplifies cross-references in the model definition. 
Another relevant aspect is the definition of the context diagram at problem 
level, giving an overview of the whole problem to be considered. Furthermore, 
Problem Frames allow the description of their involved domains using any 
language, such as UML, which is used in the Plexus meta-model definition. 

§ Fourth, some other gains are generic to requirements engineering, such as the 
support for precise definition of concepts through a more formal description 
(not discussed in this work), support for modularity in the definition of 
architecture in early stages, that helps system analysis and evolution.  

 
We also identified some disadvantages in Jackson’s technique [JAC01]. Despite the 
appropriateness of some terms, there are still some ambiguities in the way the 
concepts and categories can be applied. The definition of a meta-model may help to 
address those ambiguities or misunderstandings. The problem frames notation is 
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neither simple, nor intuitive, nor trivial. The complete documentation becomes very 
long. The need for predefined abstractions for representing the relationship between 
domains (like composition and restriction) could help domain grouping, 
comprehension and definition. It also does not identify some relevant notions 
present for example by Bubenko [BUB95] (e.g. causes and problems, applied in 
Chapter 2 for characterising an existing problem). Finally, Problem Frames do not 
treat goals explicitly and neither assists in solving conflicts.  
 

3.7. Final Considerations 

In this chapter Problem Frames were applied to structure the analysis of the world in 
which the problem is located and describe the involved concepts and what effects 
one would like the Plexus system to achieve.  
 
Next chapter will detail the definition of a specific architecture for the Plexus 
Simulator Environment, which will manage commonality across different 
simulators. The architecture is defined considering some quality attributes to which 
it maintains conformity (such as system reusability, flexibility and adaptability, as 
well as interaction with other systems).  
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Plexus Simulation Environment Architecture 

 
This chapter presents the Plexus architecture for supporting simulation of coupled 
phenomena based on FEM solutions. This architecture takes into account the 
required quality attributes, architectural components, and the interaction between 
components and their functionalities. The chapter gives a clear perspective of the 
whole system and the control required for its development, aiming to reflect system 
requirements such as reuse, modularity, and flexibility. The architectural 
abstractions used include frameworks and patterns, which are detailed in the next 
chapter. 
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4.1  Introduction 

 
Understanding of a domain feeds requirements that help to define an architecture, 
which determines components. In chapter 3 we made an in-depth analysis of our 
problem domain, FEM simulator development.The requirements for the proposed 
environment, called Plexus, were pointed out and discussed. In addition, the first 
structuring of the Plexus environment was proposed. In this chapter, we suggest an 
architecture and its components for this environment, considering the current trends in 
software engineering development. The approach takes into account the definition of a 
structure that improves the quality of the simulator designs. The defined architecture 
attempts to fill the existing gap in the development of FEM simulators.  
 
Some of the previous identified requirements are drivers for the Plexus’s architecture, 
such as: flexibility in the development of simulators, extensibility of the system 
through component integration, reduction of complexity, reusability (processes, data 
and models), and distribution. Quality attributes, such as performance are not the 
focus of this work, since many other studies are being developed in this area, such as 
performance analysis in the solution of linear and non-linear systems, and performance 
in matrix and vector calculations. However, this work tries to guarantee flexibility in 
the integration of the achieved results obtained in those performance research areas 
through the integration and modularity quality attributes of the system. Furthermore, 
the requirement of being a cooperative system was not considered in this work, due to 
the complexity involved in addressing it. 
 
Architecture is a design artefact that begins to map requirements into a solution. 
Quality attributes of a system are mainly permitted or precluded in its architecture. 
Hence, if the architecture does not comply with these qualities, from the beginning, 
one cannot expect to achieve them later on in the development. The architecture 
determines the structure and management of the project development as well as the 
resulting system, since teams are formed and resources allocated around architectural 
components. For anyone seeking to learn how the system works, the architecture is the 
place where understanding can be improved [CNL01]. 
 
The system architecture concept represents the main support for the development and 
maintenance of software systems of long term. One interpretation of software 
architecture definition is that presented in [BCK98]: “It is the structure or structures of 
the system, which comprises software components, the externally visible properties of 
those components, and the relationship among them”. Externally visible properties, 
refers to the assumptions that other components can make of a component, such as its 
provided services and shared resource usage. By making externally visible properties 
of components part of the definition, one intentionally and explicitly includes 
component interfaces and their behaviours. Components may be developed by the 
internal team, bought on the open market, mined from legacy assets, or commissioned 
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under contract. Once available, the components may be integrated to the system and 
tested [CNL01]. 
 
Software architecture can be observed better in terms of views. Views are particularly 
useful as guidelines for implementing and maintaining a system. Subsystems and 
components are typically specified into different views to show the relevant functional 
and non-functional properties of a software system [BUS96, BCK98]. Views in UML 
(Unified Modelling Language [OMG02]) can capture the structural and behavioural 
aspects [HR99]. Classes and packages can represent a structural view; on the other 
hand, the behavioural view can be represented by scenario, states and activities. 
 
As a generic modelling language, the UML offers a familiar notation for designers, 
besides allowing a direct link between object-oriented implementation and 
development tools. However, as a general-purpose language it has the problem of 
conceptual object vocabulary that cannot be ideal to represent architectural concepts. 
As there is a considerable interest in using general notation for architecture modelling, 
a great number of proposals have recently attempted to show how concepts found in 
ADLs (Architecture Definition Languages) can be directly mapped into an object-
oriented notation such as UML [ME99, HNS99, GKP99]. However, the purpose of 
this work is to give a generic view of Plexus architecture, not considering the details 
found in ADLs (such as ports and interfaces).  
 
The next section describes Plexus architecture subsystems and components. Plexus 
architecture will be presented according to the conventional UML approach, that is, 
the definition of the structural and behavioural views. In section 4.2, the Structural 
View Section shows the architectural components and their functionalities. After, in 
section 4.3 the Behavioural View Section describes component interaction. Then in 
section 4.4, the defined architecture is evaluated, considering the addressed quality 
attributes. 
 

4.2 Plexus Architectural Structure 

 
The Plexus system is described by three-levels of architecture, which improves the 
portability and maintainability of the system. The main levels are the interface, which 
corresponds to the presentation, logical, and repository levels. The general 
organization of the system and global control structure are presented in Figure 4-1 
using UML package notation:  
§ The presentation level is composed of the Plexus interface, which is responsible 

for all human-system interaction and visualization of results.  
§ The logical level representation includes the following major subsystem: 

Knowledge Management, Pre-processor, Simulator Builder, Simulator 
Configurator, Pre-Processed Problem Data, and Simulator.  

§ The data storage level is composed of a single subsystem called the Repository 
Manager.  



 

 
 
 
 
 

75

Pre-processed
Problem Data

Simulator
<<subsystem>>

Pre-Processor
<<subsystem>>

Plexus Interface
<<subsystem>>

Knowledge Management
<<subsystem>>

Phenomena 
Pre-processor

PLEXUS ARCHITECTURE

Repos itory 
Manager

<<subsystem>>

Viewer
<<subsystem>>

Geometry 
Pre-processor

Algorithm 
Pre-processor

Block 
Pre-processor

Pre-processor
Control Structures

Basic Know
Management

SimulatorKnow
Management

ProblemKnow
Management

Simulator 
Builder

<<subsystem>>

Simulator 
Configurator

<<subsystem>>

DataServer 
Manager

Kernel
Block

Group

Phenomena

Group 
Pre-processor

Presentation Level

LogicalLevel

RepositoryLevel

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 
 

Figure 4-1 Plexus Architecture 
 

Each subsystem’s architecture is described bellow. In fact the simulator component is 
the main component, which can be seen as a framework. By framework, we mean a 
software abstraction that is defined by a set of cooperating classes that make up a 
reusable and customisable design for a specific class of software [AB00]. The 
simulator subsystem is supported by some other subsystems, which help in its 
construction, configuration, and data mapping and visualization. 

 
4.2.1 Knowledge Management Subsystem 
 

This component is the domain registration subsystem. Its purpose is to provide input 
and maintenance of the generic data on simulators and simulation in the system 
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database. This data includes: basic FEM, simulator, and problem knowledge data. All 
this data will provide users with basic information, guiding problem data definition 
and simulation construction. Through the selection of data, that were previously 
modelled and recorded in the system, Plexus guarantees less data replication. 
Independence between data and programming code could be achieved. This subsystem 
includes:  
§ Loading/Maintenance of basic data to the system database. The basic data 

acquired represents general reusable data. It defines for example different 
simulators meta-models, problem scenarios, and generic representations of 
phenomena with existing possibilities for behaviour laws. It also defines and 
provides reuse for components related to simulator skeletons, and numerical 
algorithms, etc.  

§ Manipulation of Strategies Catalogue: Finite Element Strategies Catalogue 
searches for strategies that have been previously implemented, allowing solution 
reuse.  

§ Maintenance of Simulation Problems: simulation phenomena occurring in a 
supplied geometry, each phenomena describing its numerical solutions, existing 
blocks and groups of phenomena.  

§ System Management: environment configuration, definition of system users, 
groups of users and their privileges, and importation/exportation of data, etc. 

 
Next, we present the main sequence and dependence among input data and 
intermediary states achieved. The Simulator data input is composed of two main steps: 
Simulation Scenario Specification and Problem Specification. The description of the 
involved data was presented in chapter 3, in the Knowledge Base Domain section 
3.4.5.  
 
Figure 4-2 details the involved activities within 4 parts: the Basic Domain 
Specification, basic to all simulators, the Simulator Model Scenario Specification, the 
Problem Specification and the Phenomena Specification. Note that the Basic Domain 
Specification is related to all simulators and the Phenomena specification is a step of 
the Problem Specification. So we will consider only two steps, as follows: 

 

(1) Simulation Model Scenario Specification, which in turn is composed of other 
specifications, which must follow a pre-defined sequence:  
§ Skeleton Specification where the main features of the simulation strategy are 

determined: phenomena classes (transient, steady, etc.), estimation error (in space, 
time and model), adaptation (in space, time and model), etc.  

§ Definition of Phenomena Context: for instance, heat transfer in solids or liquids; 
flow of Newtonian fluids; linear or non-linear elasticity;  

§ Definition of Geometry components where afterwards (in the problem 
specification) the phenomena will be defined. This step is independent of the two 
previous items. 
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Figure 4-2 Pre-processing Input 

 
(2) Problem Specification (Raw data). In this step, there are three important 
intermediary states of defined data, related to problem specification, which can be 
achieved. They represent the states when: the Phenomena, Groups, and Blocks are 
defined. Figure 4-2 shows that the process must follow a specific sequence and that 
some actions can be carried out in parallel. It includes the identification of simulation 
regions and specific phenomena that will take part in the simulation problem, 
association of each simulation region with the correspondent phenomena, specification 
of each phenomena (boundary conditions, “fictitious” phenomena1 and coupling) and 
also phenomena groups and blocks. For each group of phenomena the user must 
specify the scenario (front tracking, type of linear solver, equation type, etc.) that will 
generate specific algorithm skeletons and will constrain the group methods. There is 

                                                 
1 Detailed in the Computational Phenomena, described in Chapter 5. 



 

 
 
 
 
 

78

also the specification of Blocks, and each block has a set of skeletons, which satisfies 
the demands from the Global Skeleton by decoding them into demands for the groups 
in a previously defined order. 
 
Figure 4-2, starts considering the definition of the basic system domain specification. 
In this diagram, the process reaches a final state that assumes that a defined task has 
been completed. An example can be seen in Appendix A (Example 1). 

 
4.2.2 Simulator Builder Subsystem 
 

Simulator Builder is a subsystem, which builds simulators based on algorithm 
skeletons, phenomena contexts, and a global simulator algorithm. After the designer 
has selected the simulator meta-model to be built, from the repository manager (which 
contains different kinds of pre-defined simulators), the builder component recovers the 
associated data, creates the required infrastructure for organizing simulator objects, 
instantiates the simulator objects, identifies involved components, and other required 
objects. It also makes a simulator configuration, if required by the designer at this 
stage.  

 
The Simulator Builder constructs the simulator taking into account the simulator 
model, which distinguishes: types of solution (linear or non linear), types of 
Phenomena (such us transients, pseudo-transients, and permanent), requirement for 
Adaptation (time, space, none), inclusion of Estimation Error or not; and requirement 
for Mesh Generation or not. 
 

4.2.3 Simulator Configurator Subsystem 
  
The Simulator Configurator supports the configuration of the simulator. It allows the 
redefinition of the simulator configuration from designer supplied data. The designer 
can change the simulator articulations strategies (that is global skeletons, block 
skeletons and group skeletons) by selecting different ones and can change the 
relationship between blocks, groups and phenomena (for example change the number 
of blocks, etc.). However, it does not allow for modifications of the phenomena 
context and global skeleton specification. It includes a Simulator Set-up, which 
assembles the appropriate structures (graphs) that will manage the simulator process 
flow. 

 
4.2.4 Pre-processor Subsystem 

 
The Pre-processor is a tool that assembles some standardised control structures to 
support the mapping services. It takes input data (raw data pieces) and coverts it to the 
simulator pre-processed problem data (see Figure 4-3). Once the pre-processor 
finishes, the Pre-processed problem data is supplied to the Simulator. This, in turn, 
uses a service called Load Simulator data (from Simulator), which builds specific 
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simulator data structures, implementing the format required and recognized by the 
simulator. 

Simulation Problem 
Pre-process

Simulator 
Load

Raw data defined in 
the  Knowledge Base

Problem Data loaded by Simulator 
DataServerManager. Simulation Data ready 

Input Simulation 
Problem

Simulation Problem Processed by 
the pre-processor

 
Figure 4-3 Data transformation 

 
Figure 4-1 shows the Pre-processor package decomposed into: (i) Control Structures 
package, which is related to the special structures that help the pre-processing of the 
raw pieces of data and transform it into suitable pre-processed problem data to be 
further used in simulator loading. (ii) Geometry, Group, Block, Algorithm, and 
Phenomena Packages. These packages are abstractions for dealing with the 
phenomena that occur in a given simulation region from a supplied geometry 
[LSA02b]. 
 
The main part of pre-processing corresponds to processes related to dynamic 
structures building, which is composed of:  
§ Object Manager Pre-processing: where some important singletons are created, 

such as: PhenDomainManager, GeomDomainManager, Algorithm Manager, 
GraphManager, PhenGroupManager, Simulation Manager, Post-processor 
Manager, DynamicStructuresManager; 

§ Geometry Pre-processing: creation of dynamic structures that will represent the 
initial geometric components of the simulation scenario; 

§ Phenomena Pre-processing: creation of phenomena managers in each simulation 
region;  

§ Geometry Collapse: identification of the phenomena that share a geometric mesh 
and collapse the correspondent geometry before mesh generation takes place; 
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Figure 4-4 Dynamic Structure Building 

 
§ GeomMesh Generation: process responsible for the discretization of the 

geometric entities creating geometric meshes. Each phenomenon occurring in a 
simulation region has an associated mesh, which can be shared or not with other 
phenomena; 

§ PhenMesh Generation, process where the related phenomena mesh is created, 
that is, where the vector field approximation is defined on each geometric finite 
element; 

§ PhenGroup Pre-processing: creation of dynamic structures that represent each of 
the defined phenomena groups, each solution method and the existent priorities of 
execution;  

§ Block Pre-processing: definition of the groups, which will compose each block, 
definition of all block skeletons; 

§ Algorithm Pre-processing: the algorithm skeleton of the main process of the 
simulation being defined is assembled in the dynamic memory, including the 
solution skeleton of each block and group. The features identified in the Pre-
processing Input determine the Global Algorithm Skeleton.  
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The final state (Dynamic Structures Built) represents that the dynamic structures have 
been built, and the system is ready for simulation start, since the control structures 
have already been assembled. 
 
Different managers compose the Pre-processor Control Structures Package present in 
Figure 4-1. In the Pre-processor Control Structures package, see Figure 4-5, each 
manager has an exact specific function: 
§ The PhenDomain Manager, which deals with all structures that are responsible for 

the phenomena data manipulation;  
§ The GeomDomain Manager, which deals with all geometric data from the 

supplied geometry and meshes up to the slave geometry (the implementation of 
the simulation region where a phenomena occurs);  

§ The Graph Manager, which is a generic package that supports the system with 
structures and tools to deal with graph structures that are to be used in the 
representation of phenomena and geometry.  

§ The ObjectManager, which is a generic package that helps building complex 
objects used during the process. 

Pre-processor ControlSt ructures

Phen Domain
Manager

Object Manager

Geometry Domain 
Manager Graph Manager

 
Figure 4-5 Pre-Processor Control Structures 

 
The most important class packages, Geometry Domain Manager and Phen Domain 
Manager, are described in the sequence. Due to simplification constraints only some 
classes are explained. 

 
Geometry Domain Manager Class Package 
§ Master Geometry Domain – supplied geometry, it starts hierarchically from the 

definition of the highest dimension geometric part (for instance, volume) down 
to the definition of the lowest dimension parts (i.e., points); 

§ Geometric Entity – it is each one of the geometric components into which is 
decomposed a Master Geometry Domain; 

§ Simulation Region– it is the highest dimension geometric entity, part of the 
supplied geometry, where a specific phenomenon is to be defined;  

§ Slave Geometric Domain: implements the simulation region; 
§ Slave Geometric Entity – it is each one of the geometric entities into which is 

decomposed a Slave Geometric Domain; 
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§ Geometric Mesh: geometric entity that defines a discreet geometric 
approximation; 

§ Geometry Finites Elements: tetrahedron, triangles, etc; 
§ Geometric Domain Manager: the manager of all geometries involved.  
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GeomDomainManager

MasterGeomDomain
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1..*1..*
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VectorField
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MasterPhenDomainEntity
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1..*1..*

GeomEntity

1..*1..*

GeomMesh

1..*1..*

1..11..1
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Figure 4-6 Geometry and Phenomena Manager 

 
Phendomain Manager Class Package  
 
§ Master Phenomenon Domain is the manager of all the phenomena, which occur 

in a simulation region. It constructs the Slaves Phenomenon Domain and 
supplies each one with: a copy of the respective geometric entity; construct it’s 
Vector Fields and Weak Forms, etc.  

§ Slave Phenomenon Domain– entities, which contain all the information about a 
phenomenon, defined in a particular Geometric Entity of the problem. 

§ Master Phenomenon Domain Manager: it is the manager of all Master 
Phenomenon Domains involved in the simulation process. 

 
Figure 4-6 presents a view of the main structures of the Geometry and Phenomenon 
Packages [LSA02b]. 
 

4.2.5 Simulator Subsystem 
 
The Simulator subsystem is responsible for the simulation of coupled phenomena 
applying FEM. In fact, the Simulator is a tool, which manages simulator programs 
process flow. Figure 4-7, which is based on [WMC95], shows that: the Simulator 
Kernel represents the Workflow Engine; the simulator Global Skeleton instance 
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represents the defined workflow process; and that the Workflow Invoked Application 
are instances of the Block and Group skeletons, and also Numerical Methods that take 
part of Phenomena Data. Plexus does not consider the Administration and Monitoring 
tools yet. The workflow users are the designers, which define the workflow process 
when they build a simulator and configure it. Users are those who run simulations 
through the definition of the invoked applications.  
 
 

 
 
 
 
 
 
 
 

 
 

Figure 4-7 Overview of Plexus Workflow Perspective following Workflow reference model 
 
The simulator process workflow is defined, during the simulator building, through the 
extension of the simulator by a Global Algorithm Skeleton (which include specific 
processes for solving blocks and groups of phenomena) and other relevant sub-
processes. The simulator functionality is supported by its algorithm skeletons and in 
the extension provided by the computational phenomena, which are incorporated as 
simulator data, and encapsulate phenomenon solution methods. The simulator applies 
the FEM-Skeleton and the GIG patterns, described in chapter 5. Therefore, we can 
represent the simulator system through a class diagram, presented in Figure 4-8, which 
is composed of: 

§ The Kernel, which will execute the defined simulator workflow process;  
§ The ServerManager, which supplies services for loading the simulator data in 

specific structures; its services can be supplied at run time or not, providing 
simulator adaptability for processes and data. 

§ Phenomena, which defines the specific and supplied phenomena strategies 
(numerical methods) and data.  

§ The Global Skeleton, which defines the workflow process. 
§ Blocks and groups, which constitute the method of solving phenomena 

together. 
 

The solution of coupled phenomena frequently involves the decomposition of 
differential operators: the solution of a set of phenomena at different times, with 
transference of information between the solution instances. A problem that arises with 
the use of this technique involves the initial instant, when there is no information 
available about the previous solution. Then, initial solutions must be supplied. These 
procedures were encapsulated in the phenomena domains, and were described in this 

    Plexus Interface: Process Definition Tool 

Workflow Client Application (main workflow 
process): Simulator Global Skeleton 

Workflow Invoked Application: 
skeletons, numerical methods 

  Workflow Engine: Simulator Kernel 
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work as Computational Phenomenon patterns (which take part in the simulator as 
supplied data, treated by the Server Manager, see Figure 4-8). 

GraphNode
0..*

0..*
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SkeletonGraph

Kernel Block  Group Phenomenon
1..*1..*
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0..*

Simulator

1..1 1..*
1..*
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BlockSkeleton
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GroupSkeleton
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1..*

1..*1..*1..*

AlgthmNode1..11..1

1..*1..*

1..11..1

DomainData

1..*1..*

AlgthmData
1..*1..*

 
Figure 4-8 Simulator Component 

 
Generally the main effort in the simulation run would be the computation of the 
discrete vector fields for all phenomena. This means the solution of several coupled 
systems of algebraic equations for each time step (if time dependent). The 
computation of extra quantities, which may be derived from those discrete vector 
fields, and visualization procedures may also impose considerable load on the 
computer system. 
 
The simulator solution process is hierarchical. Firstly, it considers the global solution 
and the subsets of phenomena to be solved simultaneously (blocks and groups). 
Secondly, each of these phenomena is detailed. The objects needed for each one of 
these hierarchical stages are encapsulated in objects of the same class, called here the 
solution domain. In this way each phenomena has a solution domain that will manage 
all the processes related to the contribution of it to the regional and global solution 
(matrix, vectors, estimation error, and adaptation of the discrete model, etc.). The same 
occurs to the set of phenomena that are to be considered simultaneously (blocks and 
groups of phenomena), which are defined by the decomposition of the differential 
operators and global procedures.  
 
For instance, the global Skeleton articulates the time loop (if present), adaptation 
iterations and defines processes involving the call of Block Skeletons. Block Skeletons 
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may define different solution strategies for different Groups, thus, articulating Group 
processes. Group Skeletons articulate their phenomena procedures in very specific less 
reusable ways. It is at this level that solvers for algebraic systems are applied. 
Phenomena are the abstraction of the entities being simulated. All those skeletons can 
be implemented as objects from classes following the GIG pattern (Chapter 5). 
Therefore, the GIG would allow for the realization of the interoperability of the 
different levels of computation (by automatically plugging the lower level skeletons 
into the higher ones).  
 

4.2.6 Viewer Subsystem 
 
Viewer is a part of the Presentation Level that allows the visualization of simulation 
results. The solution is processed in order to allow the access and visualization of 
specific values, relevant to the user. These subsystem functionalities include: (1) View 
of data using a specific graphic tool; (2) Support for queries, considering different user 
needs; (3) Validation, which determines the appropriateness of the scientific principles 
and mathematical models used to develop simulation tools. This pattern is not part of 
the current work. 
 

4.2.7 Pre-processed Problem Data 
 
The Pre-processed Problem Data Package is responsible by the problem input data 
after being treated by the Pre-processor. It will be further transformed by the Simulator 
Server Manager to represent the simulator data (AlgthmData, figure 4-8), presented in 
Figure 4-3.  
 

4.2.8 Plexus Interface Subsystem 
 
The Interface Package is composed of all the system windows that allow access to the 
Plexus environment. These interface windows are presented in appendix C.  

 
4.2.9 Repository Manager Subsystem 

 
This Package implements functions to support the whole system with a higher level of 
abstraction to access data methods for the system repository. 
 
The database maintains the general data related to meta-simulators models, the 
context, the algorithms that take part in different simulation strategies, the simulation 
problem’s data and also the simulation’s intermediary data and results. To improve 
process reuse, Plexus stores in the database and classifies existing processes in the 
following way: 
§ Numerical Methods, which are already known numerical algorithms that can be 

incorporated or implemented by the simulator. They represent algorithms available 
in the literature. They can be classified according to their relative context (such as 
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geometry, phenomena, etc.). They are used, for example, to implement phenomena 
solution methods. 

§ Simple Processes, which are implemented by the designer to provide the extra 
functionality required, and do not need to be specific numerical method 
algorithms. 

§ Plexus Algorithms, which can be incorporated or defined through the system. 
They represent the composition of defined processes. They can include 
alternatives for a specific functionality; however there must already be defined 
default processes. 

§ Skeletons, processes defined by the designer, which will compose the main 
structure of the simulator. They can be a specialization of the above-defined 
Plexus Algorithm. In pursuit of a high degree of reusability, hierarchical levels of 
processes are used to define a simulator, where each level may have several 
possibilities of algorithms, and can be easily described by a graph. These levels 
satisfy a number of requirements, such as: (i) to separate less reusable modules 
from reusable ones; (ii) to help the understanding of the decomposition of the 
simulation data among the several processes; (iii) to make possible the dynamic 
re-configuration of the simulator through the replacement of reusable modules. 
More details can be seen in the FEM-Simulator Skeleton (chapter 5). 

§ Built and configured algorithms, which correspond to a designer strategy mounted 
from the composition of existing numerical methods, components, or simple 
process, but which do not contain alternatives (the process was already defined), in 
this way they are different from simple Plexus Algorithms. 

 
4.3 Plexus Architectural Behaviour 

As described in previous chapters, the Plexus main processes consist of Knowledge 
Management, Simulator Management, Pre-processor, Simulation, and Simulation 
Results View.  
 
Figure 4-9 presents part of the collaboration diagrams, which describe the main 
processes, their inter-relationship and sequence of subsystem execution, which are 
detailed in the following items:  
 

1. The Plexus controller starts requesting the Knowledge Base Manager services for 
storing data (basic data loading, simulator specification and problem data 
definition).  

2. The Plexus Controller requests the simulator construction for the Simulator 
Builder.  

3. The Simulator Builder requests the simulator related data to the Repository 
Manager. The retrieved data is relative to the details of the selected simulator. 
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Figure 4-9 Plexus Functioning 

 
4. The designer wants to specify the articulation strategies, the Plexus Controller 

requests the system configuration (however, this can be done later). 
5. The Simulator Configurator acquires the required data from the Repository 

Manager. 
6. Then, the Simulator Set-up is executed. This will guarantee that the basic 

simulator structures are created.  
7. Data is requested to the Repository Manager. 
8. The ProblemDefinition/Pre-processor can be started.  
9. Data is requested to the Repository Manager. 
10. The Pre-processor Data is generated (see details given previously in Figure 4-3). 
11. The simulator data is loaded; the Server Manager transforms the pre-processed 

data into the appropriate simulator structures (it is part of the simulator 
component, see Figure 4-8). 

12. The data is supplied to the Server Manager. 
13. The Simulation running is started. 
14. The data is requested to the Server Manager. 
15. Simulation data visualization is requested. 
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16. The simulators viewer can be requested to present the required visualization data. 
17. The viewer in turn requests the appropriate data from the repository manager, 

which in turn supplies it. 
 
The Simulator Builder and the Simulator define specific sub-processes. However, their 
logic is very re-configurable, that is, most of the sub-tasks are changeable. 
 
The definition of a process based on FEM allows the control of coupled phenomena, 
guaranteeing a high level of abstraction and reuse of developed solutions. The 
complexity of the implementation phase can be greatly reduced by the use of a 
predefined process that describes the activities and stages that take part in the 
complete process of defining and constructing the main structures that are part of the 
Plexus control system. 
 
The following section describes an evaluation of Plexus architecture.  
 

4.4 Plexus Architectural Evaluation 

For an architecture to be successful, its constraints must be known and it must not only 
implement the functional requirements of the system which are specified in the 
requirements document, but also satisfy many quality attributes, such as whether or 
not the system will have to interact with other systems (interoperability), and meet 
business goals (such as future desires), etc. Bellow we evaluate our proposal 
architecture to affair the previous identified objectives. 
 
Table 4-1 Summary of the Architecture Evaluation 

Problem 
 

Solution 

Single Software Solution 
for coupled multi-physic 
simulation based on 
FEM 

Definition of an architecture incorporating subsystems that 
apply FEM-Skeleton Simulator Pattern; Computational 
Phenomenon Pattern, and the Pre-processor Pattern. 

Flexibility in the 
implementation of 
different numerical 
methods and definition 
of different simulators 
strategies 

Implementation of simulator modularity, through different 
levels of computation, which allow the customisation of 
numerical solutions (FEM-Skeleton Simulator). This allows 
the configuration of the: (i) simulator articulation strategies 
configuration (Configurator Component) (ii) phenomena 
numerical methods (Computational Phenomena Component). 
Support for the dynamic adaptation of the system workflow. 

Make the simulators and 
problem development 
easier and faster than 
before  

Pattern definitions for the FEM simulators domain 
development providing reusable solutions; 
Improvement of Domain understanding and definition; 
Reusability of numerical solutions, models and data, 
supported by a database repository; 
Simplification of Requirements; 
Focus on application (specific architecture considering 
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defined patterns). 
Automatic Routines (not considered in this work). 

Distribution Distribution of solutions (partially treated by defined 
Architecture); (ii) Encapsulation of activities in specific 
abstractions; Simulator modelling and implementation 
through computation levels make the distribution of 
functionalities and the simulation process easier. 

Persistence It is considered through meta-models definition and its 
implementation is supported by the use of a Data Base 
Management System. 

Integration with other 
systems 

The system allows the incorporation of new components and 
due to its modular organization allows easy extension to new 
functionalities. 

Maintainability Definition of the architecture in levels (hierarchical) and in 
subsystems helps system maintainability. 

 
Plexus architecture considers functional and non-functional requirements, which drive 
its definition. The functionalities are related to the implementation of all the processes 
required to develop a simulator based on FEM. However, the conceptualisation of the 
architecture articulates many non-functional requirements to achieve its purpose. 
Table 4-1 summarizes some of them giving an overview of the adopted solutions.  
 

4.5 Final Considerations 

 
In order to achieve an effective development process in software engineering, reuse 
and abstraction can be applied at many different levels of design. The software 
architecture level is specifically concerned with the description of elements from 
which systems are built, interactions among those elements, patterns that guide their 
composition, and constraints of these patterns. Plexus architecture is a domain specific 
architecture for FEM simulators. It applies the object-oriented paradigm, for 
constructing families of applications, in our case simulators. 
 
There is a well-known specification architecture for composite simulations [KWD99] 
called High Level Architecture (HLA). In pursuit of simplification, it is not the 
purpose of this work to include HLA integration. We only take into account its 
features, considering it as a future improvement for the Plexus architecture. The 
purpose of the HLA is to support requirements related to the increasing need to build 
more complex and realistic numerical simulations (such as interoperability and 
distribution). In this architecture, components are individual simulations. Each one can 
be developed and executed independently, and when integrated they build a major 
simulation. It supports the building of simulations distributed across multiple 
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computers. However, nothing in the architecture assumes or requires a distributed 
implementation of a simulation. HLA development was based on an initiative 
involving government, academia, and industry. In 1998, the Defence Modelling and 
Simulation Office adopted version 1.3 of the HLA specification. These specifications 
formed the basis for draft IEE standards for simulation interoperability architecture. A 
more detailed description can be seen in [KWD99].  
 
The next chapter details some of the Plexus architectural abstractions (patterns and 
frameworks). The applied patterns include: modelling patterns, for addressing 
framework domain features, by supporting the expression of an abstract domain model 
underlying the framework and design patterns, for addressing structural properties of 
frameworks by supporting the development of the logical structure [FAY99].  
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Plexus Simulation Environment Abstractions 
 
This chapter presents some basic concepts about Plexus architectural abstractions 
including patterns and frameworks. Some patterns were indentified during the 
Plexus Simulation Environment conceptualisation: Computational Phenomenon, 
FEM-Simulator Skeleton, and GIG-Patterns. The first and the second one are 
domain specific patterns, which help control the simulation of coupled phenomena 
based on FEM solutions. The GIG pattern is not domain specific.  

Chapter 

 5      
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5.1 Introduction 

 
Software architectural abstractions can be exemplified and divided into various 
categories according to a set of dimensions, which include level of abstraction, degree 
of domain specificity, level of granularity, and the degree of completeness. Design 
patterns [GHJ95] and frameworks [JF88] are examples of those categories, which are 
applied in Plexus conceptualisation.  
 
Patterns for software development are one of the hottest topics that emerged from the 
object-oriented community. According to [AB00]: “Patterns are literally a form of 
software engineering problem-solving discipline that has its roots in a design 
movement of the same name in contemporary architecture, and the documentation of 
best practices and lessons learned in all vocations”. 
 
Being able to analyse and build a system with a regular set of building blocks, which 
represent common pattern usage, provides substantial benefits. These include better 
human comprehension of complex systems, with the reduction of the cognitive burden 
[BCK98], and aids both development and maintenance of the system. Such a regular 
set of building blocks represents common pattern usage.  
 
A pattern is a small collection of atomic units and a description of their relationships. 
In general, a pattern is a named perspective on a subject. In order to be relevant, a 
pattern must express a general recurrent theme that has proven to be useful. Focusing 
on the analysis, design, and implementation efforts in software development, the 
subject is a problem domain, a system design, or a program implementation. In 
addition, the subject can be a structural diagram with classes, objects, and their 
relationships. Other types of subjects could be models of problem domains, interaction 
diagrams, or source code [FAY99].  
 
Frameworks are closely related to design patterns. Frameworks are an object-oriented 
reusable analysis or design of all or part of a system, which has been used successfully 
and which forms an important part of the culture of experienced object-oriented 
developers [FAY99].  
 
Modelling patterns address framework domain features by supporting the expression 
of the abstract domain model underlying the framework. A modelling pattern names a 
reusable abstraction over classes, specifies the static structure of the abstraction in 
terms of methods and class relations, exemplifies the abstraction, and provides hints on 
applicability [COD92, FAY99].  
 
Design patterns address structural properties of frameworks by supporting the 
development of the logical structure [FAY99]. Many design patterns are related to 
abstract coupling or the management of recursive structures, which are issues 
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considered in the more technical phases of design and in the implementation of 
frameworks. The primary focus when using design patterns is the development of 
frameworks. Design patterns promote loose coupling between the parts, making 
framework design flexible. To provide flexibility in terms of abstract coupling between 
the constituent parts, a design pattern is used to design the functional factoring and 
component interfaces in a part of the framework. The design patterns address very 
explicitly the task of providing a framework with structural characteristics.  
 
A collection of patterns, built on each other to generate a system, form a pattern 
language [ALX77, COP01]. A pattern in isolation solves an isolated design problem; a 
pattern language builds a system. It is through pattern languages that patterns achieve 
their fullest power. A pattern language describes an architecture, a design, a 
framework, or another structure. It has structure, but not the same level of formal 
structure that one finds in programming languages. A pattern language is not just a 
decision tree of patterns. This is partly because the patterns of a pattern language form 
a directed acyclic graph (DAG), not a hierarchy. The number of distinct paths through 
a pattern language is very large. It is indeed, the structure of this network, which makes 
sense of individual patterns, because it anchors them, and helps to make them 
complete.  
 
We can identify a collection of patterns that generate the Plexus system environment. 
The Plexus Pattern Language can be decomposed into the following patterns (see 
Figure 5-1): (i) FEM-Pre-processor Pattern; (ii) FEM Simulator pattern, composed of 
FEM-Simulator Skeleton and the GIG-Patterns; (iii) Computational Phenomenon 
Pattern; (iv) Viewer Pattern. 
 

 
Figure 5-1 Plexus Pattern Language 

 

The Computational Phenomenon Pattern, the GIG-Pattern, and the FEM-Skeleton 
Pattern are detailed in the rest of this chapter. These patterns deal with specific 
problem solutions such as Simulator Modelling and Workflow definition and control.  
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§ The Computational Phenomenon Pattern represents the phenomenon model to 

be used by the simulator. The main objectives of such an abstraction are to have 
a common language to represent a phenomenon in the coupled context and to 
make intuitive and easy the representation of data sharing and dependence 
between different phenomena. 

§ The objective of the FEM-Simulator Skeleton Pattern is to guide the 
development of Simulator Models based on FEM. This pattern is intended to 
help the design and implementation of simulators. The main advantage of the 
pattern is its high level of abstraction, reusability, and modularity in the design 
of simulators for several coupled multi-physics phenomena. 

§ The GIG Pattern represents a solution based on a generic interface graph, which 
deals with the definition and control of processes flow, taking into account 
some specific requirements of simplicity, making easier the definition from 
algorithmic natural language and giving flexibility in the granularity of defined 
processes. The pattern is intended to help the design and reuse of programs. It is 
not domain specific. 

 
The other patterns, that is the FEM Pre-processor Pattern (described in [LSA02b]) and 
the Viewer Pattern (described in [VA02]) are still under development and are not 
presented in this work.   
 
There is a lot of confusion about whether frameworks are just large-scale patterns, or 
whether they are just another kind of structure. A frequently used definition is “a 
framework is the skeleton of an application that can be customized by an application 
developer”. The term “framework adaptation” is applied when a developer customizes 
a framework to a particular application [FAY99]. Both definitions for frameworks are 
not conflicting; the first describes the structure of a framework while the second 
describes its purpose [FAY99]. When structuring a framework in terms of design 
patterns, the framework structure will be made visible because patterns will describe 
logical units and point out abstract couplings that take part of the framework Figure 5-
2. This is important for both framework adaptation and framework evolution.  
 

 Figure 5-2 Frameworks supported with patterns  
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A framework provides architectural guidance by partitioning the design into abstract 
classes and defining their responsibilities and collaborations [GHJ95]. A specialist in a 
particular framework sees the world in terms of the framework and will naturally 
divide it into the same components [FAY99]. The adaptation of a framework is done 
through the customisation and extension of the framework structure. The parts of the 
framework that are open to extension and customisation are termed flexible hot spots. 
They express aspects of the framework domain that cannot be fully anticipated. They 
are discovered during domain analysis or provided by a domain expert. The 
components to be supplied in the flexible hot spots can be components from a library 
belonging to the framework (providing different alternatives), and/or they can be user 
created. A framework can be adapted by means of white box or black box reuse. The 
former corresponds to customizing the framework classes by specialization, and the 
latter corresponds to configuring a part of the framework. 
 
Plexus environment applies the object-oriented paradigm for constructing families of 
FEM simulator applications, which can benefit from the framework concept through 
the exploration of system customisation. In addition, it provides the support for the 
understanding and construction of simulator systems, which include the database 
models, the system interface (see appendix C), and the involved processes 
classification (for example skeletons and numerical methods described in chapter 4, 
section 4.2).  
 
The Plexus architecture includes the simulator subsystem component, which can be 
seen in Figure 5-3 as a framework abstraction. This framework, applies the GIG and 
FEM Simulator Skeleton, and the Computational Phenomena Patterns (which can be 
seen in Plexus Pattern Language, see Figure 5-2). In fact, the Simulator Framework 
includes a component, the Computational Phenomena Framework (see Figure 5-4), 
which applies the Computational Phenomena Pattern. 

Figure 5-3 Plexus Simulator Framework 
 
Figure 5-3 and Figure 5-4 give an overview of both Frameworks identifying the 
existing hotspots. 
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Figure 5-4 Plexus Computational Phenomena Framework 
 

This chapter presents some specific patterns developed considering the domain 
requirements. Each pattern was described in the following form based on suggestions 
found in [COP01]. First, the pattern name is supplied. Then, some details are given 
about the context in which existent problems might inhibit further developments, and 
to which the pattern solution applies. After, the design challenge is presented through a 
question. Then, pattern forces are shown, that is, the patterns design trade-offs, which 
pulls the problem in different directions, towards different solutions. Next, an 
explanation about how to solve the problem is presented. Then, the pattern 
applicability is described. In the sequence, an example of usage is presented. Then, the 
resulting context is detailed, indicating which forces the pattern resolves and which 
forces remain unresolved by the pattern. Finally, related patterns are shown and some 
comments are made on about known users.  
 
The rest of this chapter is organized as follows. Section 5.2 presents the Computational 
Phenomenon Pattern. Section 5.3 introduces the FEM-Simulator Skeleton Pattern. 
Section 5.4 describes the GIG Pattern. Finally, in section 5.5 we make some closing 
remarks. 
 

5.2 Computational Phenomenon Pattern 

 
This pattern represents an abstraction of the collection of commonalities found in the 
concepts and processes for representing phenomena simulation through FEM. A 
further objective with such an abstraction is to make the representation of data sharing 
and dependence between different phenomena intuitive and easy. This pattern 
complements the Plexus FEM Skeleton Pattern (detailed in the next section), which 
advocates the separation of the simulator process levels into different levels of 
programming, considering one specific level for the computational phenomena 
processes. 
 

5.2.1 Pattern Name 
 

The Computational Phenomena 
Framework: represents the 
definition of an abstraction 
where the flexible points are in 
the black boxes defined for the 
numerical methods 
customisation. 

               Computational Phenomenon Framework 
                    Kernel 

 
 
                   Hotspot 
 
 
Hotspot 

       Calculation of Phenomena contributions 
 

Numerical Methods 
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Computational Phenomenon, which means a pattern for modelling the simulation 
phenomenon data and processes for simulators based on FEM. 
 

5.2.2 Context 
 
As described in chapter 2, in the definition of a simulation problem the user defines the 
involved physical Phenomena (e.g. fluid flows and heat transfer). The discrete 
formulation of a phenomenon comprises a set of algebraic equations (either linear or 
non linear) obtained through the application of a finite element technique to the exact 
mathematical formulation. The application of such techniques can be described using 
FEM concepts: finite elements, shape functions, discrete weak forms, discrete vector 
fields, nodal values, couplings, linear solvers, non-linear solvers, error estimation, 
adaptivity, and time progression schemes.  
 
In FEM simulation, the solution algorithms can and should be defined in a modular 
structure and in such a way that avoid couplings between procedures at different levels:  
 

i) The finite element level; 
ii) The solution level, composed of: 

§ Sub-level of the assembling and solution of algebraic systems; 
§ Sub-level of interactions, which articulate solutions of different algebraic 

systems; 
§ Sub-level of loops and interactions involving progression in time and 

adaptation of models and discretization. 
 
The processes at the lowest level, that is, the finite element level, motivate the 
Computational Phenomenon pattern definition. Those processes are related to the 
production and assembling of the corresponding matrices and vectors. The element 
matrices and vectors may be coupled with other phenomena, meaning that the 
computations of those quantities need pieces of information from other phenomena. 
Since the coupling requirements can be classified and standardized, the production of 
uniform interfaces between coupled phenomena became possible. These interfaces can 
be configured (specialized) by the processes, which are going to use the Computational 
Phenomenon Patterns objects.  
This pattern solution can be used to implement a framework that, during the pre-
process phase, automatically associates any pre-defined phenomena to geometric 
entities in a simulation. 
 

5.2.3 Problem  
 
What information, relationships and processes must be supported, and in what way, in 
order to describe and implement computational phenomena, considering coupled 
multi-physics systems? 
 



 

 
 
 
 
 
 
 
 

98

 
 
 

5.2.4 Forces 
 
With respect to the definition of an adequate abstraction for computational phenomena 
considering coupled multi-physics systems, there are different forces, which lead to 
different solutions, such as:  

§ Possibility to replicate numerical studies. 
§ Achievement of higher levels of sophistication in simulation design. 
§ Reliability of complex computer-generated simulations. 
§ Reuse, extension and configuration of models. 
§ High levels of abstraction, modularity and the right separation of concerns. 
§ Automation in dealing with coupled phenomena definition. 
§ Simulation performance and maintainability. 

 
The support for numerical studies replication can be obtained through the definition 
of standard solutions, persistency of knowledge and data as well as high degrees of 
completeness and reuse of the involved abstractions. However, those techniques may 
produce undesirably rigid systems. The completeness of the considered information, 
for a computational phenomena abstraction, can also generate a trade-off between the 
levels of considered concepts and rigid systems. To achieve completeness the modeller 
can try to gather to many details for a correct specification of the Phenomenon and its 
relationships within the simulation system. However, it is difficult to establish what is 
considered complete, that is, when it is time to stop introducing information details. 
Conversely, sometimes the simplification of an abstraction allows it to be used in a 
more extensive number and types of simulation applications and thus helps the 
establishment of a standardized abstraction of a model. Alternatively, completeness of 
abstractions supports the understanding, use and discussion of the involved details. The 
correctness of the abstraction provided, itself provides more reliability to simulations. 
 
Since the conceptualisation of a system takes care of the most critical (complex and 
detailed) aspects of the problem under consideration, higher levels of sophistication 
can be achieved. Reuse, extension and configuration of models help in this task. 
However, other aspects should be considered, for instance, the control load required in 
order to maintain the dynamics of the system functioning. 
 
Reliability of a simulator comes as a result of several aspects, from the system 
conceptualisation to the software programming and use. Techniques such as 
standardization of solutions, completeness of data and reusability can increase the 
reliability of the system.  
 
In the context of many coupled phenomena, the set of data and procedures related to 
the computation of matrices and vectors (used in the solution algorithm) is the main 
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obstacle to reuse, extension and configuration of phenomena models, due to the 
complexity of data sharing and dependence between those phenomena. High levels of 
abstraction, modularity and the right separation of concerns are important aspects 
in obtaining good solutions in this respect. Performance is a concern whenever those 
techniques are applied. 
 
Some of the complex set of information a phenomenon deals with requires a great deal 
of effort in their development and are extremely reusable. The most technologically 
intense parts of Phenomenon can be made persistent for further use, if there is a 
reasonable and standardized way of representing phenomena concept models.  
 
Also the phenomenon variants and complexity of their sets of data and procedures can 
make the automation of the phenomena definition and the building of their set very 
demanding in the context of coupled phenomena. The variety of possible solutions 
requires a careful understanding of the subjacent logic, which makes the phenomenon 
concept - in the finite element context - a valid concept, in the sense that it allows for a 
representative abstraction. Consecutively such a representative abstraction provides 
support for the automation of phenomena definitions. 
 
Achieving high performance usually requires resolving low level machine-dependent 
details. Whenever methods are considered in the direction of dealing with highly 
complex systems requiring high levels of reusability, the performance is usually 
affected negatively. However, careful design procedures and considerations in the 
direction of distributed and parallel computations can reduce the most severe 
shortcomings. Performance at the level of the procedures responsible for computation 
of matrices and vectors in the finite element context is critical for large systems. 
 
Maintainability for complex systems is of the utmost importance in order to make 
possible the tasks of error detection and correction, model extensions, system 
configurations etc, with a minimum amount of work.  
 

5.2.5 Solution  
 

A solution for the proposed problem can be achieved by the definition of a 
Computational Phenomena abstraction whose purpose is to reflect an adequate 
separation of concerns in FEM simulation modelling, preserving the encapsulation of 
data and processes concerning only the numerical modelling of a phenomenon. Data 
related to the numerical modelling of a phenomenon are used in different phases of the 
simulation. For instance, in the pre-processing phase, pieces of phenomenon data are 
used for the establishment of the right coupling between phenomena and for the 
definition of the mesh generation method. Alternatively, processes responsible for the 
computation (at the element level) and assembling (in the global entities) of the right 
vectors and matrices (coupled or not) are also specific for a phenomenon. 
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The separation of concerns means the separation of the data and processes, employed 
in the global solution of the coupled algebraic (time dependent or not) systems, from 
the data and processes of the numerical modelling of a phenomenon. This separation 
allows for the reuse of the numerical modelling data of a phenomenon in either 
different solution strategies or different simulations. 
 
Subsequently, the Computational Phenomenon is considered as a set of data and 
processes, which define the numerical modelling of a phenomenon. The numerical 
modelling data of a phenomenon is comprised of a vector field, weak forms (for 
different vectors and matrices, shape functions, coupling data), and methods (e.g., 
mesh generation, approximation generation and numerical integration rule), etc.  
 
The notation of phenomena may be abstracted (described in this work as “fictitious” 
phenomena) in order to allow for a generic representation of either relationships 
between different phenomena, or restrictions, or additional vector fields and 
correspondent behaviour laws (such as Lagrange multipliers). This extension of the 
notation of phenomena becomes very important in computational modelling, because it 
allows several different techniques to be used in order to impose restrictions (e.g., 
boundary conditions, and constitutive restrictions, etc.). 
 
The discrete behaviour law may have terms, which are defined on the boundary of the 
domain. Those terms are provided by sub-phenomena, which are defined as objects, 
which are dependent on the correspondent main Computational Phenomena. Boundary 
terms are related to boundary conditions or boundary restrictions. This work considers 
many kinds of boundary conditions. The most well known are Dirichlet, Neumann and  
Mixed ones. The Dirichlet boundary conditions are considered as restrictions defined 
on correspondent parts of the boundary. The restrictions are modelled using a 
Lagrangean formulation; which requires the implementation of extra independent 
phenomena. The other types are modelled as sub-phenomena defined on the 
correspondent parts of the boundary (the fictitious phenomena is basically the same as 
the original physical phenomena). Even the restrictions on the boundary (like Dirichlet 
boundary conditions) produce coupled terms on the behaviour laws of the original 
phenomena. These terms are provided by sub-phenomena defined on the correspondent 
part of the boundary. 
 
Participants  
 
The Computational Phenomena pattern is composed of several participants. We divide 
our explanation in three parts: 

§ Geometry participants (see Figure 5-5), composed of: GraphNode, 
GeomEntity, GeomGraph, Point, Curve, Surface and Volume. 

§ Phenomenon participants (see Figure 5-6), composed of objects which 
represent phenomena, simulation regions and their interaction: PhenGraph, 
PhenEntity, GeomGraph, GeomEntity, PhenMethod, VectorField, Group, 
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WeakForm, PhenMesh, GeomMesh, GraphNode, QData, SimulationRegion, 
Geometry, Phenomenon, and VecFieldTransferToolsAndData. 

§ Mesh participants (see Figure 5-7), composed of objects related to the 
geometric and phenomena mesh: GeomFiniteElement, 
GeomReferenceElements, GeomIntrinsicIntegData, PhenReferenceElement, 
PhenIntrinsicIntegData, PhenShapeFunction, and PhenElementData. 

 
For the details of many concepts, used in the description below, see Chapter 2 
definitions. 
 
A phenomenon occurs in a geometric domain. This work uses a computational 
representation for the geometry (geometric domain) based on the boundary 
representation method (Brep). This is extremely useful due to a number of reasons. For 
instance, when a phenomenon is defined on a region, its boundary conditions will be 
defined on all parts of its boundary. Thus, the relation between a phenomenon and its 
boundary conditions resembles that of the boundary representation (for example in a 
direct acyclic graph implementation). The geometry diagram is considered as a direct 
acyclic graph pattern (DAG). It is represented hierarchically through a graph scheme 
where each graph node stores a geometric entity (GeomEntity, i.e., point, curve, 
surface, and volume) see Figure 5-5. The connected components of the geometry are 
referred to as GeomGraph. 

GraphNode

0..*0..*

0 .. *0 .. *

GeomEntity GeomGraph

0 .. *0 .. *

1..11..1

 Point Curve Surface Volume

parent

children

root

 
Figure 5-5 Geometry Participants (Brep graph) 

 
A defined Phenomenon is implemented by a structure, called a PhenGraph, and 
occurs in a given Simulation Region, which is related to a Geometry (represented by a 
GeomGraph). A Phenomenon applies some specific methods for its solution, 
integrated in a PhenMethod; they include: Integration Rule, PhenMesh Generation 
Method, GeomMesh Generation Method, and PhenShape Function, etc. 
 
A simulation region (SimulationRegion) is a partition of the geometry where a 
phenomenon is first defined. For each simulation region a PhenGraph manages the 
simulation data of all phenomena defined therein. A PhenGraph can also be viewed as 
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a graph-like data structure, where each node stores a PhenEntity. The PhenGraph 
closely resembles the organization of the respective simulation region. Each 
phenomenon has a copy of its simulation region (GeomGraph). Each GeomEntity of a 
GeomGraph has a manager entity (the PhenEntity) responsible for its relationship 
with all pertinent simulation data. Thus, each PhenEntity has a GeomEntity where its 
weak forms are defined. 
 
The VectorField stores basic information about the discrete vector field, such as its 
dimension and the dimension of its vector of nodal values. The PhenEntity needs those 
pieces of information for the computation of its matrices and vector sizes and for 
assembling them into global matrices and vectors. The WeakForms represent parts of 
the discrete behaviour laws, boundary conditions and other pieces of information, 
which are needed by the solution algorithms. Therefore, the production of the 
phenomenon vectors and matrices (at the finite element level) and their assembly into 
global vectors and matrices are performed by the respective weak forms, which have 
knowledge of the required coupling data.  
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QData
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1..*1..*
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PhenGraph
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GeomEntity

1..11..1
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Figure 5-6 Phenomena Participants  
 
When asked to compute and assemble a certain quantity (vector or matrix), a 
Computational Phenomenon sends the request to the PhenEntity in the root of its 
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PhenGraph. It will look in its QData in order to see if it is able to provide what its 
being asked. If so it executes the right weak form. After it is finished it passes the 
request to its children PhenEntities. Thus, the union of all QData objects from all 
PhenEntities of a phenomenon comprises the set of all quantities that the 
Computational Phenomenon is able to compute. QData also contains information 
regarding the coupled phenomena needed in its computation. 
 
When computing a quantity, a weak form may need information from other 
phenomena (coupled information). Usually it will need the vector of nodal values and 
the phenomenon mesh from each coupled phenomenon. However, those meshes are 
frequently different from the current phenomenon’s mesh. Thus, in order for the 
incoming information to be useful, it should be transferred to a phenomenon mesh, 
which has the same geometric mesh as the current phenomenon’s geometric mesh. 
Therefore VecFieldTransferToolsAndData is provided with specialized tools for 
performing those types of tasks. 
 
A geometric mesh (GeomMesh) is an approximation to a partition of a geometric 
domain (GeomEntity). It is described by a set of geometric finite elements 
(GeomFiniteElement), which can be see Figure 5-7.  
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Figure 5-7 Mesh Participants 

 
The geometric mesh depends on associated GeomReferenceElement, which in turn 
have an integration rule (numerical integration method) and numerical integration data 
(integration points and weights for a specific approximation order). A 
GeomReferenceElement has the following associated data concepts: (a) Intrinsic data 
(integration points and weights); (b) Extrinsic data for a given geometric finite element 
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(Jacobean matrix and Jacobean at the integration points; positions of the integration 
points in the given finite element). Intrinsic data are fixed, while extrinsic data are 
dependent on the geometric finite element under consideration. The intrinsic set of 
integration data is encapsulated in GeomIntrinsicIntegData. 
 
The phenomenon mesh is a set of phenomenon finite elements, which have a one-to-
one relationship with the geometric finite elements of the respective geometric entity. 
It is important to note that phenomenon meshes have a reference element called the 
PhenReferenceElement, which is associated with the GeomReferenceElement and is 
capable to provide that part of the integration data, which depends on phenomenon 
data intrinsic data. This part is typically intrinsic since it does not depend on any 
external information. It comprises the values of the trial and test shape functions and 
their derivatives - up to a given order – at the integration points – provided by the 
respective GeomReferenceElement. All of those portions of data are encapsulated in 
the PhenIntrinsicIntegData. Based on what was just explained, it is natural that the 
PhenReferenceElement is the owner of the trial and shape functions, which are 
encapsulated in the PhenShapeFunction. 
 
The information regarding the approximation of the vector field on each geometric 
finite element (from points to volumes) is stored in the PhenElementData. Therefore, 
this information is important if one wants to know the set of shape functions, which are 
non-zero on the finite element under consideration. This is the case when a weak form 
is requested to compute a vector or matrix at element level, since their size depends on 
the number of non-zero shape functions on the element and their values depend on 
which are the non-zero shape functions. 
 
Interaction 
 
During a simulation, the Computational Phenomenon objects are requested to perform 
some tasks by the solution algorithm. The sequence diagram in Figure 5-8 illustrates 
the interactions between some objects of the Computational Phenomena pattern after a 
request for the computation and assembling of a coupled quantity (specified by a 
code). The quantity is to be computed using a certain set of states from other 
phenomena (coupled phenomena) and assembled in a data structure. A phenomenon 
state is either a vector or a matrix, which has an identifier and is stored outside the 
Computational Phenomenon. The solution algorithm used in the simulation determines 
the meaning and number of states maintained for each phenomenon. Therefore, they 
are stored outside the Computational Phenomena under the responsibility of the Group, 
which owns the respective phenomenon. The retrieving of the states is made through 
the coupled phenomenon, which asks its Group to provide the right set of states. 
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SolutionAlgorithm 
: Algorithm

PhenA : Computational 
Phenomenon

PhenGraphRoot : 
PhenEntity

PhenRootWeakForm : 
WeakForm

PhenEntChildren : 
PhenEntity

CoupledPhen : 
PhenEntity

Contribute(code, structure, states)
Contribute(code,structure,states)

RetrieveData(states)

ReturnData()

ComputeAndAssemble()

Contribute(code,structure,states)

The same process executed by 
PhenRootWeakForm is recursevely 
performed by its children until the 
leaves of PhenGraph

Return()
Return()

Return()
Return()

RetrieveStates()

Contrib(structure,states)

Figure 5-8 Sequence diagram for Computational Phenomenon 
 
 
When the solution algorithm (SolutionAlgorithm) wants to compute a certain 
phenomenon quantity and assemble it in a specified data structure (structure), it asks 
the Computational Phenomenon object (PhenA) to contribute and send information 
about the quantity code, data structure and identifiers of the states to be used by the 
coupled phenomena, through the command Contribute (code, structure and states). 
PhenA, then, forwards the same message to the root of its PhenGraph 
(PhenGraphRoot). The PhenGraphRoot forwards the request Contrib (structure and 
states) to its weak form (PhenRootWeakForm) correspondent to the quantity code 
provided. The PhenRootWeakForm retrieves the needed data (states, and other relevant 
pieces) from its coupled phenomena (CoupledPhen). Next, the PhenRootWeakForm 
will compute the right contribution for each one of the PhenFiniteElments of the 
PhenGraphRoot’s PhenMesh and assemble it into the data structure, provided as a 
parameter. Then, the PhenRootWeakForm initiates a recursive procedure in order for 
its children PhenEntities (PhenEntChildren) to perform the same operation it has just 
finished. The recursion continues until all the PhenEntities of the PhenGraph are 
reached. At the end of this process the desired quantity is computed and assembled and 
the SolutionAlgorithm takes over the control of the simulation. 
 

5.2.6 Example of Usage 
 
The problem describes the dynamics of a rigid body attached to an elastic beam, with a 
temperature dependent constitutive relation, where both are also submitted to thermal 
loads. Consider the geometry defined in Figure 5-9, consisting of two sub-domains Ω1 
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and Ω2. The physical phenomena defined therein are transient and include: linear 
elasticity with a temperature dependent constitutive equation in Ω1; rigid body motion 
of Ω2 (this body has a certain distributed mass density ?M) and heat transfer in Ω1 and 
Ω2. More details about this example can be found in Appendix A, section A.1. 
 

 
 

Figure 5-9 Whole domain of example   
 
Geometry: as can be seen in Figure 5-9. There are 6 points, 7 curves and 2 plane 
regions defined for the problem geometry. Plane region Ω1 is composed of curves Γ1, 
Γ2, Γ3, Γ7 and points 1,2,3,4. Plane region Ω2 is composed of curves Γ4, Γ5, Γ6, Γ7 and 
points 3, 4, 5, 6.  
 
Phenomena Context: composed of: elasticity, rigid body motion and heat transfer. 
 
Phenomena: in the problem we can identify the following simulation phenomena: 

§ Heat transfer, phenomenon is represented by the temperature vector field T1: 
ℜ→ℜ×Ω +

1  
§ Heat transfer phenomenon is represented by the temperature vector field T2: 

ℜ→ℜ×Ω +
2  

§ Phenomenon represented by Lagrange multiplier vector field µq: ℜ→Γ7  
(Lagrange multiplier in Γ7, due to restrictions between T1 and T2) 

§ Elasticity phenomenon is represented by the displacement vector field 
2

1 : ℜ→ℜ+w   
§ Rigid body motion is represented by rigid body displacement vector field 

2: ℜ→ℜ+
2w , 

§ Phenomenon is represented by the Lagrange multiplier vector fields µ: 
2

2 ℜ→ℜ×Γ +  and µf: 2
7 ℜ→ℜ×Γ +  (Lagrange multipliers in Γ2 and Γ7, 

respectively due to restrictions of w1, and between w1 and w2). 
 
Simulation Regions: these are the regions where the phenomena are defined. The 
regions, where restrictions between phenomena are defined, are included as simulation 
regions. In the example we have: 
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§ Ω1, where elasticity and heat transfer are defined; 
§ Ω2, where rigid body motion and heat transfer are defined; 
§ Γ7, where restrictions between T1 and T2 and a restriction between w1 and w2 

are defined; 
§ Γ2, where a restriction involving only w1 is defined. 

 
Below one can find the specification of the data for each phenomenon. 
 
a) Phenomenon Specification:  
 
Each one of the described phenomena has its own discrete vector field, geometric 
domain, and couplings with other phenomena, discrete weak form, and other relevant 
data. Furthermore, for all phenomena we define the following: 

§ Shape Functions (Test Functions and Trial Functions): a tool for providing the 
values of the shape functions and their derivatives up to a given order at the 
integration points; 

§ Phenomenon methods 
§ Integration rule: a routine for providing integration points and respective 

weights with respect to the geometric reference finite element; 
§ Geometric mesh generation method; 
§ Phenomena mesh generation method; 
§ Initial state; 
§ Compute initial time step; 
§ Compute next time-step. 

§ Restrictions (Dirichlet or other type) 

§ Restriction between w1 and w2 on Γ7 and w1 = β.w2; 
§ Restriction w1 = 0, on Γ2; 
§ Restriction T1 = T2 on Γ7. 

§ Phenomena Couplings 

§ Between w1 and T1 on Ω1 (constitutive coupling the material constitutive 
relation depends on T1); 

§ Between w1 and the Lagrange multiplier µ f defined on Γ7; 
§ Between w1 and the Lagrange multiplier µ defined on Γ2; 
§ Between w2 and the Lagrange multiplier µ f defined on Γ7; 
§ Between the phenomenon boundary condition for T1 defined on Γ7 and the 

Lagrange multiplier µq; 
§ Between T2 and the Lagrange multiplier µq defined on Γ7. 

 
b) Phenomena Boundary Conditions: 
 
Boundary conditions for w1: 

§ On Γ1 and Γ3 there is a Neumann boundary condition with zero loads in each 
one of them. Thus, void sub-phenomena (which do nothing) are defined there. 
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§ Dirichlet condition on Γ7. This was already considered as a restriction, which 
generated an extra phenomenon with vector field µ f. However, w1 became 
coupled with this Lagrange multiplier. Therefore a sub-phenomenon is defined 
on Γ7 in order to provide for the quantities related to that coupling. 

§ Dirichlet condition on Γ2. This was already considered as a restriction, which 
generated an extra phenomenon with vector field µ. However, w1 became 
coupled with this Lagrange multiplier. Therefore a sub-phenomenon is defined 
on Γ2 in order to provide for the quantities related to that coupling. 

 
Boundary conditions for w2: 

§ On Γi, i = 4, 5, 6 there is a Neumann boundary condition with zero load in each 
one of them. Thus, void sub-phenomena (which do nothing) are defined there.  

§ Dirichlet condition on Γ7. This was already considered as a restriction, which 
generated an extra phenomenon with vector field µ f. However, w2 became 
coupled with this Lagrange multiplier. Therefore a sub-phenomenon is defined 
on Γ7 in order to provide for the quantities related to that coupling. 

 
Boundary conditions for T1: 

§ On Γ2 there is a zero Neumann boundary condition (insulation). Thus, a void 
sub-phenomenon (which does nothing) is defined there; 

§ On Γ1 and Γ3 there are mixed boundary conditions (convection) prescribed. 
Therefore two sub-phenomena will be defined there; 

§ Dirichlet condition in Γ7. This was already considered as a restriction, which 
generated an extra phenomenon with vector field µq. However, T1 became 
coupled with this Lagrange multiplier. Therefore a sub-phenomenon is defined 
on Γ7 in order to provide for the quantities related to that coupling. 

 
Boundary conditions for T2: 

§ On Γi, i = 4, 5, 6 there are mixed boundary conditions (convections) prescribed. 
Therefore, three sub-phenomena will be defined there; 

§ Dirichlet condition in Γ7. This was already considered as a restriction, which 
generated an extra phenomenon with vector field µq. However, T2 became 
coupled with this Lagrange multiplier. Therefore a sub-phenomenon is defined 
on Γ7 in order to provide for the quantities related to that coupling. 

 
Representation of Phenomena and Geometry through graph structures 
 
Figure 5-10 presents the GeomGraph, which represents the supplied geometry where 
phenomena occur and which are composed of GeomEnitites. Note that the graph 
represents the problem geometry composed by surfaces, curves, and points presented 
in Figure 5-9. 
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Figure 5-10 GeomGraph of the whole example geometry 
 
Figure 5-11 shows the Simulation Regions and phenomena defined on them. 
Remember that a copy of the simulation region is given to each phenomenon defined 
therein, which becomes the GeomGraph of the phenomenon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-11 Simulation Regions and their phenomena  
 
The PhenGraph represents the phenomena controller responsible for the simulation 
data, described previously in Figure 5-6. As noted previously, the PhenGraph 
resembles the organization of the respective simulation region (represented by its 
GeomGraph). Each GeomEntity of the simulation region is associated with a 
PhenEntity, which represents a specific simulation data, which in turn implements the 
phenomenon in that GeomEntity. 
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Figure 5-12 Example of a PhenEntity 

 
Through space discretization and the use of the FEM it is possible to obtain the 
following semi-discrete equations (discretization in time is still to be done). 
 

5.2.7 Consequences 
 
Several forces were considered as relevant for the definition of a computational 
phenomena abstraction (see section 5.2.4). They included: levels of defined 
abstractions, degree of completeness of involved concepts, reliability of the concepts, 
possibility of data persistency, standardization of the model in the community, 
performance, and the management and automating of simulator building, etc. 
 
We can observe that the proposed solution solved some of the following forces: 

§ Definition of higher levels of abstraction; 
§ Simplification on computational phenomena use and implementation; 
§ Completeness of the information provided was improved, however; 
§ Reliability of computer simulations is improved by the use of pre-defined 

models. 
§ Higher levels of reusability and maintainability were achieved. 
§ Persistence can be defined as structures for representing the underlying 

concepts were defined. 
 

The definition of high levels of abstraction for the main concepts of problem data 
modelling were proposed to reduce the complexity and improve the correctness of the 
simulation to be developed. This was achieved by an adequate separation of concerns, 
such as the separation between the solution processes and the computations of the 
contributions of each phenomenon to the equations to be solved. Note that many pieces 
of information regarding the modelling of a phenomenon are used in different phases 
of the simulation. For instance, mesh generation methods are used in the pre-
processing phase, while numerical integration methods are used in the simulation itself. 
However, both pieces are directly related to the numerical modelling of a phenomenon. 
Thus, many aspects of the structure, dynamics and relationships of the sets of data 
related to a phenomenon could be analysed in order to achieve high levels of 
abstraction with the resulting desired benefits. The abstractions used can reduce the 
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involved complexity in the development of FEM simulators and their maintenance, and 
also give support to their automation.   
 
For the independence of the higher levels of simulator programming, we separated the 
parts responsible for the solution processes and the parts responsible for the production 
of the vectors and matrices, at the finite element level, and their assembling in global 
entities. This separation becomes possible when the machinery for the production and 
assembly of those vectors and matrices is provided and is made flexible enough to 
accommodate for the requirements of large classes of solution processes.  

 
Some negative forces can also be identified such as performance. If phenomenon 
objects, for the computations of matrices and vectors, do not provide special tools 
performance is expected to be very low, due to the high level of abstractions involving 
and integrating many concepts. 
   

5.3 FEM Simulator Skeleton Pattern 

The FEM Simulator Skeleton pattern supports the conception of FEM simulators. This 
pattern makes possible to separate complex procedures from simpler ones and strongly 
re-usable software components from less reusable ones. Furthermore, it opens the way 
to automatic programming of FEM simulators for coupled phenomena. One immediate 
benefit is the enhancement of reusability. 
 
The FEM Simulator Skeleton considers four levels of computation for FEM simulator 
conception. It supports abstractions for different phenomena coupling in a single 
strategy, identifying which parts can be more reusable than others and proposes a 
hierarchical and modular solution. The pattern also suggests a physical phenomenon 
abstraction, called here Computational Phenomenon, which was described previously 
in section 5.2.   
 

5.3.1 Name  
 
The FEM Simulator Skeleton, which means a pattern for modelling FEM simulators 
based on algorithm skeletons for coupled phenomena. 
 

5.3.2 Context 
 
When a designer defines a computational model for a mathematical formalism, using 
FEM in the context of coupled phenomena, he/she has to deal with problems such as 
data dependence and sharing. Such issues are not trivial to treat in a homogeneous way 
because they are strongly dependent on the specific problem being considered. Thus, it 
becomes difficult to provide reasonably high levels of abstractions, which could 
represent the main components, properties, relationships, and operations involved. 
Without that, even when making use of sophisticated FEM libraries, the tasks involved 
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in building and assessing the performance of new methods could become very costly 
and time consuming due to lack of modularity and reuse. In addition, as far as we are 
concerned, there is no standardized solution for the control of coupled phenomena 
simulations, making the integration of reusable components a very difficult task in this 
context.  
 
In this pattern, we are concerned with the conceptualisation of the Simulation Process. 
We assume that the simulator building and assembling will be based on a variable 
designer data model, which describes: the initial scenario, algorithm skeletons and 
numerical methods, phenomena, and geometry. The initial scenario defines the class of 
problems that the simulator will be able to tackle in a broad sense, as was described in 
previous chapters.   
 

5.3.3 Problem  
 

How a complex simulator for coupled multi-physics phenomena based on FEM can be 
structured in such a way that it guarantees a high level of reuse and modularity?  
 

5.3.4 Forces 
 

The FEM Simulator Skeleton pattern aims at solving forces related to high costs in 
complex simulation systems development, particularly in the direction of complexity 
management and software quality achievement. Nevertheless, this pattern also 
considers the automatic articulation of solution strategies for coupled multi-physic 
phenomena and their possible replacement by other articulations. In the sequence we 
describe the forces involved in the context of FEM coupled phenomena simulator 
modelling: 

§ High complexity: there is a lack of standard abstractions to help the 
simplification and organization of complex structures of data and code related 
to coupled phenomena simulations in the FEM context. The relationships 
among phenomena are strongly problem-dependent and solution algorithm 
dependent. 

§ Reusability: numerical experiments are complex constructs, based on pieces of 
information such as strategies, auxiliary methods, and other pieces of data. 
They can be very reusable for large classes of problems. 

§ Adaptability: due to the frequent improvement of numerical methods or due to 
the need of comparing different methods, the simulator architecture must be 
adaptable (to some extent) to support the required modifications without heavy 
reprogramming. 

§ Strategy Independence: in order to allow the designer to specify the simulator 
features and strategies, there must exist flexibility in building different solution 
strategies. 

§ Integrability: there is a need for an application/routine that is able of 
monolithically solve a specified set of coupled phenomena. Some problems 
simply do not allow for an independent solution for each phenomenon. 
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Furthermore, whenever different software components have to be used together 
for the simulation of coupled phenomena (for instance, in a partitioned way), 
problems concerning data transfer and integration frequently appear. 

 
5.3.5 Solution 

 
The main structure of the pattern for representing a general FEM simulator is 
composed of Simulator, Block of Groups, Group of Phenomena, Phenomenon, 
Algorithm Skeletons and MathMethods, see Figure 5-14. The FEM Simulator Skeleton 
pattern suggests a FEM simulator algorithms organization with four levels of 
computational demands: Global Skeleton, Block Skeletons, Group Skeleton, and 
Phenomenon. These levels were defined due to the high number of repeated (similar) 
structures and the degree of reusability of the involved algorithms (see example in 
section 5.3.7).  

Algorithm Skeleton

Block Skeleton

GolbalSkeleton Phenomenon

Simulator

1..*1..*

Block

1..*

1..1

1..*1..*
1..*

MathMethod

1..*1..*

GroupSkeleton

Group 1..*1..*

1..*1..*
1..*1..*

1..*1..*1..*

1..*

1..1

 
Figure 5-13 Participants of the Simulator Pattern  

 
Participants 
 
The FEM Simulator Skeleton pattern is composed of the following participants: 

§ Simulator represents a class of possible simulations and it is responsible for the 
control of the main process flow; thus, it maintains the core of simulation 
through the Global Skeleton, which is stored in the Kernel.  

§ Algorithm Skeletons are algorithms described by the simulator designer, 
corresponding to one of the levels of computation (Global, Block, Group), 
using the pattern-defined abstractions. 

§ MathMethod is a routine with a very specific purpose and is used by either 
Algorithm Skeletons or encapsulated procedures inside a Phenomenon. For 
instance, MathMethods are defined by: numerical integration, mesh adaptation, 
error estimation, and other tasks. 

§ Kernel: main part of the simulator, which is related to the global Skeleton and 
which also controls the simulator workflow. 
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§ Global Skeleton is the highest level of the solution scheme and it articulates the 
action of all Blocks contained in the Kernel. It is supposed to be strongly 
reusable. 

§ Block contains a set of Groups of phenomena. Each Block has a set of skeletons 
called Block Skeletons. More than one block is justified, for instance, in the 
case where a problem is partitioned into the solutions of separate sets groups of 
phenomena.  

§ Block Skeletons, where the Groups are required to perform a certain number of 
categories of procedures (for instance, partitioned - staggered - solution 
procedures involving groups of phenomena). When a Group is asked to execute 
a category of procedures (for instance, to compute a solution for its group of 
phenomena), it executes a very specific algorithm, which is a member of that 
category. Block Skeletons are supposed to be very reusable. 

§ A Group contains a set of phenomena, which are going to be solved 
monolithically. A Group is provided with a set of Group Skeletons. 

§ Group Skeletons represent very specific procedures. Due to their problem- and 
method-specific definition and organization, the Group Skeletons are the least 
reusable amongst all Skeletons. Nevertheless, they may be implemented in such 
a way that they become capable of considering a varying number of 
phenomena, depending on the requirements from the simulation design. 

§ A Phenomenon represents a complex system composed of data and tools. Its 
primary responsibility is to provide the contributions of each phenomenon to a 
Group System of equations to be solved in each instant of the solution process. 
This level is the place where the couplings and other processes of data sharing 
and dependence are considered in the construction of the required vectors and 
matrices. It is the lowest level of the procedures in the solution schemes and 
thus, it represents a tremendous effort in terms of programming, testing, and 
validation. Therefore, the reusability of the tools located in the classes, which 
compose what we call a Phenomenon, is fundamental to saving time and cost 
whenever one is programming new simulations. 

 
Levels of Computation 
 
The four levels of computational demands (skeletons and methods) are detailed below: 
 

§ Global Skeleton is the first level of computation and represents the global 
algorithm skeleton (the core of the simulator). The global algorithm skeleton 
articulates the procedures involving all blocks. The procedures here deal with a 
high level of simulation execution, such as time loops, and adaptive iterations, 
etc. It also includes general requirements such as asking the blocks to obtain the 
block solution or to perform an adaptation procedure. There is no need for 
matrices and vector manipulations at this level. The building of a Global 
Skeleton depends on a series of decisions about the whole classification of the 
simulation. A Global Algorithm Skeleton is unique for each simulator, but may 
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be replaceable, producing another simulator. Global Algorithm Skeleton is the 
procedural structure representing the algorithm to be performed with demands 
defined at a higher level. It does not refer directly neither to a Group of 
phenomena nor to any phenomenon.  

 

§ Block Skeletons are necessary in order to articulate the Groups of Phenomena in 
the execution of tasks demanded by the Global Skeleton. Each block has a set 
of skeletons (Block Skeletons), which satisfies the demands from the Global 
Skeleton by decoding them into demands for the groups in a previously defined 
order. A simulator may have a Block Skeleton changed without requiring the 
modification of the simulator’s Global Skeleton. Nevertheless, a well-designed 
Block Algorithm Skeleton is also very reusable and it is not supposed to be 
replaced even in the case of very severe changes in the solution algorithm at the 
level of the phenomena Group. The Block Skeleton defines solution procedures 
such as iterations in the case of operator splitting solution strategies (which 
involve all Groups), iterations in the case of non-linear solvers (involving one 
or more Groups), etc. It also transfers directly to its Groups some of the 
demands coming from the Global Skeleton (time step estimation, error 
estimation, etc.) and possibly post-processes the output from the Groups. 

 

§ Group Skeletons are necessary in order to articulate the Phenomena in the 
execution of tasks demanded by the Block Skeletons. A Group is provided with 
a set of Group Skeletons, which represent very specific procedures and may not 
be very reusable. Its purpose is to encapsulate the parts from the solution 
scheme, which are specific to the particular solution method being used for a 
group of phenomena. Usually, the more reusable parts of the solution scheme 
are best located either in a Block Skeleton or in the Global Skeleton. In the 
Group Skeletons, the quantities produced by the Phenomena Skeletons are 
manipulated in the way required by the solution method, which characterizes 
the Group. Thus, the Group becomes specialized in the solution of any subset 
of its set of possible phenomena; hence, all vectors and Matrices used in the 
solution are located in the Groups. The Group also needs to have knowledge of 
its Phenomena couplings, whenever building coupled terms. This is because the 
coupled terms have been built, possibly using an already computed discrete 
vector field (possibly related to another group), which should be appropriately 
defined. Frequently, Group Skeletons make use of MathMethods, whenever 
there is a task, which can be encapsulated representing either a reusable or a 
replaceable procedure (solution of an algebraic system of equations, for 
instance). 

 

§ Phenomenon Procedures represent the lowest level of all procedures in the 
simulation and are related to all possible contributions its Phenomenon can 
provide to any solution scheme. Starting from the computation of the Global 
Skeleton and going through the two other levels of articulation, what remains to 
be defined are the contributions of each phenomenon to its Group solution 



 

 
 
 
 
 
 
 
 

116

scheme in a uniform parameterised way. The phenomena classes will be 
composed of phenomenon data and a group of numerical methods 
(MathMethods), which are replaceable (i.e. can be modified by the users 
through input data, such as integration rules, for instance). 

 
Interaction 
 

We can summarize the pattern’s major interactions in the following way: (a) the 
Global Skeleton articulates the procedures involving all blocks; it does not make 
any requirements directly neither to a Group of phenomena nor to any Phenomenon; 
(b) the Block Skeletons then define the activities of the groups; (c) the Group 
Skeletons in turn articulate the phenomena in their computations, that is represent 
how the phenomena will be solved together. This produces cleaner and more 
reusable Global and Blocks algorithm Skeletons, leaving to the Groups algorithm 
Skeletons the responsibility of defining the specific problem dependent (non-
reusable) procedures of the whole solution algorithm. 

 
5.3.6 Applicability 

 
The proposed pattern has great applicability in FEM simulation modelling 
especially when the following situations are frequent: 

 

§ Several phenomena defined in the same geometric region, with either different 
meshes and different adaptation criteria or sharing meshes and other data; 

§ Interchange of data between phenomena is very frequent (data dependence); 
§ Assessment of solution quality may be different and sometimes interdependent 

(error estimation, adaptation, and approximation properties) from one 
phenomenon to another; 

§ The desired solution algorithms articulate separate groups of phenomena and 
those groups, in turn, consider sets of phenomena in the computation 
procedures (as it is the case in operator splitting schemes). 

 
5.3.7 Example of Usage 

 
In this sub-section, we show the application of the pattern to a general scenario of a 
simulator model, which is described in Appendix A. Next we will detail the pattern 
application for the proposed simulator scenario. Then, some considerations related to 
the pattern application are presented. Finally, we show an example of a problem that 
can be solved by the defined simulator. 
 
Usually, it can be observed that an algorithm defined for the solution of a problem by 
the FEM method has repeated (similar) structures. Thus, in the pursuit of a high degree 
of reusability, four levels of demands in the algorithm were devised: Global Skeleton, 
Block Skeleton, Group Skeleton, and Phenomena procedures. In the Block Skeleton 
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we will assume that r
gN  is the number of groups for the rth -block. In the sequence we 

will present the algorithm Skeleton and the Global Skeleton. 
  

Figure 5-14 shows the Global Algorithm Skeleton for the proposed Simulator. As it 
involves, for example, transient phenomena it includes tasks to compute initial time 
steps for blocks and the computation of the next time step. 

 
 

 I.) From Blocks i = 1 until 2  
 I.0) Retrieve initial state for Block i 
 I.I) Compute initial time step ∆t I  for Block i  
 I.II) Compute initial auxiliary data for Block i  
II) Compute initial ∆ t = min 1 ≤ i ≤ 2 {∆t i} and set time instant t1 = 0 
III) While t1 ≤ Tmax do:  
 III.0) Set t0  = t1  and t1  = t0  + ∆ t  
 III.I) For Block i = 1 until 2 
  III.I.0) Solve for Block i 
  III.I.I) Compute next time ∆t i for Block i  
  III.II) Compute next time step ∆ t = min 1 ≤ i ≤ n   {∆ t i } 
 III.III) Continue with time iteration 
IV) End of the simulation 

 
 
 

Figure 5-14 Global Algorithm Skeleton 
  
Figure 5-15 details the Block Skeleton for the proposed Simulator. It is composed of 
sub-skeletons that implement for example: the initial state for the Block (I.0), the 
solution for the block (III.0), etc. 
 
Observe that the Block Skeletons articulate the groups in a very simple way, almost 
only sending to the groups the requests made by the Global Skeleton. Nevertheless, it 
should be noted that the decision of providing an iterative scheme involving the 
Groups was made and defined by the Block Skeleton. In this sense such a procedure is 
transparent to the Global and Group Skeletons. 
 

The Group Skeletons are subtler in what concerns the articulation of their phenomena 
for providing the demands of the original solution algorithm. The detailed description 
of Group Skeletons is beyond the objectives of this example. However, it can be seen 
from the algorithm that each Phenomenon should provide the group with matrices and 
vectors for assembly. 
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Figure 5-15 Block Skeleton for any Block 

 

     Is-Br) Initial State for Block r (see (I.0)) 

                    Is-Br.0) For i = 1 until r
gN  

                                  Is-Br.0.0) Ask Group i to compute Initial state for its phenomena 
   It-Br) Initial time step for Block r (see (I.I)): 

                   It- Br.0) For i = 1 until r
gN  

                                  It- Br.0.0) Ask Group i to compute Initial time step ∆i  
                   It-B1.I) Set ∆t1 = min  1≤ i ≤ N

1
p {∆ i }  

   Id-Br) Compute initial auxiliary data for Block r (see (I.II))  

                   Id-Br.0) For i = 1 until r
gN  

                                  Id-Br.0.0) Ask Group i to compute its auxiliary data. 
   Sl-Br) Solve for Block r (see (III.0)) 
                   Sl-Br.0) Initialise iteration state k = 0 for Block i  
                   Sl-Br.I) Set k = 0. While convergence for Block r is not achieved, do:   
                                  Sl-Br.I.0) Compute the (k+1) th-solution  based on the k th-solution for  Block r 
                                  Sl-Br.I.I) Compute error between the solutions k and k+1 for Block r  
                                  Sl-Br.I.II) Compute auxiliary data for next step and increment k = k+1  
                   Sl-Br.II) Accept last solution from iteration loop for Block r 
   Sk-Br) Initialise iteration state k = 0 for Block r (see (Sl-Br.0)): 

                   Sk-Br.0) For i = 1 until r
gN  

                                  Sk-Br.0.0) Ask Group i to initialise iteration state k= 0  
   Sl-Br) Compute the (k+1) th-solution from the kth -solution for Block r (see (Sl-Br.I.0)):  

                   Sl-Br.0) For i = 1 until r
gN  

                                  Sl-Br.0.0) Ask the Group i to compute its (k+1)th -solution from its   kth –solution  
   Er-Br) Compute error between the (k+1)th -solution and the kth -solution for Block r  (see (Sl-Br.I.I)): 

                   Er-Br.0) For i = 1 until r
gN  

                                  Er-Br.0.0) Ask Group i to compute its error Eik   

                   Er-Br.I) Compute Block error Er,k based on the Group errors { Eik} 1≤ j≤ l
gN  

   Ad-Br) Compute auxiliary data for Block r at kth -iteration (see (Sl-Br.I.II)):  

                   Ad-Br.0) For i = 1 until  r
gN  

                                  Ad-Br.0.0) Ask Group i to compute its auxiliary data. 
   As-Br) Accept last solution obtained in the iteration for Block r (see (Sl-Br.II)): 

                   As-Br.0) For i = 1 until r
gN  

                                   As-Br.0.0) Accept last solution obtained for Group i and store it. 
   Nt-Br) Compute next time step for Block r (see (III.I.I)): 
                   Nt-Br.0) Ask group i to compute next time step ∆ i  

                   Nt-Br.I) Set ∆tr = min r
gNi≤≤1  {∆ i } 
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In the above Vec is a given vector and a and b are given scalars. Each one of those 
quantities that a phenomenon offers to its Group may depend on vector fields from 
other phenomena (either from its Group or not). It is the responsibility of the current 
Group to indicate: (i) the quantity to be computed by its phenomena and (ii) in the case 
of coupling, what is the vector field state (either from the current Group or not) that the 
coupled phenomena should use in order to provide what is needed for the computation 
of the coupled quantity. With such an organization, demands to the Phenomena 
become very uniform, making them extremely reusable. 
 
A final remark is related to the fact that this pattern was made possible by the way the 
data and tools are built in the Phenomenon level. It is in this level that data dependence 
and sharing between phenomena are defined, leaving the Global Skeleton and the 
Block Skeletons free from those details. The Group Skeletons are the agents 
responsible for mapping the requirement of a phenomenon for quantities from other 
phenomena to the actual quantities, which are stored either in the current Group or in 
other Groups. 
 

5.3.8 Considerations 
 
This pattern considers that the class of problems, which define the applicability of a 
simulator, can be defined in a somewhat clear way. For instance, considering only its 
Global Skeleton, the Simulator built in the example (first sub-section of section 5.3.7) 
is capable of solving simulations in the class of dynamic problems with neither 
adaptation nor error estimation. Now, considering its Block Skeletons, it is capable of 
solving only linear (or very mild non-linear) problems with Dirichlet type restrictions 
and using a split stabilized methodology. Those restrictions may involve one or more 
vector fields. The Group Skeletons are very specific to the solution scheme used and 
even slight modifications may cause the necessity to redesign and reprogram them. As 
noted, the couplings and other processes of data sharing and dependence are 
considered at the phenomenon level leaving the Global and Block Skeletons free of 
having to consider them. Since Group Skeletons are the least reusable; they may (and 
frequently do) deal with specifying the right quantities that a coupled phenomenon 
should retrieve from its own Group. This reflects on coupling between Groups, which 
has been described earlier and is related to the specifics of the solution methodology 
being used by the Group. 
 

5.3.9 Example of Simulator Applicability 
 
An example of a problem that can be solved by the defined simulator is described in 
Appendix A – example 1 and 2. Is composed of two sub-domains Ω1 and Ω2. The 
physical phenomena defined therein are (transient state): linear elasticity with 
temperature dependent constitutive equations in Ω1; rigid body motion of Ω2 and heat 
transfer in Ω1 and Ω2. The proposed simulator will build the global linear system 
related to all the mesh elements, for each phenomenon, and solve this system. For the 
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present example of problem formulation, to be applied to the defined FEM simulator 
we can consider the following: 

§ Groups: group 1, phenomena represented by vector fields T1 and T2 (heat 
transfer in Ω1 and Ω2); group 2, phenomena represented by vector field µq 
(Lagrange multiplier in Γ7, due to restrictions between T1 and T2); group 3, 
phenomena represented by their vector fields w1 and w2 (elasticity in Ω1 and 
rigid body motion in Ω2); group 4, composed of the phenomena represented by 
their vector fields µ and µf (Lagrange multipliers in Γ2 and Γ7, respectively, due 
to restrictions in w1). 

§ Blocks: block 1, composed of groups 1 and 2; block 2, composed of groups 3 
and 4. 

 
5.3.10 Consequences 
 

It is worthwhile observing that a FEM Simulator Skeleton pattern is not restricted to a 
given implementation of Blocks, Groups and Phenomena. Their abstract behaviour and 
interaction are independent of a specific implementation. When dealing with the 
building of a specific Simulator, the implementation of the Global and Block Skeletons 
should reflect the needs for the solution of a large class of problems, which constitutes 
its strategy. Thus, each Simulator built, based on the proposed pattern, should be 
capable of solving completely different problems, defined by completely different 
geometries and considering completely different sets of phenomena, provided that the 
problem is still within its applicability range.  
 
Forces solved by the pattern  
 
The FEM Simulator Skeleton pattern consider:  

§ Higher levels of abstraction for the main concepts of FEM Simulation Skeleton 
pattern modelling, giving support for the reduction of complexity and 
correctness of the systems (simulators) to be developed. 

§ Higher levels of hierarchical modularity for the system process organization, by 
the use of global skeletons, blocks and group skeletons. 

§ A solution, which may consider monolithic, coupled phenomena simulation. 
§ The higher levels of code reusability are found in the Phenomena, Global and 

Block skeleton structures, followed by Group of phenomena. The less reusable 
is the group of phenomena, because it is the location more sensitive to 
modifications, whenever changes in the numerical method and type of 
simulation are desired. 

§ Reliability of the computer-generated predictions is considered by the use of 
pre-defined strategies, numerical methods and templates. 

§ A higher level of maintainability is supported due to the defined modularity in 
the simulator modelling, that is, the separation of the different levels of 
computation.  
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5.3.11 Negative Consequences 
 
In the FEM Simulator Skeleton pattern some negative consequences can be identified: 
the model builders require special training, that is, the designer must understand the 
proposed abstractions; designers will only achieve higher levels of reusability if they 
know how to articulate their strategies and problems; simulator performance can 
decrease due to the extra levels of abstraction imposed. However, one may notice that 
the number of calls to Blocks, Groups and Phenomena are very small. 
 

5.3.12 Forces unsolved by the pattern 
 
Some forces are still not solved or not even treated in the present work:  

§ Automatic programming: this is desired due to the great volume of code that 
must be reprogrammed in a single application of coupled phenomena. 

§ Expertise level: there are multiple standard situations and states, which are 
neither assisted nor guaranteed. 

§ Performance: generally the simulations are very computer time consuming. So 
the performance must be taken more seriously into consideration.  

§ Scalability: simulations frequently require a large volume of data, which can be 
partitioned and processed by many processors in a distributed memory 
environment. So, it is important to allow the increase of processors if required. 

§ Portability: the simulations code should have high levels of reusability. So, it is 
important for it to be portable, that is, to be used with different computational 
environments, in order to take advantage of different existing expertise defined 
therein. Specialists frequently interact in building multi-physics simulations. 

§ Reliability: computer-generated predictions are of great concern to specialists. 
They help, for example to detect critical problems. Reliability of the system is 
very important. 

§ Simulation Pre-processing: pre-processing of input data is an important task, 
since the simulator structures require complex mapping of the real input data. 
In addition, the data structure may ease the burden on the global algorithms 
complexity, concerning data sharing and data dependence between different 
phenomena.  

§  
5.3.13 Related patterns 

 
The authors did not find any pattern that was specific to algorithm hierarchical 
modularisation for simulations based on FEM. There are some works, however, which 
present some level of abstraction and modularisation [LAN97, LAN99, PWC97]. 
Specifically, in the simulation of coupled phenomena based on the FEM, there are 
some works under development [LSA01, LSR02b, LSA02b], but not yet in a pattern 
form.   
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5.3.14  Known uses 
 
Due to tremendous ongoing activity in the fields of application of the FEM, there is a 
need for tools, which could help the development of simulators with a high reusability 
degree in both the academic and industrial worlds. The expected users of this pattern 
are scientists and engineers who already deal with development of FEM codes in some 
level, or, at least, have a basic knowledge of that method. 
 

5.4 GIG-Pattern (Generic Interface Graph) 

The use of workflow technology helps the development of more flexible and versatile 
computation strategies. So, workflow management systems are a relevant support for 
large classes of business applications, and many workflow models as well as 
commercial products are currently available [CFM02]. While the comprehensive 
availability of tools facilitates the development and the fulfilment of customer 
requirements, workflow applications still require simple, generic and adaptive 
solutions for the complex task of rapid development of effective applications, in 
particular when complex domains are involved. 
 
The Generic Interface Graph for process control (GIG-pattern) was developed after 
observing that many numerical algorithms showed the very same organizational 
structure when trying to achieve process reuse and flexibility for the adaptation of new 
strategies. Such organizational structure in turn allowed for an abstraction, which 
resulted in the GIG. As will be seen, in section 5.4.9, it is possible to devise 
frameworks to use the GIG pattern in order to implement different processes in a very 
flexible and automatic way. 
 
The GIG-pattern describes an abstract workflow solution, whose purpose is to provide 
expressiveness and adaptability through simplified workflow programming, control 
and use [LSV03a]. Another GIG motivation is to maintain predefined algorithmic 
structure, which means that the translation from an algorithmic language representation 
of the processes into a computer one must be as direct as possible. This is important 
because, the achievement of similarity between the way the programmer has its 
algorithmic code organized and the implementation of it can bring simplification in 
further required changes. Also, sometimes, developers need solutions that do not make 
restrictions on the scale of the process, that is, which need a mixture of small-scale 
processes (that execute within applications) and large-scale processes (that execute on 
top of applications). Usually this situation happens when designers are also the 
programmers.  
 
As a workflow pattern, GIG provides for the separation of process logic from task 
logic, which is embedded in user applications, allowing both to be independently 
modified and the same logic reused in different cases. The GIG-pattern considers 
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features related to run-time control functions [WMC95], which manage the workflow 
processes and the order of the various tasks. 
This pattern was devised from the experience obtained during the implementation of 
several simulators in the FEM context. Researchers of the Mechanical Engineering 
Department – UFPE found the need to organize their code in a way that was easier to 
adapt to new strategies and also to allow process reuse. The GIG pattern was the result 
of providing an interface for process control dealing with the specific requirements 
mentioned.   
 
This pattern’s description is organized as defined previously. It includes some variants 
that can extend the pattern and an example of the FEM simulators context.   
 

5.4.1 Pattern Name 
  
Name: GIG-Pattern, Generic Interface Graph for process control. 
 

5.4.2 Context 
 
Many domain specific users, like scientists and engineers, still program in a procedural 
style. The reasons are many. Complex numerical systems usually make use of many 
different pre-built auxiliary packages (like numerical integrators, solvers for non-linear 
and linear systems of algebraic equations, etc) that have their procedures described in 
algorithmic language. Therefore, the majority of the work is related to making the 
modules compatible in a monolithic architecture, which resembles the structure of the 
algorithm. This is a strong force that drives those users towards the procedural style.  
 
During the development of a software system, those developers need functions that 
help them to organize their logical processes and related tasks, in a way that makes 
easier its future adaptation to new solutions and for the reuse of software components, 
avoiding heavy reprogramming. We have repeatedly noticed that many numerical 
algorithms have exactly the same organizational structure. This structure comes from 
the procedural style of the algorithm representation and can be identified as a directed 
acyclic graph. This observation can lead to the definition of a workflow pattern as the 
one we are describing.  
 

5.4.3 Motivation Example 
 
Consider, for example the case of a mesh generation algorithm. A mesh can be 
described as a partition of a geometric domain into simple geometric entities (triangles, 
tetrahedral, hexahedral, etc) called geometric finite elements (or simply elements). In 
Figure 5-16 the algorithm for a particular mesh generation is presented, which, given a 
plane straight-line graph (PSLG), generates a mesh of triangles.  
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Figure 5-16 Mesh Generation Algorithm 

 
This algorithm can be represented using the graph structure presented in Figure 5-17. 
Observe that there are fifteen sub-routines, including the driver (which executes the 
procedures I- VIII). This graph structure can be represented in a GIG-pattern (see Figure 
5-18). Each one of those processes can be encapsulated in an object of a class, 
representing a node of the graph. The proposed pattern describes it as a derivation of a 
base class called AlgthmNode.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5-17 Mesh Generation Graph  
 
Observe that there are many different ways of performing each one of the tasks 
described in the above algorithm. For instance, IV.I.I find elements affected by the new 
point concerns a search method in a geometric database of triangles, looking for a 
triangle whose circumscribed circle contains a given point. There are a lot of search 
methods available in the specialized literature, each one with its advantages, 
disadvantages and dependence on special data structures. Replacing the current method 
by a new one will not affect any other place in the graph. 
 
Entire branches can also be changed as well. For instance, the process IV.I. insert 
point, can be changed by plugging in another method to perform that task. That means 
that all subsequent processes (children nodes) will also be changed. Besides the 

I.  Data input (PSLG) 
II. Generate the bounding box for the PSLG 
III.Build the initial mesh of the bounding box 
IV.For each point in the PSLG do 
IV.I.  Insert point 
IV.I.I.  Find elements affected by the new point 
IV.I.II. Eliminate those elements obtaining the affected region (AF) 
IV.I.III Build new elements from the new point and boundary of AF 
            Find a line of the PSLG such that it is not an edge of any triangle  
            (negative line) 
While there still is a negative line do 
VI.I Compute the middle point of the line 
VI.II insert middle point (see IV.I) 
VII. Eliminate those triangles, which have any point of the bounding box as one of their vertices. 
VIII.Data output 

I 

IV.I.I IV.I.II IV.I.III 

Driver

II III 

IV.I 

IV V VI=I VII VIII 

VI.I IV.II 
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severity of the change in the methods needed by the algorithm, all substitution work 
can be automatically performed.  

 

Then again, the Data Domain of this problem can be decomposed in such a way that all 
AlgthmNode objects (subroutines) will have access only to the data it needs. For instance, 
the process III. Build an initial mesh for the bounding box will need the bounding box and 
will build the initial mesh, which will be stored in a place in order to be accessed by other 
nodes. That decomposition will give rise to the classes derived from AlgthmData. The 
whole set of data pieces depend on the geometric data structure used by the developer. For 
instance, it can be seen that some structures have to be present: (a) PSLG (accessed by I, 
II, IV and V); (b) bounding box (accessed by II, III and VII), (c) mesh (accessed by III, 
IV.I.I, IV.I.II, IV.I.III, V, VII and VIII), (d) auxiliary data (many, it depends on the 
designer). All those pieces of data will be encapsulated in objects of classes derived from 
AlgthmData, see Figure 5-18.  

GraphNode

Insert point (IV.I.)

AlgthmData

AlgthmNode

AuxData

SkeletonGraph

root

PSGL

GenerBoundBox (II)

BoundingBox

DataInput (I) FindAffecElm (IV.II.)

Mesh

BuildInitMesh (III) . ..

...

MeshGenerator

 
Figure 5-18 Application of the GIG structure in Mesh generation algorithm 

 
In this example, the mesh generation process is the controlled workflow, see Figure 5-
18. This process includes information about constituent tasks (represented as the 
processes (I to VIII). The mesh generation process has requirements related to 
modularity and exchange of sub-routines, since it has specific parts that have several 
kinds of implementations, which can be exchangeable. 

 
5.4.4 Problem  

 
How to guarantee simplicity in the separation of process logic from task logic, during 
the development of complex systems, while maintaining solution independence, reuse 
of processes and the predefined algorithmic structure? 

 
5.4.5 Forces 

 
With respect to the defined context, there are different forces, which lead to different 
solutions. Some of these forces are:   

§ Maintaining predefined algorithmic structure;  
§ Simplicity in the process definition;  



 

 
 
 
 
 
 
 
 

126

§ Support for different levels of granularity of the defined processes;  
§ Domain independence;  
§ Dynamic change of workflow processes;  
§ Reduction of error occurrences in the coupling of processes;  
§ Reuse of processes;  
§ Parallelism and processes synchronization;  
§ Workflow execution performance;  
§ Exploring existing expertise of domains of knowledge.  

 
The following discussion analyses some of these forces, in order to identify how they 
are pulling against each other. GIG tries to resolve some opposing forces in the 
workflow definition context.  
 
When trying to maintain the predefined algorithmic structure, the definition of some 
sub-process could generate pieces of code that are not easily changeable, because they 
are monolithically defined as a block of code. Conversely, refined levels of process 
partitioning can provide a process definition at statement level, eliminating existing 
abstractions (such as blocks or modules). Domain independence and dynamic change 
of process requires abstractions such as polymorphism and encapsulation, which are 
not present in a procedural style (the predefined algorithmic structure).   
 
The guarantee of simplicity in process definition can be one method of avoiding errors 
and stimulate the pattern use. The reuse of already developed and tested processes 
helps in the simplification of process definition, similar to the possibility of reusing 
entire solutions. However, the reuse of processes can also reduce the simplicity due to 
the need for extensions of classes or configuration. Some other opposing forces to 
simple process definition are: the guarantee of domain independence, which makes the 
process definition more complex; also, to allow the definition of processes parallelism 
and synchronization the programmer has to deal with extra levels of complexity. 
Simplification can be compromised when parallelism is required for increasing 
performance. 
 
Process reuse improves reduction of errors once pre-tested software is incorporated. 
Refined levels of granularity, in process definition, provide higher level of tangibility 
in the number of processes to be controlled, increasing the reuse of processes. The 
guarantee of domain independence also increases the number of reusable process.   
 
Domain independence, avoiding non-monolithic solutions, makes the application of the 
workflow solution possible to different applications, improving its reuse. However, in 
these cases the existing expertise of a knowledge domain cannot be appropriately 
explored to improve the solution. Furthermore, synchronization and parallelism 
improve in one-way domain independent applications supporting the required 
functionality to existing applications. 
 



 

 
 
 
 
 
 
 
 

127

The dynamic change of workflow processes improves the solution power. However, 
gives the programmer the responsibility and complex task of making a suitable 
division of code and data, for further exchanging to be pertinent. The reuse of process 
is fundamental when the user has to change an existing one for another one, which is 
already tested and classified. Maintaining the pre-defined algorithmic structure does 
not help domain independence because it does not provide, for example, encapsulation.  
 
Parallelism and processes synchronization are very relevant to allow system 
optimisation and higher levels of control. The refined levels of granularity, in process 
definition, can allow a more precise level of parallelism definition. The dynamic 
change of workflow and the reuse of process increase the synchronization power, in 
process exchanging. Synchronization and parallelism improve in one-way the power of 
the dynamic change of process (identifying which process are independent or the 
dependence order). Conversely this can increase the complexity of the changing of 
processes. 
 
Maintaining the predefined algorithmic structure can sometimes improve performance 
due to the direct application of some available optimised code; parallelism also 
improves performance, since it allows simultaneous execution of process. 
Alternatively, simplicity of process definition can decreases the performance, when it 
eliminates, for example, the possibility of parallelism definition. The guarantee of 
domain independence can also decrease performance once the existing expertise 
cannot be appropriately explored. Other forces, which compromise performance due to 
the need of extra verification and controls, are: refinement level of the granularity of 
process definition; dynamic process exchange; control of errors, reuse of process, and 
synchronization. 
 

5.4.6 Solution 
 

GIG can be described as a workflow solution [WMC95]. GIG follows the object-
oriented style for modelling and programming. For simplicity, reasons of use and easy 
correctness verification, GIG implements a restricted direct acyclic graph (DAG) 
[LSV03a].  
 
Participants (Structure) 
 
The GIG structure is presented in the UML diagram in Figure 5-19.  
 
The GIG pattern is composed of the following participants: 

§ GraphNode: this is an abstract class that implements low level operations 
related to the interoperability between graph nodes. It controls the relationship 
between workflow tasks.  
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§ SkeletonGraph: it has a reference to the driver of an algorithm graph and 
encapsulates tools for performing some graph operations. It can be seen as the 
root of the workflow process. 

 

AlgthmConnection

AlgthmData A lgthmNode
0..*0..*

SkeletonGraph

+root

ConcreteAlgthmNode1 ConcreteAlgthmNode2

ConcreteConnection

GraphNode
<<abstract>>

0..*

children

0 .. *0 .. *

parent

ConcreteAl gthmData1

Doma inData
<<domain entity>>

ConcreteAlgthmDa ta2

 
Figure 5-19 Participants of the GIG-pattern 

 
§ AlgthmNode: represent subroutines that compose the application (workflow 

tasks). It is used as a base class for all algorithm classes of the application.   
§ ConcreteAlgthmNode Implements a specific subroutine for a task. It invokes 

other subroutines which can be tasks (defined as its children) or other defined 
applications. 

§ AlgthmData: represents a data type to be used by an instance of an 
AlgthmNode. It is used as a base class for all algorithm data classes of the 
application.  

§ ConcreteAlgthmData Represents data from the application domain, which is 
used in ConcreteAlgthmNode classes. 

§ DomainData: represents the complete set of types related to the problem 
domain data.  

§ AlgthmConnection: this is an AlgthmNode, which references an algorithm 
subroutine that was not connected to the graph. This class responsibility is to 
fetch, and build (like a proxy [GHJ95]) the related algorithm and replaces itself 
with the fetched algorithm. In this way several software processes represented 
by SkeletonGraphs can be assembled producing a complex software system.  

 
5.2.8 Collaborations  
 

We can identify the following collaborations between GIG participants, see Figure 5-
20: 

§ GraphNode encapsulates the responsibility of providing access to other 
GraphNodes, which are its children.  
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§ ConccreteAlgthmNode executes the associated process (subroutine) with the 
help of other processes represented by its children, through calls inserted in its 
process code. It relies on GraphNode to have access to its children 
AlgthmNodes. 

driver : 
SkeletonGraph

root : 
ConcreteAlgthmNode1

data1 : 
ConcreteAlgthmData1

son1 : 
ConcreteAlgthmNode2

data2 : 
ConcreteAlgthmData2

connectionNode : 
ConcreteConnection

realObject : 
ConcreteAlgthmNode3

<<create>> <<create>>

buildGIG( ) <<create>> <<create>>

buildGIG( )

<<create>>

Iteration over the set of 
ConcreteAlgthmNode children

mount( )

getRealAlgorithmNode( ) <<create>>

isInstanceOfAlgthmConnection(son)

return(realObject)
return(RealObject)

Make the reference to 
connectionNode points 
to realObject

mount()

This node can be a 
ConcreteAlgthmConnection too.

If it is true then do 
the next action

For each son
do the following steps

mount()

Otherwise, if it is not a 
AlgthmConnection

buildGIG( )

Figure 5-20 Sequence diagram for GIG building 
 
§ ConcreteAlgthmData provides access to workflow data. The AlgthmNode 

communicates with ConcreteAlgthmData objects to have access to its data.  
§ The AlgthmConnection provides the dynamic connection for AlgthmNodes. The 

way objects of this class interact with its SkeletonGraph or its parent 
AlgthmNodes depends on the implementation. The important thing is that it 
represents the point where a driver node of a software process/subroutine will 
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be plugged in. It also contains the necessary information about the new 
AlgthmNode. 

 
 
 
Implementation 
 
There are some implementation issues associated with the GIG participants, described 
previously, which need some extra explanation. Other important details about 
implementation are related to the design steps to be followed by the user when 
applying the GIG-pattern to a new application.   
 

5.4.7 Implementation Issues 
 
The DomainData is implemented by a set of subclasses of the AlgthmData. The 
subclasses of AlgthmData describe the specific domain treated in the problem. The 
AlgthmData and AlgthmNode objects must be materialised for the workflow they are 
serving. The materialization activities, of AlgthmData and AlgthmNode objects, can be 
delegated to object factories that are responsible for accessing the data repository and 
instantiating the objects. These object factories can have object pools to reuse objects, 
see section 5.4.11 (Related patterns) for details about the patterns that can be applied. 

 

The AlgthmNode subclasses need to cast the AlgthmData objects, associated with each 
node, to the primitive type. As was shown before, in Figure 5-19, each AlgthmNode 
object must have a reference for all of its children and data. This reference can be hard 
coded in an AlgthmNode subclass, or in a file, or can be handled by another class, 
which has the responsibility to relate each AlgthmNode to its children. An example of 
such a class is the DataAlgthmServer use in the example (in section 5.4.9). In this case 
each AlgthmNode can ask the DataAlgthmServer for its children and data or the 
DataAlgthmServer can be active and responsible for building the GIG. 
 
Design Steps 
 
The following design steps describe which actions the user needs to perform to apply 
the GIG-pattern to a problem: 

§ Starting from an algorithm in natural language the process is first divided into 
different subroutines (algorithm nodes) ehich are organized in the form of a 
graph.  

§ The division of the algorithm into several subroutines induces a decomposition 
of the domain data in order to provide them with an appropriate distribution of 
access to the data. The result of this process gives the AlgthmData set. 

§ Each AlgthmNode places calls to its children nodes, which implement 
subprocesses that take part of the whole process. The logic is defined inside 
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each AlgthmNode subclass and it references the execution of a child algorithm, 
independently of the task of that child.  

§ Each AlgthmNode is related to a set of AlgthmData, which may be shared with 
other nodes. 

§ The driver of the whole process is identified. 
 

5.4.8 Variants 
 
(i) Use of the TypeObject pattern [YJ02] to enhance adaptability that produces 
independence between the software routines and its data components. This is important 
in situations where the same software component is to be used in different situations 
and with different pieces of data. The class diagram is similar to the one in Figure 5-
21. With this extension, AlgthmType provides the AlgthmNode with the required 
functionality independently of AlgthmData. The relationship between AlgthmData and 
DataType can be made at run time. This extension does not affect interactions of 
AlgthmNode and AlgthmData with the other participants as already described. 
 

AlgthmNode

AlgthmData DataType

AlgthmTypeAdaptiveAlgthmNode

 
 

Figure 5-21 Class diagram for a variant of an AlgthmNode 
 
(ii) Hierarchical levels of procedures can be defined to support software management. 
An application of this extension can be seen in section 5.4.9, where three levels of 
SkeletonGraphs were defined. For each level one may define specific functionalities 
for all their respective AlgthmNodes and AlgthmData. Furthermore, at the level of the 
functionalities of SkeletonGraphs, object specific tools can be defined. These 
extensions can be oriented for the applications being considered. 
 
(iii) The pattern can be extended to deal with the definition/execution of processes 
running in a distributed environment. We will not go into further details because this is 
still under development. 
 
 

5.4.9 Example 
 

This example is related to the application of GIG in FEM simulators. As usual, it is 
observed that an algorithm defined for the solution of a problem by the FEM has 
repeated hierarchical structures. Therefore a framework considering hierarchical levels 
of processes was used, where each level may have several possibilities of algorithms, 
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and can be easily described by a GIG graph. The whole hierarchy is represented 
making the connections between the different levels and generating a complete graph. 
Global, Block and Group Skeletons, and Phenomena procedures define those levels. 
These levels satisfy a number of requirements, such as: (i) to separate less reusable 
modules from reusable ones; (ii) to make more comprehensible the decomposition of 
the simulation data amongst the several processes; (iii) to make possible the dynamic 
re-configuration of the simulator through the replacement of reusable modules.  
 
The global Skeleton articulates the time loop (if present), adapts iterations and defines 
processes involving the call of Block Skeletons. Block Skeletons may define different 
solution strategies for different Groups, thus, articulating Group processes. Group 
Skeletons articulate their phenomena procedures in very specific less reusable ways. It 
is at this level that solvers for algebraic systems are applied. Phenomena are the 
abstraction of the entities being simulated. All those skeletons can be implemented as 
objects from classes following the GIG pattern (see Figure 5-22). Therefore, the GIG 
will allow the interoperability of the different levels of computation (by automatically 
plugging the lower level skeletons into the higher ones).  

 

GraphNode0.. *0.. * 0..*0..*

Algthm2Allgthm3

...

Algthm1

SkeletonGraph

DomainData

AlgthmData

AlgthmNode

1..11..1

GlobalSkeleton

AlgDat1 AlgDat2

ServerManager

1 .. *1 .. *1..*1..* 1..11..1

BlockSkeleton

Kernel

1..11..1

Simulator

1..11..1

1..11..1

GroupSkeleton

Block

1..*1..*

1..*1..*

 Group

1..*1..*

1..*1..*

Phenomenon

1..*1..*

 
Figure 5-22 FEM Simulator and GIG classes 

 

In the example described in what follows, we consider a FEM simulator specification. 
This kind of simulator is capable of solving, for example, problems involving transient 
phenomena, where the phenomena context includes linear temperature-dependent 
elasticity, rigid body motion and linear heat transfer (as Example 1 and 2 of Appendix 
A). In the present case n blocks are needed. The number of Groups depends on the 
phenomena types present in a specific simulation. The number and type of phenomena 

GIG 
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depends on the simulation being carried out as well. In the ith-Block Skeleton, Nig is 
its number of groups.  
 
Figure 5-16 shows the Global Skeleton1, while Figure 5-23 shows two Block 
Skeletons. Figure 5-24 presents the GIG direct acyclic graph to implement Global and 
Block Algorithm skeletons. 

 
 
 
 
 
 
 
 

Figure 5-23 Block Algorithm Skeletons 
 
As noted before, there should be AlgthmData objects, which contain the required 
problem and process data needed by each AlgthmNode object. A specialization of an 
AlgthmNode is an AlgthmConnection, which is defined whenever a lower level 
process is to be called up. Its AlgthmData object includes pieces of information needed 
for the identification of the lower level skeleton that will be plugged into the Algorithm 
Skeleton Graph. This identification concerns a driver AlgthmNode object (from 
another graph, integrating in this way the graphs presented in Figure 5-24), which will 
replace the related AlgthmConnection object. 

 
 
 
 
 
 
 
 
 
 
 
 
 

          Figure 5-24 Global Alg.Skeleton graph                         Block Alg.Skeletons graphs           
 

5.4.10  Consequences 
 
Below we make some considerations about the forces related to this pattern.  
 
We can observe positive forces for the use of the GIG-pattern: 

§ Easy translation from algorithmic language into computer processes. It supports 
an organisation at a graphic level, providing the distribution of code in a very 

                                                                            
1 The example used in the FEM-skeleton Pattern is also used in this subsection GIG-Pattern. 

Is-Bi)Retrieve Initial State for Block i (see(I.0)): 
Is-Bi.0)For r = 1 until Nig 
 Is-Bi.0.0)Group r, compute phenomena initial states 
It-Bi)Compute initial time step for Block i (see(I.I)): 
It-Bi.0)For r = 1 until Nig 
  It-Bi.0.0)Group r, compute Initial time step ∆r  
It-Bi.I)Set ∆ti = min  1≤ r ≤ Nig {∆ r }  
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flexible way, not compelling a rigid division of code. To improve simplicity in 
process definition we try to: avoid unnecessary levels of details and to maintain 
similarity to the predefined algorithmic structure; 

§ Different users have evaluated this pattern with success, in applications with 
different levels of complexity [LSV03b];  

§ Support for different levels of granularity of the defined processes. It allows a 
flexible representation for a mixture of scales, since it does not restrict the 
levels of programming into which the code is defined, as opposed to [MAN01]. 
The workflow must be defined in terms of a set of node types that have already 
been coded in the programming language level; 

§ It can be applied to any domain solution, through the definition of specific 
domain data classes and algorithms, as can be seen from the pattern 
participants, in section 5.4.6;  

§ It allows the test of individual parts of the process independently, reducing the 
error occurrences in the coupling of processes; 

§ It allows the reuse of entire solutions, making changes in specific points. In 
GIG, it is easy to change parts of the graph, maintaining the others intact;  

§ It allows graph change (that is, the process change) at run-time. This is 
achieved through the GIG intrinsic dynamic structure, as was shown in section 
5.4.6. Data and process can be defined at run-time, depending on GIG 
implementation, once a pattern can be easily extended to incorporate design 
patterns such as [YJ02], as presented previously.  

 
 Some negative forces, or restrictions, can also be identified: 

§ The pattern makes severe restrictions on the graph structure, requiring it to be 
an acyclic graph. The designer is not allowed to define neither recursive 
iterations nor loops outside of the node code;  

§ The GIG-pattern makes no explicit reference or imposition for the use of a 
specific set of process types, in contrast to [MAN01]. We can consider that this 
may cause a loss of workflow-refined control (that is, at instruction level). It is 
the programmer responsibility to define and manage this organization, if 
required by the application;  

§ The flow control is inside each node code. This can bring difficulties to some 
parts of process adaptation and control; 

§ Synchronization is not a GIG-pattern responsibility. A GIG does not define a 
specific structure to deal with process parallelism and processes 
synchronization. To allow the definition of processes parallelism, the 
programmer has to deal with extra complexity. A GIG-pattern requires 
unnecessary levels of repetition, that is, the replication of whole of process 
graph branches.  

 
We may summarize saying that this pattern is not very appropriate for applications 
that are simple and do not require exchangeable processes, modularity or articulation 
of sub-routines. In addition, it is inappropriate for applications where there is a need 
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for a high level of refinement in the program code, or if process synchronization and 
parallelism are required. In these cases, the Micro-workflow proposal is an alternative, 
as described in [MAN01]. However, through the use of the Micro-workflow alternative 
one of the worthwhile things you loose is simplicity and the level of granularity; the 
translation from algorithmic language is not such a direct mapping, losing in this way 
some levels of abstraction. The application of the GIG pattern to simplify applications 
can be more expensive then a simple solution. Conversely, it supports reuse, flexibility 
for new solutions, and domain independence. 
 

5.4.11 Related patterns 
 
The following patterns, can be used together with the GIG-pattern:  

§ Factory Method [GHJ95], which can be used to materialize objects for 
workflow management; 

§ Template Method [GHJ95], used to define skeletons of algorithms in 
DataAlgthmServer classes; 

§ Composite [GHJ95], used to implement the AlgthmNode class functionality in 
the framework. 

§ Proxy [GHJ95], used in the AlgthmConnection class; 
§ Strategy [GHJ95], used in AlgorithmNode and AlgorithmData classes 
§ Adaptive object-model patterns, such as TypeObject [YJ02], shown in the 

variants section.  
§ FEM-Simulator Skeleton [LSR02a] can benefit from the GIG approach.  

 
5.4.12 Known uses 

 
Many variations of numerical algorithms show the very same organizational structure, 
which was abstracted by the GIG-pattern. Examples include: mesh generation 
procedures, geometric reconstruction from planar slices and integration of geometric 
reconstruction procedures, etc.  
 
Despite of being a generic solution that can be applied elsewhere, the users of this 
pattern have been scientists and engineers. The GIG-pattern has been applied with 
success in the development of different FEM simulator applications, and in a variety of 
other numerical methods in computational Mechanics. In Plexus we apply GIG as a 
general solution for the numerical methods and articulation strategies for solving 
groups of phenomena, see section (5.4.9).   
 

5.5 Final Considerations 

This chapter proposed patterns, which will give support to FEM simulators solutions 
domain: The Computational Phenomenon-Pattern, the FEM Simulator Skeleton Pattern 
and the GIG-Pattern.  
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The Computational Phenomenon Pattern represents an abstraction of the collection of 
commonalities found in the concepts and process for representing phenomena 
simulation through the FEM. It defines higher levels of abstraction and reusability. 
 
The FEM Simulator Skeleton pattern supports the development of FEM simulators. It 
deals specifically with algorithm hierarchical modularisation for simulations based on 
the FEM. Hence, it is possible to separate complex procedures from simpler ones and 
strongly reusable software components from less re-usable ones. One immediate 
benefit is the enhancement of re-usability. It is worthwhile observing that each 
Simulator built, based on the proposed pattern, and should be able to solve new 
problems defined on completely different geometries and sets of phenomena.  
 
The FEM-Simulator Skeleton pattern promoted: 

§ Higher levels of abstraction for the main concepts of FEM Simulation Skeleton 
pattern modelling, reducing the complexity and improving the correctness of 
the systems (simulators) that will be developed. 

§ Higher level of hierarchical modularity for the system process organization, by 
the use of global skeletons, blocks and group skeletons. 

§ A solution, which may consider monolithic, coupled phenomena simulation. 
§ Reliability of the computer-generated predictions is improved by means of pre-

defined strategies, numerical methods and templates. 
§ A higher level of maintainability, as the pattern separates different levels of 

computation and high reusability of the first two and last levels of computation 
are guaranteed.  

 
In contrast, the GIG Pattern (Generic Interface Graph for Process Control) provided the 
flow process control for the defined simulator. Hence it became easier to translate from 
algorithmic language into computer processes, as well as achieving simpler process 
definition by avoiding unnecessary levels of details and maintaining similarity to 
predefined algorithmic structures. However, the pattern creates severe restrictions on 
the graph structure, requiring it to be an acyclic graph; the designer was not allowed to 
define neither recursive iterations nor loops out of the node code. Then again, it 
allowed the reuse of entire solutions, locating changes in specific points. It also opened 
up to support run time adaptivity processes.  
These patterns address the following non-functional requirements: 

§ System flexibilization: (1) Support adaptability for changing numerical 
methods. Numerical algorithms were not hard coded, but treated as 
flexibilization points of the simulators abstraction. The algorithms used are 
customisable through configuration or extension of defined models; this occurs 
in the Computational Phenomena Pattern and also in the Skeleton Pattern. (2) 
The definition of an adaptive workflow management framework, where the 
designer workflow can be changed dynamically (Generic Interface Graph for 
Process Control, the GIG-pattern). 
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§ The support for the definition of new simulation strategies is related to modular 
decomposition in parts of the problem, which are intrinsically related to the 
kind of global algorithm of the simulators. With proper modularisation, 
solution strategies can be changed without changing the basic structure. This is 
treated by the simulator model definition and controlled by the GIG-Pattern. 
The designer will deal with different kinds of simulators, depending on the 
global scenario it wants to use. The simulator will be dynamically adaptive. 

§ The reusability was considered in the reuse of: simulator models, simulation 
problem data, numerical solutions, and simulator specific data (phenomena, 
geometries, components, etc). The reusability requires a good conceptualisation 
of reality, which is supported by modelling pattern definition that is 
descriptions of abstractions about simulator concepts composition and 
functioning. Also the process classification, in different levels of computation 
(FEM-Skeleton Simulator), facilitates the process reuse. 

 
This chapter also refers to Plexus Frameworks, that is, the Simulator Framework and 
the Computational Phenomena Framework. In spite of not being referred to here, we 
can abstract the whole Plexus system as a Framework that has more general hotspots 
Figure 5-25.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-25 Future Plans for the Plexus Framework 
 
The Plexus Frameworks abstraction considers that, due to Plexus architectural 
modularisation, we can have hotspots such as Pre-processors, Simulators and Viewers 
that will be included (adapting according to simulation requirements). However this 
will be considered in a future work. We can also generalize some common features to 
also support a product line definition for the development of FEM simulators. The 
product line approach [KLD02] has been specially adapted for the development of 
product families, where multi-resolution modelling is explored. 
 
The next chapter makes some final considerations about this work, showing future 
activities and suggestions for future work. 
  

Plexus Framework 
 
Plexus Framework            Kernel 
 
 
          Hotspots 
 

Environment 

Simulator 

Viewer 
 

Pre-processor 

Data Structure 

The Plexus Framework: 
We can pre-view the building of a generic 
framework, which presents several flexible 
hotspots for the simulator development, such as 
the pre-processor, the simulator, the data-
structure and the viewer machine. The 
architecture was defined in order to make them. 
This work, however was only interested in the 
modularisation of the involved components 
guaranteeing more independence between the 
major processes 
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Conclusion 
 
This chapter summarizes the objectives and contributions of this work in the 
conceptualisation of a Simulation Environment, it describes some identified 
limitations, makes a comparison with other approaches, and proposes future 
activities. 

Chapter 

6
4      
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6.1 Objectives of this Work 

The world has seen many advances over the past three decades in modelling and 
simulation. However, methods of modelling and simulation are fragmented across 
disciplines making it difficult to reuse ideas from other disciplines and to work 
collaboratively in multidisciplinary teams [ZPK00]. 
 
The motivation of this work is to provide support to engineers and scientists for the 
modelling and control of simulators related to coupled multi-physics phenomena based 
on the FEM, taking advantage of the polymorphic nature of the method. Thus, a 
Simulation Environment, named Plexus, is proposed.   
 
The expected results are the simplification of the definition of new solution strategies, 
support of model reuse, and the proposal of higher levels of abstraction related to the 
main concepts involved in the development of simulators based on the FEM. We help 
the user by providing abstraction mechanisms related to coupled phenomena, 
articulating different solution strategies for different phenomena groups; giving 
flexibility to define algorithms in several levels of the simulation. The use of data 
repositories based on a previously defined modelling patterns may significantly 
expand domain knowledge and its accessibility. This is inline with the idea that there 
should be a Numerical Analysis software repository that is operated by people with 
specific duties in data treatment and control, elected leaders, and public guidelines for 
what is deposited [RG00]. 
 
There are some related approaches that may provide contributions and improvements 
to FEM simulations. They define good practices and fundamentals but the existing 
contributions do not treat problems related to abstraction of numerical algorithms; 
easier change of numerical methods and strategies; satisfactory abstractions for 
couplings that can be defined independently of the actual implementation of the 
involved phenomena; abstractions for groups of phenomena, that are solved together; 
and abstractions of the relationship between geometry and phenomena.  
 
In order to meet its objective, this work proposed an object-oriented architecture, 
which applies framework abstraction and patterns. These framework abstraction and 
patterns describe ideas and perspectives that have been observed and analysed during 
many daily studies that applied the FEM. Furthermore, the framework abstraction was 
used to represent domain specific conceptualisations, giving rise to a promising way of 
reusing simulator software designs and implementation. Reusing architectural 
structures is an advantage because the architecture is a pivotal part of any system and 
costly to construct.  
 
The next section summarises how the work objectives have been addressed, and 
discusses their contributions. Some limitations are also presented and a comparison to 
other approach is made. Then, further work is suggested to overcome the method’s 
limitations, improve it and expand its use. Next, some final remarks are given. 
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6.2 Contributions 

The Plexus Simulation Environment conceptualisation focused on many objectives, 
which include: (i) to reduce simulator development complexity; (ii) to support 
flexibility in the use of FEM in multi-physics simulations; (iii) to decrease time spent 
by engineers in the design and production of simulators and (iv) to support simulation 
of coupled multi-physics phenomena.  
 
The main contribution of this work is the conceptualisation of an environment, where 
reusable semi-complete applications for FEM simulators can be developed. These 
applications are frameworks, which can be specialized and customized to produce 
simulator applications. The proposed environment tries to apply relevant and 
standardized solutions - in the pattern sense - for FEM simulator domains.  
 
This work elaborates a background description to help to understand FEM simulation 
of coupled multi-physics systems, detailing involved processes and concepts particular 
to the target project. Important issues related to the FEM simulation area were 
identified and existing works and studies were presented. The main proposed 
solutions, of this work, include: 

i) Proper definition of requirements, through the identification of a flexible 
technique (Problem Frames) to describe the real world and also for 
specifying the involved requirements for the simulator to be developed; 

ii) Definition of a generic architecture for a Plexus Environment, which will 
manage commonality across different simulators; 

iii) Definition of different patterns for: 
§ The computational phenomenon; 
§ The simulator modelling, taking benefit of the FEM domain; 
§ Control of the involved processes, guaranteeing solution independence 

simplicity and adaptability in execution time. 
 
 
 
 
 
 
 

 
 
 

Figure 6-1  Summary of the Proposed Solutions 
 
Figure 6-1 gives an overview of the proposed solutions, and also references the 
definition of the Pre-processor Pattern and the Visualization Pattern, which are not an 
integral part of this document. However, each of them has references ([LSA02b] and 
[VA02] respectively) that will be used in future works for further developments. 

Proposed 
Solutions 

i) Requirement Evaluation 
(Chapter 3) 

iii) Patterns 
(Chapter 5) 

ii) Architecture Definition 
(Chapter 4) 

   

Pre-processor 
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(not included yet) 
 

GIG- 
Pattern  

 

FEM-Skeleton  
Simulator  
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Computational    
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 Viewer  
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In the sequence, we make a cross reference between the requirements and the proposed 
solutions addressed in this work to satisfy those requirements, highlighting our main 
contribution.  
 
The Domain Analysis and Requirement Evaluation, in Chapter 3, presented a way 
to describe FEM simulators with the Problem Frames software engineering technique - 
one of the most respected software engineering approaches for requirements analysis 
and problem domain specification - improving the description of our specific domain. 
That chapter detailed the problem domain, analysis requirements and made the 
problem decomposition. We evaluated the appropriateness of the technique, discussed 
its power of expressiveness and limitations, suggesting what could be improved. The 
conclusions of our analysis about Problem Frames are relevant and might be helpful 
for other domains of knowledge, which have similar characteristics, such as a strong 
multidisciplinary nature, which causes difficulties in the elaboration of abstractions 
involving different knowledge domains. The approach addresses the goals related to 
the: (i) improvement of domain comprehension, making the involved concepts clearer 
and formalized, allowing them to be more correctly implemented, modified or reused; 
(ii) simplification of requirements specification, through the identification of the 
systems major requirements, which will decrease the number of errors or the lack of 
documentation, and simplifying the future processes of requirements analysis. 
 
The Architectural Definition from Chapter 4, proposed a specific way to deal with a 
single solution for the development of coupled phenomena simulators based on the 
FEM. This architecture, defines a structure for supporting the development (Creation, 
Configuration, Setup, Load and Use) of simulators for coupled phenomena problems, 
based on FEM solutions. The description of a well-defined architecture was crucial to 
guarantee the quality, reusability, and decrease costs and complexity in the definition 
of simulation models. This also simplified the definition of new solution strategies. We 
can argue that the described architecture gave a high level of abstraction; promoted 
reuse of the involved components; supported framework construction; helped to 
identify the need to support a distributed and cooperative environment; enabled 
framework analysis in agreement with quality attributes. The conceptualisation of the 
Plexus environment architecture is considered a relevant contribution, as it is a 
mechanism to obtain the required reuse of software components in FEM simulator 
systems [LS03]. 
 
Frameworks and Pattern definitions are provided in Chapter 5. The FEM simulator 
framework definition was very appropriate to our domain where similar applications 
are built several times from scratch. Special attention was also directed to the 
computational phenomenon abstraction, which was also considered as a framework. 
The defined frameworks gave support to ways of reducing the costs and improving the 
quality of simulation software. In contrast to an earlier object-oriented reuse technique, 
based on class libraries, our work defined frameworks targeted to particular simulation 
process units (such as simulators, workflow management, visualization) and 
application domain (coupled multi-physics phenomena simulation based on the FEM). 
The Pattern Definition includes patterns related to FEM simulator solution domains 
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(phenomena modelling, process reuse, simulator modeling and process control flow). 
Researchers of patterns have shown that patterns are effective tools for reuse. Pattern 
definition also promotes the achievement of software quality. Our work addresses this 
novel area of FEM simulators where we had great gains in process reuse. Engineers 
require specific and better solutions, which could explore in detail the expressiveness 
and reusable capacity of their specific domain. Definition of some abstraction 
considering the main concepts, such as simulators and computational phenomena, were 
a concern, which was explored by framework abstractions. 
 
Examples of FEM simulator problems illustrating coupled multi-physic phenomena 
are described and presented in Appendix A. One of them, the Example 1, is used as a 
case study during the description of above mentioned patterns. 
 
A Prototype of the Plexus Simulation Environment is under development in LINUX 
platform, using C++ language. A pre-defined knowledge base, including FEM 
simulators meta-data, was also defined. The database use was encouraged by the need 
of more powerful features that reduce time and effort. The use of a DBMS (in our case 
the Postgres Database Management System) makes the persistent data management 
easier, guaranteeing the control, sharing and reuse of large amount of simulation data 
and concurrence control, while supporting data integrity in case of system’s failure. 
 
The current implemented parts correspond to: part of the knowledge base 
management implementation and the GIG-pattern implementation. Appendix C shows 
some of the prototype interface windows. In future works, our aim is to finish the 
whole environment implementation. 

6.3  Limitations 

Some limitations can be identified. Firstly, considering the applied technique, Problem 
Frames, for requirements analysis, we must point out that several concepts require 
experience, which could take a long time to acquire. This comes out of the fact that 
this technique is neither trivial nor intuitive. However, many existing concepts make it 
possible to describe the problem and the knowledge domain in a powerful way, as well 
as the requirements specification. Another limitation is that there is no complete meta-
model definition, which represent the whole proposed model. In addition, despite the 
supported features that the designer can use, some reasonable familiarity with the 
environment and existing framework is required. This demands extra effort before it 
starts to meet the provided benefits. Also, the designer has the responsibility to 
organize its code and data in a way that will explore the defined advantages of the 
Plexus Simulation Environment. An example is the FEM Simulator Skeleton Pattern, 
where some limitations can be identified: the model builders require special training, 
that is, the designer must understand the proposed abstractions; designers will only 
achieve higher levels of reusability if they know how to articulate their strategies and 
problems; the simulator performance can decrease due to extra imposed levels of 
abstraction. Other limitations, such as not treating simulation distribution, come from 
our objective to simplify our first approach to the proposed environment. Most of the 
Plexus validation was done through Brainstorming Meeting [], where during several 
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meetings specialists gave opinion and evaluation of the proposed solutions. The 
submission and acceptance of papers related to Plexus also can be considered a 
validation aspect. However it is fundamental to make a more rigorous and complete 
validation of the environment applying measurement technologies and experimental 
methods to the proposed software environment [PKL01, KIT02]. 

6.4 Comparison between Plexus and other approaches 

As we can see from chapter 2 and Appendix B there are several approaches for 
scientific simulation development from which FEM simulators can be built. We can 
classify them as:  
a) Pre-built Libraries such as DIFFPACK [LAN97] and PZ [DP99, DP04], which are 

natural complements of general-purpose languages, which allow saving in time and 
the guaranty of main advantages (e.g. use of already developed complex and 
proved code). 

b) General purpose programming environments (e.g. MATLAB [MAT04], SCIRUN 
[PWC97]), where there is support for the simulator and simulation development 
however they do not explore the FEM characteristics in a higher level (such as at 
the level of the simulator, for example). So the user has the possibility to build its 
own solution, not being subjected to environment restrictions; however it requires 
more knowledge and hard work to develop complex simulators. 

c) Domain specific rigid environments (e.g. ANSYS [ANS04]) where, in spite of the 
high sophistication level to solve specific problems, there is neither support nor 
flexibility to change the way the problems are solved. 

d) Domain specific modelling environments where despite of the support of pre-
defined solutions the user has also the opportunity to develop new solutions from 
scratch, however with an underlying guide and support to do so  (e.g FEMLAB 
[FEL04] and Plexus). 

 
Since FEMLAB is the most approximate approach considering our proposed solution, 
next we will make a comparison between FEMLAB and Plexus environment.  
 
Our analysis considers some specific points, described next (see also Table 6-1):  
 
A) Levels of proposed abstraction 
 
Despite of the importance of the separation of concerns in a specific field, in order to 
reuse knowledge and provide experience and data reuse, there are few approaches, 
which describe good levels of abstractions. FEMLAB is a case of a FEM approach, 
which includes some specific abstractions, which improve the level of the supplied 
flexibility and system power. It supports multi-physic modelling and simulation for 
coupling of multi-physic phenomena. You can build complex models by combining 
several of the package’s integrated ready-to-use applications modes or using 
equations–based modelling. However, it does not support some relevant abstractions, 
as the ones used in Plexus for the definition of solution strategies and for the automatic 
construction of simulators (presented in Chapter 5).   
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B) Support for an integral piece of software for coupled phenomena simulations 
 
There is a great need for integral solutions, which give support for the development of 
simulations involving several coupled phenomena, and also the need for supporting an 
unlimited multi-physics combination of coupled phenomena, as mentioned in chapter 
2. FEMLAB provides a multi-physic modelling and simulation environment for 
coupling of multi-physic phenomena. You can build complex models by combining 
several of the package’s integrated ready-to-use applications modes or using 
equations–based modelling. Plexus gives more flexibility, because, in spite of 
supporting an unlimited combination of multi-physics phenomena, it also allows 
different meshes for phenomena defined in the same geometry. Also, Plexus allows the 
user to develop the solution strategies, which define the way and the order in which 
each phenomenon is used during the simulation. Femlab does not support this. 
 
C) Flexibility in the implementation of different numerical methods for the same 
task 
 
There is a great need for implementing flexibility for changing auxiliary numerical 
methods, solution methods, error estimation, adaptation methods, shape functions and 
viewers. We can consider for example the support for the definition of a user required 
mesh generator. In FEMLAB we can choose from different pre-defined kinds of mesh 
generators. However in Plexus we have the possibility to incorporate an unlimited 
number of methods for this task.  
 
D) Flexibility in the implementation of different simulators strategies 

 
To our knowledge there is no FEM-specific development environment, which allows 
and gives support (through abstractions) for the changing of the simulator solution 
schemes. One of the main driving forces for Plexus development was to provide that 
kind of support. So, high levels of abstractions were developed targeting that 
requirement. In FEMLAB we can identify that at some level the user can make some 
articulations in the way the coupled phenomena are connected. However, Plexus goes 
further when it provides abstractions, which orient the definition of new simulators 
from scratch. After a simulator is built, those abstractions also allow for the simulator 
to be reconfigured. Thus, Plexus provides different ways of articulating blocks and 
groups of procedures. 
 
E) Support for workflow 

 
The use of workflow technology helps the development of more flexible and versatile 
computation strategies, as described in chapter 5 (GIG-pattern). The workflow control 
and use provide expressiveness and adaptability through simplification of the system 
being developed. Plexus integrates the workflow concept in its solution at the user 
level, but FEMLAB does not. 
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F) Reuse of experience (reusability) 
 
The reuse of experience can be measured through the support of a repository, the reuse 
of simulator models (strategies), reuse of problems definition (geometries, phenomena, 
etc), and so on. We can notice that Plexus scope of reusability is larger than FEMLAB, 
since it stores information considering the knowledge basic level (semi-complete data, 
like phenomenon, numerical methods, etc.), simulator level and problem level. 

 

Table 6-1 Comparison between Plexus and other approaches 
Criteria FemLab Plexus 

A) Levels of abstractions ++ +++ 
B) Flexibility for solution methods + +++ 
C) Flexibility in the simulator  
     definition 

+ +++ 

D) Support for phenomena coupling +++ +++ 
E) Support for workflow at user  
     level 

- +++ 

F) Reusability ++ +++ 
  

So we can notice that Plexus main contributions include aspects related to: 
§ Single Software Solution for coupled multi-physic simulation based on FEM. 
§ Flexibility in the implementation of different simulators strategies. 
§ Make the simulators and problem development easier and faster than before, 

through the use of proposed abstractions.  
§ Reuse of experience. 
§ Support for the definition of new simulation strategies. 
§ Support for the implementation of different numerical methods for the same task. 

6.5 Final Remarks 

There are several alternatives for FEM simulator development. The solutions presented 
in this work undertake some of the aspects that have been neglected, such as the need 
for specific abstractions, models and process domain definition of the specific area. 
The exploration of domain specific solutions makes it possible to achieve better 
results, which frequently are more difficult to obtain by general solutions. 
 
The development of FEM simulators is a key activity in many engineering areas. 
Special attention must be continuously given to abstraction definition, procedure reuse 
and simulator modelling. Another relevant point is considering the involved designers. 
Simulator applications are becoming more and more complex and more reliable 
systems are needed. To find domain specific solutions is a priority. However, in order 
to achieve this, the researcher should be aware of the relevant problems, and should 
know what they really need. In this work we try to improve a little bit on domain 
comprehension (indicative and optative) moods, as referenced by [JAC01], specific 
solutions in the FEM simulation domain were suggested. The development of a 
reusable system takes advantages of abstractions based on application examples 
applied in many and diverse situations by the area specialists. The continuity of this 
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task is a challenge, which can bring many gains in different and important areas of 
human life, where a FEM application is an effective solution. 

6.6 Future Work 

Much more must be done to improve our work, and can be considered as future 
activities, outside of the scope of this thesis. Some possible future extensions are listed 
bellow:  
§ To make the simulation environment more automatic, since there are lots of 

standard situations and states, which are neither assisted nor guaranteed, which can 
be improved through the inclusion of higher levels of expertise; 

§ The integral environment detailing and implementation; 
§ To include a tool to monitor the simulation process; 
§ Explore workflow engine features; 
§ Explore and provide parallelism; 
§ To ensure consistency, security and performance evaluation; 
§ To make an extension of the defined architecture to comply with HLA architecture 

standards for partitioning a simulation in different simulations that can be 
distributed across multiple computers or processors; 

§ Simulations frequently require large volumes of data, which can be partitioned and 
processed by many processors in a distributed memory environment. So, it is 
important to analyse the scalability with respect to the number of processors and 
also to analyse the distribution of data [LF99, LCF00]; 

§ Despite gains already identified, it is important also to quantify them in order to 
demonstrate the Plexus Simulation Environment power; 

§ Observing framework leverage domain knowledge to support the development of 
product lines, that is, families of related applications [FAY97]. In future works, we 
will make some considerations about product lines in simulation environments 
based on the FEM, that is, a product line architecture designed to support the 
variation needed by the products, and so making it re-configurable; 

§ Exploration of the proposed Plexus framework in order to apply it to different 
simulation methods, like the finite volume method [VM95]. The main 
considerations regard the pre-processing methods and the level of the 
computational phenomenon. 
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Examples of Coupled Multi-physic 
Phenomena Problems 

 
 
This appendix presents three different examples of problems involving coupled 
Multi-physics phenomena. First we give a description of a simulator that can be 
used to solve two of the given problems (example 1 and 2). In addition, in the 
first example (number 1) we present extra details about exact mathematical 
models, the differential-algebraic system of equations, and the global algorithm 
for the problem. These details can help on a more complete understanding of 
FEM patterns detailed in chapter 5. 

  

Appendix 

A      
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Appendix A  

A.1 A Simulator Description 
 
An example for a FEM simulator specification, which can be used to solve a class of 
problems exemplified by examples 1 and 2, can be described considering the following 
global scenario [LS03]: a system capable of solving problems involving transient 
phenomena; where the phenomena context includes linear temperature-dependent 
elasticity, rigid body motion and linear heat transfer; Dirichlet restrictions are 
considered through Lagrange multipliers; for simplification reasons, the simulator 
process does not include estimation error and adaptation processes (see Figure A-1). 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure A-1 Simulator specification (global scenario) 
 
Example of Blocks and Groups articulation 
 
In any solution algorithm the phenomena are organized in subsets (Groups), each of 
which are solved independently of the others. This allows for different solution 
schemes for each Group. The articulation of the solution of Group problems is made by 
Blocks of Groups. The justification for the Blocks is due to the fact that some Groups 
of phenomena should be solved before other Groups and the articulation involving 
some Groups are different from the articulation involving the others.  
 
The specification of the methods used to provide the services offered by each Block 
depends on its scenario. In the present simulator, the scenario for the solution of each 
Block considers an iteration between the solution for the Lagrange multipliers (requires 
stabilization) and the solution for the phenomena themselves. In addition, it assumes 
that there are two blocks for:  
 
Block 1: 
§ Group 1: Heat transfer and Group 2: its Lagrange multipliers. The number of heat 

transfer phenomena depends on the number of simulation regions with this type of 
phenomenon. The number of Lagrange multiplier phenomena depends on the 

Simulator 
- Transient phenomena in the context of linear 
temperature-dependent elasticity, rigid body 
motion and linear heat transfer (conduction) ; 
Dirichlet restrictions are considered through 
Lagrange multipliers; 
- Equation type in each group is linear 
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number of restrictions (Dirichlet boundary conditions in this case) defined for all 
phenomena of the type heat transfer and  

 
Block 2: 
§ Group 3: Elasticity, rigid body motion and Group 4: their Lagrange multipliers. 

The number of elasticity and rigid body phenomena depends on the number of 
simulation regions with these types of phenomenon. The number of Lagrange 
multiplier phenomena depends on the number of restrictions (Dirichlet boundary 
conditions in this case) defined for all phenomena of the types elasticity and rigid 
body motion. 

 
This type of choice for the number of blocks is due to the fact that the present model of 
heat transfer does not depend on the result of the elasticity problem. Thus, the heat 
transfer problem (and respective Lagrange multipliers) can be solved before solving 
the elasticity/rigid body motion problem (and respective Lagrange multipliers), which 
in turn depends on the temperature. Moreover, the solution of both blocks are different, 
because both the resulting semi-discrete equations are different from each other. 
 
It is not mandatory for a problem within the above context to have all types of 
phenomenon. For instance, it may not have heat transfer phenomena and/or elasticity 
and/or rigid body motion. However, when the elasticity phenomenon is included, there 
should be a heat transfer phenomenon defined on the same simulation region, because 
the elastic material properties depend on the temperature. The heat transfer 
phenomenon may be as simple as a tool that provides a known temperature distribution 
but it should be present in order to be coupled to the temperature-dependent elasticity 
phenomenon. The simulator should be able to take care of the modifications due to the 
lack of a phenomenon type. 

 

A.1.1 Example 1 
  
The first example is presented in Figure A-2. This example is used to exemplify 
several parts of this thesis. The problem describes the dynamics of a rigid body 
attached to an elastic beam, with a temperature dependent constitutive relation, where 
both are also submitted to thermal loads. Consider the defined geometry consisting of 
two plane sub-domains Ω1 and Ω2. The physical phenomena defined therein are 
transient state, and include: linear elasticity with temperature-dependent constitutive 
equations in Ω1; rigid body motion of Ω2; linear heat transfer in Ω1 and Ω2. The 
geometry components are: 6 points, 7 curves and 2 plane regions.  
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Figure A-2 Coupled Multi-physic - Example 1 
 
The results an engineer may want to obtain and visualize in a case like this may be for 
example the distribution of the stresses in Ω1 and temperature distribution in the whole 
beam structure. 
 
Each one of the described phenomena has its own discrete vector field, geometric 
domain, couplings with other phenomena, and other relevant data. Further complexities 
come from the fact that each phenomenon may require its own geometric mesh in spite 
of the fact that there might be other phenomena defined in the same geometric domain.  
 
Usually a phenomenon has an exact mathematical formulation (behavior laws), 
comprised of a system of algebraic-differential equations, which govern the behavior 
of the phenomenon vector field. Restrictions may be applied to the vector field such as 
boundary conditions, and constitutive restrictions, etc. 
 

A.1.1.1 Exact Mathematical Models  
 
The exact mathematical models are as follows: 
 
i) Phenomena in 1Ω : 2

11 :w ℜ→ℜ×Ω +  is the displacement of the points in 1Ω and T1 

ℜ→ℜ×Ω +
11 :T  is the temperature in 1Ω . 

 
i.1) Elasticity (equation of conservation of linear momentum) 
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with 
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Here σ is the stress tensor, nρ  is the position of a reference point for 2Ω , and 

2
22 :w ℜ→ℜ×Ω +  is the vector with the displacement and rotation of the rigid body 

with respect to the reference point pM. The stress tensor depends on 1w  and 1T . 
ℜ→Ω11 :ρ  is the mass density of the material in 1Ω ; 2

1: ℜ→Γjn is the outward 

normal to the surface 1,3j , =Γ j . 
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i.2) Heat transfer (equation of conservation of energy) 
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where 22
11 :k ℜ×ℜ→Ω is the conductivity matrix, ℜ→Ω11 :ρ  is the mass density 

matrix, ℜ→Ω11 :c  is the specific heat, 2:n ℜ→Γjj is the outward normal to 

1,2,3j , =Γ j , ℜ→Γ jj :h and 1,3j ,:T =ℜ→Γ∞
jj  are the coefficient of heat transfer 

by convection and the environment reference temperature for the heat transfer by 
convection on the boundary 1,3j , =Γ j  
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where 2
77  : ℜ→Γn is the normal to Γ7 pointing outwards 1Ω , and ℜ→Γ77  :g is the 

known heat flux on Γ7. 
Also,  
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ii) Phenomena in Ω2: 2
2: ℜ→ℜ×Ω +

2w  is the displacement of the reference point 
pM and ℜ→ℜ×Ω +

22 :T  is the temperature on 2Ω . 2w  does not depends on x  
 
ii.1) Rigid body motion 
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with 2
22 : ℜ→Ωg being the mass density defined on 2Ω , 
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is the force vector acting directly on the reference point pM. And, finally,  
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ii.2) Heat transfer 
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A.1.1.2 Differential-algebraic system of equations   
 
The differential-algebraic system of equations can be presented in a compact form: 
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Another more compatible with the solution schemes we are going to use, is the 
representation below: 
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A.1.1.3  Global Algorithm for the Problem  
 
For elasticity problem we will adopt the Newmark´s method, which is described as 
follows: 
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Algorithm for the global problem: 
 
1) Compute initial states for the heat transfer problem given the initial data T(0) 
 

  1.1) Compute Lagrange Multipliers  

 )0(.)0()0( TKfµK TTTTTT µϖµµ −=  

  1.2) Compute thermal speed )0(
.

T  from: 

               )0(.)0(.)0(.
.

TTTTTTT T
µKTKfTM µ−−=  

 1.3) Compute initial TttT µ∆∆  and  

2) Compute initial states for the elasticity problem given the initial data (0)W and 

(0)
.

W  : 

  2.1) Compute Lagrange Multipliers )0(ωµ  from: 

)0(.)0()0()).0(( WKfµTK ωµωµωµµ ωωωω
−=  

  2.2) Compute acceleration (0)
..

W  from: 

)0()).0(.()0()).0(.()0()0(.
..

ωωµωωωωω ω
µTKWTKfWM −−=  

  2.3) Compute initial ωµω tt ∆∆  and  

3) Compute initial  0set t and },,,{min  1 =∆∆∆∆=∆ ωµωµ ttttt TT  

4) While max1 T ≤t do: 

  4.0) Set ttttt ∆+== 0110   and   

  4.1) Solve Heat Transfer problem 

  4.1.1) Compute 

)()()(
2

)( 10

.

01 ttt
t

t TTTT fTTMf +





 +

∆
=  

  4.1.2) Set  )()( and )()( 01
0

01
0 tttt TT µµ =Τ=T  
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  4.1.3) Set k=0. While convergence is not achieved do: 

       4.1.3.0) Compute temperature )(T 1
1k t+  from: 

)(.)()(.)
2

111
1 ttt

t
k
TTT

k
TTTT T

µKfTKM
µ

−=





 +

∆
+  

      4.1.3.1) Compute Lagrange multiplier )( 1
1 tk

T
+µ  from: 

  )(.)()(. 1
1

11
1 ttt K

T
K
T TTTT

++ −= TKfµK µµµµ  

      4.1.3.2) Compute error for convergence test based on 

  
µgL

k
T

k
Tw

KK tttt )()(and)()( 11
1

11
1 µµTT −− ++  

      4.1.3.3)  Set k=k+1 

 4.1.4) Accept solution as )( and )( 1
1

1
1

1 tt k
T

K ++ µT as the solution instant 1t for the heat    

           transfer and Lagrange multiplier problems. Store them. 

 4.1.5) Compute )( 1

.

tT  

 )()()((
2

)( 0

.

011

.

ttt
t

t TTTT −





 −

∆
 

 4.1.6) Compute next TttT µ∆∆  and  

  4.2) Solve Elasticity Problem 

     4.2.1) Compute 

)() 21(
2

)()()( 0

..

0

.

01

~

t
t

tttt WWWW β−
∆

+∆+=   

)() 1()()( 0

..

0

.

1

~
.

tttt WWW γ−∆+=   

      and 

      )()( 01

0~ tt ωωµ µ=  

    4.2.2) Set )()( 0
0

1
0 tt WW =  and )()( 01

0 tt ωω µµ =  

    4.2.3) Set k=0. While convergence is not achieved, do: 

        4.2.3.0) Compute )( 1

..

t
k

W  from 
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( ) −=∆+ )()())(( 11

..

1
2 tttt

k

ωωωωω β fWTKM  

)()).(()()).(( 1
~

11

~

1 tttt
k

ωωµωω µ
ω
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       4.2.3.1) Compute 

 )( )()( 1

..
2

1

~

1

1
tttt kk

WWW ∆+=
+
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            and 

      )( )()( 1

..

1

~

1

1.
.

tttt kk
WWW ∆+=

+
γ  

       4.2.3.2) Compute )( 1

1  

t
k +

ωµ  from: 

         )(1)).(()()(. 1111
1 tttt k

k +−=+ WTKfµK ωµµωµµ ωωωω
 

4.2.3.3) Set )()( 1
1

1

1
  
~

tt kk ++
= ωω µµ  

4.2.4) Compute error for convergence test based on 

          
µ

ωω
gL

kk

w

KK tttt )()(and)()( 11
1

11
1 µµWW −− ++  

4.2.3.5) Set k=k+1 

4.2.4) Accept solution )( and )( 1
1

1
1

1 tt kK ++
ωµW  as the solution at instant 1t  for the 

elasticity and Lagrange multiplier problems. Store them. 

4.2.5) Compute next ωµω tt ∆∆  and  

4.3) Compute },,,{min  ωµωµ ttttt TT ∆∆∆∆=∆  

 

A.1.2 Example 2 
 
The second example of a simulation problem is presented in Figure A-3 [LS03]. It is 
composed of three rigid bodies inserted into an elastic bounded region, with no heat 
transfer. The geometry of the problem is a square plane elastic region with three rigid 
bodies inserted in it. Two of the rigid bodies are only partially inserted in the elastic 
region, while the third one is in its interior. The rigid body Ω2 will receive a sudden 
discharge of energy on Γ5, modelled by an initial nonzero velocity, while all the system 
has zero initial displacement. The other bodies have zero initial velocity, with the 
exception of the elastic interface with Ω2. The free surfaces Γj, j = 4,6,7,8, has zero 
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Neumann conditions. Each rigid body has its own point of reference and other 
geometric properties.  

 
 

Figure A-3 Coupled Multi-physic Example 2 
 
The linear elasticity phenomena in Ω1 will be denoted by its vector field w1, and the 
rigid body motion of body Ωj will be denoted by its vector field wj, j = 2,3,4.  
 
All vector fields will be governed by the equation of motion (elastic and rigid bodies) 
(with the exception of temperature dependence, for which will be given a reference 
temperature). There will be 4 phenomena: elasticity and three rigid body phenomena. 
 
A simulator very similar to the previous one can be used in this problem, which is 
different from the other geometrically, but not in its essence: the phenomena set and 
solution scheme can remain in the same context.  
 

A.2  Example 3 
 
Another problem is shown in Figure A-4 [LSR02b]. Let Ω0 be a cavity filled with a 
Newtonian incompressible fluid, which is driven by a piston represented by the moving 
region Ω4. The evolution of Ω4 is defined by its known movement as a rigid body, and 
restricted by the rigid walls Γ8 and Γ10. The boundary lines Γ11 and Γ9 cannot go 
beyond the lines 1-7 and 13-14, respectively.  
 
The material of regions Ω1, Ω3 and Ω5 are elastic and the others are not. Ω2 is an 
insulated rigid region, which has no phenomena defined inside it. Region Ω 5 coincides 
with the boundary portion Γ13 and is a heat generator. Thus, the heat will be conveyed 
by the fluid and transferred to the outside through Ω1 and its boundary Ω3 and through 
Ω4 and its boundary Γ9. All blue boundary lines are rigid and insulated. Red boundary 
lines are interfaces between the fluids and are either elastic or moving regions and are 
not insulated. The displacement of Ω4 will be considered to be small in some sense. 
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Figure A-4 Coupled Multi-physic Example 3 
 
As can be seen, 16 points, 17 curves and 7 plane regions define the geometry. The 
phenomena defined for this model problem are the flow of an incompressible 
Newtonian fluid with heat transfer in Ω0; elasticity and heat transfer in Ωi, i = 1, 3, 6; 
heat transfer and constrained movement of a rigid body in Ω4; heat generation and 
transfer in 1-D with lateral heat exchange by convection with the fluid in Ω 6.  

 
A simulator can help, for example, in the evaluation of the distribution of the involved 
phenomena (pressure, fluid velocity, temperature, stress) in the defined geometry 
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Approaches for Simulation Software 
Development   

 
 
This appendix presents several ways to develop simulation systems, including 
some examples of general-purpose languages, simulation languages and 
simulation environments. The appendix includes approaches that are specific 
and non-specific to FEM simulations.  

  
 

Appendix 

B     
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B.1. Simulation Software Approaches 

There are different approaches for the development of simulation systems. In the 
sequence we present some approaches, which deal with several kinds of simulation, 
they include:  

§ General Purpose Languages in the original form, where the user has to build the 
whole program. Examples of these languages are FORTRAN, C, and C++, etc. 
This approach is also called Do-it-yourself. The main features of this approach are: 
(a) The existence of the pre-existing resources and programmers, resulting in low 
costs in the development. (b) The elaboration of simulators being extremely 
specialized, for which existing packages do not support appropriate facilities and 
functionalities; (c) The integration with other pre-existing programs. Some 
disadvantages are the involved time and cost in the development of the program, 
which can invalidate the economy originally expected; and the need of high ability 
in the programming expertise, which could be not available or can became 
unavailable in the future.  

§ Pre-built libraries, where routines are used to join programs. Examples are the 
GASP, SIMON, DIFFPACK[LAN97]and PZ [DP99, DP04] that is used on finite 
element method simulations. The pre-built libraries are a natural complement of 
the previous approach (Do-it-yourself). Other examples are pre-built libraries in 
FORTRAN, C, and C++, etc. Specially attention must be given to FORTRAN pre-
built libraries, which are largely used in numerical methods and are highly 
consolidated.They allow saving in time guarantying the main advantages of the 
previous approach. Some disadvantages are relative to the time and cost required 
for the program development, the need of a specialist, and the difficulty in reusing 
code or libraries, which require good documentation.  

§ Simulation Languages, where the programming is done in a suitable syntax. 
Examples are SIMULA [PJ70] (pioneer language), SIMAN [PSS90], SIMSCRIPT 
[REC93]; and Simple++ [KL97]. Some of the common aspects and supported 
features are: (a) the control of the main aspects of event agenda maintenance and 
the sequencing of model operations; (b) an appropriate syntax for systems 
modelling; (c) facilities for the trace and data acquisition in the simulation 
execution; (d) support for the experimentation and results analysis (e) Facilities for 
modelling and reduction of time in the program development. Disadvantages 
include the need to acquire the appropriate system; requirements of training and the 
permanent support offered by the systems fabricants; and the question of high-
specialized employee for developing the models.  

§ Programs generators, systems based on interactive graphic interfaces, for 
example, ARENA [FP01] (for SIMAN simulation language), PROMODEL 
[BBG97] (used on manufactured oriented software). This approach complements 
the idea implemented by the diagrams, allowing the representative code generation 
of the model. The source code generated can be changed, compiled or interpreted 
later. This approach is based on diagrams of activity cycles. It executes consistency 
tests in the model, and has complementary facilities for tracking simulation 
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running, allowing data acquisition and results analysis. Disadvantages include: the 
required ability from the programmer with the generated source code; due to the 
use of activities cycle diagrams, it creates a stereotyped model of the system, 
presenting flexibility also restricted to a class of models, in spite of allowing the 
addition and maintenance. 

§ Simulation Environments: They offer extra facilities for simulation execution 
based on models animated by interactive models of systems. The graphic use is 
complementary to the modelling process, the flexibility is maintained through the 
use of a language with a specific syntax for modules description. They execute 
consistency tests of the model, and also support "debug" facilities. They facilitate 
the verification of models and their validation. Experimentations can also be 
implemented in an interactive way, and their results can be analysed in graphics, 
helping in the experiments design. Additionally, they provide complementary 
facilities for the tracking of simulation running, allowing the data acquisition and 
results analysis. Disadvantages include: the need to understand, the required effort 
and great ability of the programmer to elaborate the complex models. Some 
examples of general simulation environments include DEVSIM++, MATLAB 
[MAT04], SCIRUN [PWC97], Matematica, Mapple and Khoros[KHR04].  

 
In the next section we detail some existing simulation environments. 

B.2. Simulation Environments 

This section gives a short description of some environments for scientific computation that 
support simulation and are extensively used. We can classify them as: general purpose 
programing environment (e.g. MATLAB), domain specific rigid environments (e.g. 
ANSYS) and domain specific flexible environments (e.g FEMLAB).  
 
Next we will give a brief description of them: 

§ ANSYS [ANS04], is a high reliabile and sofisticated packages specific for FEM 
simulations (supporting phenomena coupling) and is used across a broad spectrum 
of industries. These environments include pre, post and analysis steps of a 
simulation experiment development. ANSYS provides an engineering simulation 
software that incorporates design simulation and virtual prototyping into a product 
development process. With the ANSYS Software Suite, the user can determine real 
world structural, thermal, electromagnetic and fluid-flow behaviour of 3-D product 
designs, including the effects of multiple physics when they are coupled together 
for added accuracy and reliability.  

§ MATLAB is a technical computing environment [MAT04], which offers a set of 
integrated products for data analysis, visualization, application development, 
simulation, design and code generation. It is used extensively for rapid algorithm 
research development (model-based) and system-level simulations, and is highly 
applied for FEM simulations. It integrates the SIMULINK, a simulation and 
prototyping tools for modeling, simulating, and analyzing real world, dynamic 
systems. Simulink provides a block diagram interface that is built on the core of 
MATLAB numeric, graphics and programming functionality. MATLAB supports 
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toollboxes, which are collections of  highly-optimized, application specific 
functions that extends MATLAB and Simulink. Toolboxes suport applications 
involving signal and image processing, control system design, optimization, 
finacial engineering, symbolic math and neural works, etc.  Tool box functions are 
built in the MATLAB language and can be easily viewed and modified. 

§ FEMLAB [FEL04] is an interactive environment for modeling and simulating 
scientific and engineering problems based on partial differential equations.  This 
environment was detailed before in chapter 2.  

§ SCIRUN, a scientific programming environment that allows the interactive 
construction, debugging and steering of large-scale scientific computations 
[PWC97]. This environment was detailed before in chapter 2.  

§ DEVSim++ environment allows modelers to develop discrete event simulation 
models using the hierarchical composition methodology in an object-oriented 
framework. The environment combines the DEVS (Discrete Event System 
Specification) formalism with object-oriented paradigm [KA97]. The DEVS is a 
formalism for discrete event modelling and simulation, which provides a means of 
specifying a mathematical object called a system. The insight provided by the 
DEVS formalism is in the simple way that it characterizes how discrete event 
simulation languages specify discrete event system parameters. Having this 
abstraction, it is possible to design new simulation environments with sound 
semantics that have a number of benefits to be described [ZB03]. The formalism 
specifies direct-events models in a hierarchical, modular form. Within the 
formalism one must specify the basic models from which the larger ones are built 
and how these models are connected together in a hierarchical fashion. A basic 
model, called atomic model, has the dynamics of the model. The reusability of the 
framework is based on: (a) reusability of functions in the development of models; 
and (b) reusability of models for the development of new models that are slightly 
different from the old ones. 

§ Khoros [KHR04] is an integrated software development environment for 
information processing and visualization. It is used as both a scientific problem-
solving environment and as a software development and integration environment. 
Khoros provides: (i) Solutions for scientific and engineering problems; (ii) A 
Visual Programming Environment for Solution Creation and Problem Solving; (iii) 
Software Development Environment and Tools; (iv) Libraries for Portability, 
Scalability, Data Access, GUI creation, Data Visualization; (v) Visualization 
Applications. Khoros is made up of different programs and libraries organized into 
toolboxes, which contain different capabilities; toolboxes may be mixed and 
matched according to the user's needs. Khoros supports solutions for common 
engineering and scientific data analysis and visualization problems. It offers 
operators facilitate problem solving in a wide variety of application domains used 
in research, science, government and industry. All information processing and 
visualization programs in Khoros are available via Cantata, which is a graphically 
expressed, data flow visual language which provides a visual programming 
environment within the Khoros system. This visual language provides support  for 
simulation and prototyping system.  
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The Plexus Simulation Environment 
Interface  

 
 
This appendix gives a brief explanation about the Plexus system and also shows 
its interface.  

  
 

Appendix 
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C.1. Introduction 

When a problem must be solved using FEM simulation, the designer will understand 
the physical problem, construct the mathematical model, discretize its model and select 
the computational methods to be applied. At this time, the designer has, in a simplified 
view, two ways of solving the problem: use existing software, such as the ones 
described in appendix B or develop one. 
 
There are several approaches to develop a simulation, such as general purpose 
languages, simulation languages and simulation environments. This work proposed the 
Plexus environment for the development of simulators specific for the development of 
simulation of coupled multiphysic phenomena based on the FEM. This environment 
allows for the solution of simulations that are in interdisciplinary areas of mechanics 
such as stress and termal analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-1 Simulation Process for Problem Solving 

Use the available one 

Understanding a physical problem 

Construct Mathematical Model 

Discretization of the Model 

Selection of computational methods 

Solution of  the Discretized Model 

Post Processing 
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Elect Results for storage learning, etc 
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C.2 Plexus Environment Interface 

Figure C-2 represents on of the main Plexus System processes, the Administration/ System 
Loading, which supports the system management and loading of general system data and 
basic data type tables, the simulator building/configuration.  
 
Figure C-3, represents the other main processes: Pre-processing, where the user inputs the 
problem data, and where dynamic structures for simulation are built; Simulation 
Processing, where data are processed to obtain the solution and where verification occurs; 
Post-processing, where the solution is processed in order to obtain the quantities of interest 
for the user and for the required visualization. This component also deals with system 
validation.   
 

 

 
 
 

 
 

Figure C-2 System Overview (Administration) 
 
In Plexus we can think of a process (method) that helps to generate configurable simulators 
that represent different types of simulators (e.g.for a type which considers time dependent 
simulators). Then again, each simulator is capable of running through several kinds of 
proposed problems.  
 
The proposed interface helps to answer the following questions: What are the specific steps 
of the proposed method? What kinds of simulators are available? How can we register a 
new one? What are the steps in a new Simulator creation? How to select a kind of 
simulator? How to build a specific kind of simulator? How to configure the simulator? 
What raw data must be supplied for a problem to be solved? 
 
To support the high level of abstraction, flexibility, reusability, and data security, available 
in the Plexus environment, there is a repository manager, which maintains the general 
abstract data related to the context, the algorithms that take part in different simulation 
strategies, the simulation problem’s data and also the simulation’s intermediary data and 
results. Bellow we present some of the main window interfaces. 

1. Administration/SystemLoading/ 

Administrator 
 

Designer 
 

-Input data to build simulation 
  Strategies 

 Query for previously ones 
 -Build/Configure Simulator  

 

 - Table loading 
- Input basic system data 
- Create users, groups of 

users, system backup 
 

DBMS 
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Figure C-3 Plexus System Overview (Simulation Components) 
 

C.3 Plexus Use Cases 
 
This section presents Plexus use cases, see Figures C-4 to C-7. Details about the involved 
users and package information were described in chapter 3. 

PlexusUser

User Designer
System 

Administator

 
Figure C-4 Existing actors
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3.Simulation Processing 

Application User 
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Simulation data 
 

4.Post-processing 

Application-User 
 

- Validation 
- View and query    
   simulation results  

Build dynamic data 
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SimulatorConstruction

SimulatorModeling

SimulatorsCatalogue
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SimulatorBuilding

<<extend>>

SimulatorConfiguration

Designer

 
Figure C-5 Simulator Construction Use Case 
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Pre-processing
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Figure C-6 Simulation Running Use Case 
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Figure C-7 Problem Creation 
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C.4 Plexus System Windows 
 
Figure C-8 presents the Plexus main window. The “Register” option will be responsible for 
registering basic information. This includes data that can be used in simulator definition 
and also in simulation problems definition. Information such as integration rules and shape 
functions are stored as code. 
 

 
Figure C-8 Plexus Main Window 

 
Figure C-9 presents the generic Phenomenon registering, which can be further reused in the 
simulation problems definition. There are several pieces of information defined for a 
phenomena, which include a weakform, see Figure C-10, which is a piece of code 
associated to the respective phenomena. 
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Figure C-9 Phenomena Registration (basic data) Window 

 

Figure C-10 Phenomenon-Weak Form Registration 
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The simulation model is described during the simulation registering. As described in 
chapter 3, in the simulation model the user must define the Global Scenario, which is 
composed of several options (see Figure C-12), the Global Skeleton which is associated 
with the simulator model. It can be suggested by the interface or defined by the user (Figure 
C-13) and the Phenomena Context (which must be selected from the one previously defined 
in a specific table of Phenomena context). 

 

 
Figure C-11 Simulator Register 

 
During the simulator registration, the simulator configuration is also available. There are  
default values or they can be defined afterwards. 
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Figure C-12 Global Scenario 

 

 
Figure C-13 Global Skeleton Code 
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Figure C-14 Group Definition 
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Figure C-15 Geometry Registration Window  
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Figure C-16 Simulator Scenario Window 

 

 
Figure C-17 Simulation Problem Phenomena Window 



 


