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                                   Abstract 
 
 
First, we shall prove some results about thick formulas and bounded equivalence relations, 

valid in arbitrary complete theories. The application of these results to simple theories yields 

some nice and useful properties with respect to Lascar strong types.  

Furthermore, we consider subclasses of simple theories, definable by dividing chains as in 

[CasWag]. As one of our main results we find a considerable improvement of a Theorem due 

to Kim (Proposition 3.6 in [Kim1], or Theorem 2.4.7.6 in [Wag]), which describes dividing 

by means of Morley sequences. This leads us to new and promising characterizations of the 

class of low theories. We study simple theories having a special property that we call the 

independent dividing chain property. Another main result is that simple, ω-categorical 

theories having this property are low. We define and study a new rank that allows 

characterizing short and low theories and give rise to further studies. Furthermore, we develop 

a rapprochement to the investigation of the equality of strong types and Lascar strong types 

using the preceding results about bounded equivalence relations. Finally, in the last section we 

develop and outline some promising ideas for further studies in simple theories proceeding 

from the main results of this thesis. These considerations could serve in future works to tackle 

open questions such as the Lstp=stp problem (equality of Lascar strong types and strong 

types) and may lead to a better understanding of the relationships between some subclasses of 

simple theories. 
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Introduction 

 
This thesis is divided in two parts. The first one is less formal and is dedicated to give an 

overview about some studies of Finite Model Theory [EbbFl] and a motivation to investigate 

some areas of classical (infinite) Model Theory, from the point of view of Theoretical 

Computer Science [Imm]. We shall show in which way Finite Model Theory can serve as a 

powerful tool to handle problems of Theoretical Computer Science, in particular Complexity 

Theory. Some main results and open problems of Descriptive Complexity – the discipline 

connecting Complexity Theory and Finite Model Theory and Logic, – will be discussed. 

Furthermore, we go into a topical development of Model Theory, which deals with finite 

structures using methods of classical Model Theory, especially Stability Theory and the 

sophisticated machinery developed by Shelah. This development, called Embedded Finite 

Model Theory, seems to be very promising with respect to a new approach to open problems 

in Descriptive Complexity. 

The real objects of our investigation and all results obtained by the author are developed in 

the second part of the thesis. In the first seven chapters of the second part we shall give a 

formal and detailed introduction into simple first order theories, necessary for the 

understanding of the following matters and our main results. In particular, we treat non-

forking dependence (as developed by Shelah) which gives rise to an independence notion 

between the sets of a model. Most of this material represents the results due to Kim and Pillay 

[Kim1], Shelah [Sh1] and Wagner [Wag]. Our presentation of these subjects follows largely 

[Wag].  

Simple theories contain the stable theories but also many more, like the theory of the random 

graph and the theory of some important structures of Embedded Finite Model Theory (namely 

the smoothly approximable structures). This fact justifies our interest in simple theories. 

Moreover, it seems that stable theories are going to be replaced by simple theories in many 

foundational investigations of pure Model Theory.  

Our main interest in simple theories is some amalgamation properties about types over sets. 

Two non-forking extensions of any type over a model can be amalgamated by a common non-

forking extension. This is called the Independence Theorem over a model. In stable theories, 

the Independence Theorem over a model or over algebraically closed sets turns out to be 
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trivial, since all types over models and algebraically closed sets have exactly one non-forking 

extension to any superset. When Kim and Pillay studied this matter in the general context of 

simple theories [Kim1], they discovered that the concept of strong type (types over 

algebraically closed sets) must be extended to the notion of Lascar strong type in order to 

prove a similar amalgamation property in this broader class of theories, called the 

Independence Theorem for Lascar strong types. This theorem says that (in simple theories) 

two non-forking extensions of a Lascar strong type have a common non-forking extension. 

Therefore, a Lascar strong type is also called an amalgamation base. These subjects will be 

discussed in the chapters 2.6 and 2.7.  

Amalgamation properties of types as given in the different Independence Theorems are some 

of the core subjects in investigation of model theory. “Type amalgamation … is perhaps the 

most useful property of forking dependence in a simple theory.” (Buechler [Bue2]). It is 

interesting to ask whether Lascar strong types are equivalent to strong types in simple 

theories. The equivalence of Lascar strong types and strong types gives additional information 

on the non-forking extensions of a type. For instance, if A is an algebraically closed set, then 

any two non-forking extensions of a complete type over A have a common non-forking 

extension. This follows from the Independence Theorem for Lascar strong types and the 

equivalence of Lascar strong types and strong types. The question whether this equivalence 

holds is called the Lstp=stp problem and is answered positively for some subclasses of simple 

theories, but the answer is not known for simple theories in general.  

Apart from Lascar strong types, there is another concept, which emerges in the study of 

simple theories (and has no significance in stable ones), namely hyperimaginary elements. 

These objects are classes of type-definable equivalence relations and appear as canonical 

bases of types in simple theories. In this thesis, we are not too much interested in the theory of 

canonical bases (see [HKP] for a further study), however, we will see that the elimination of 

hyperimaginaries (that is, their equivalence to sequences of imaginary elements) is a condition 

which implies Lstp=stp. 

For these reasons, we shall study the matters regarding strong types and Lascar strong types 

and expose some basic theory of hyperimaginaries. The question whether simple theories 

eliminate hyperimaginaries, and the (weaker) Lstp=stp problem are the main open problems 

in the study of simple theories. A stable theory eliminates hyperimaginaries. In [BPW] this is 
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shown for the subclass of supersimple theories. Buechler [Bue2] was able to show that in 

another subclass, the low theories, Lstp=stp holds.  

In chapter 2.8 we study certain bounded equivalence relations in an arbitrary theory and their 

relationships to Lascar strong types. Then we investigate these results under the assumption 

that the ambient theory is simple and obtain some nice properties. The subjects of this chapter 

were developed in detail during a short stay of the author of this thesis at the University of 

Barcelona (Spain) in 2000 under the supervision of Prof. Enrique Casanovas [Cas3]. In 

particular, the results 2.8.34 – 2.8.39 and 2.8.44 are due to the author (obtained in 2001); a 

new and shorter proof of 2.8.43 is following from these results.  

Chapter 2.9 is dedicated to the basic theory of hyperimaginaries in simple theories. A simple 

theory which eliminates hyperimaginaries satisfies Lstp=stp. However, elimination of 

hyperimaginaries is only proved for the subclass of supersimple theories [BPW] and seems to 

be a very difficult problem for the general case. The author developed the proofs of 

Propositions 2.9.14, 2.9.16  (together with Prof. Casanovas), and 2.9.21. Lemma 2.9.16 gives 

an important characterization of Lascar strong types in terms of certain bounded equivalence 

relations under the assumption of simplicity of the theory. The proof given herein (due to the 

author of the thesis) of 2.9.19 is an improvement and simplification of a proof due to 

Casanovas [Cas3].  

Now, in chapter 2.10, we are able to define and characterize the Lstp=stp problem. The results 

2.10.6 –2.10.9 were developed in the above-mentioned stay at the University of Barcelona 

with the participation of the present author. 

Finally, in chapter 2.11, we will present our main results. Before that, we define some 

subclasses of simple theories, starting with the stable ones which have very nice properties 

with respect to amalgamation, non-forking extensions of types, definability of types and the 

elimination of hyperimaginaries. The definitions of further subclasses of simple theories, such 

as the low, superlow, supershort and short theories, by means of dividing chains, are due to 

Casanovas [CasWag]. However, the low theories was defined (by means of a rank) and 

investigated before by Buechler [Bue2]. He proved that Lstp=stp holds in low theories. All 

known natural examples of simple theories are low; in particular the smoothly approximable 

structures are low. It is not known whether low theories or (super-) short theories eliminate 

hyperimaginaries and the Lstp=stp problem still remains open in (super-) short theories. 
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However, the author of this thesis was able to give new characterizations of low theories by 

means of Morley sequences. These characterizations could serve as useful tools to identify 

other simple theories with the low theories, for instance ω-categorical simple theories having 

additional properties. Casanovas in [CasWag] proved that ω-categorical short theories are 

low. We discovered that a special property, which we introduce as the “independent dividing 

chain property”, is a sufficient condition for lowness of a ω-categorical simple theory. This is 

one of our main results. At the heart of the proof is another main result of this thesis, namely 

an improvement and generalization of Kim’s early Theorem (Proposition 3.6 in [Kim1] or 

Theorem 2.4.7.6 in [Wag]) that if a formula ϕ(x,a) divides over a set A, then for every Morley 

sequence I of tp(a/A), the set {ϕ(x,a’) : a’∈I} is inconsistent. Kim’s proof does not provide a 

number k, such that {ϕ(x,a’): a’∈} is k-inconsistent. We were able to find such a k and show 

that I is an m-dividing chain in ϕ, if ϕ(x,a) m-divides over A.  

Furthermore, a new rank is defined, which allows characterizations of low and short theories 

and gives rise to research questions. Finally, a new rapprochement to the Lstp=stp problem is 

developed by the author, using results of chapter 2.8. The main results of these considerations 

are given in Propositions 2.11.38 and 2.11.39. Roughly speaking, they say that to show 

Lstp=stp in a simple theory, it is sufficient to prove that certain definable equivalence 

relations are finite. All results 2.11.29 – 2.11.44 are due to the author of this thesis.  
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1 From Theoretical Computer Science to Model Theory 
 
 

The notion of algorithm is the central concept in Theoretical Computer Science. An algorithm 

is – roughly speaking – an effective procedure, that is, a finite set of instructions to transform 

input data into output data in finitely many steps. We require that all data are finite objects, or 

more precisely, that they are finite words over a finite alphabet. Hence, we can restrict our 

attention to such countable domains like the natural numbers or finite words over, say, {0,1} 

(there exists an injective function coding all data into, for instance, natural numbers). 

In Recursion Theory – one of the main pillars of Theoretical Computer Science – one tries to 

formalize the intuitive understanding of the notion of algorithm. 

We say that a function f: Nk→N, (k∈N, N the natural numbers), is intuitively computable (or 

intuitively recursive), if there is an algorithm (in the sense described above) which computes 

f, which means that there is a procedure which takes (n1,...,nk)∈Nk as input and stops after 

finitely many steps with  f(n1,...,nk)∈N as output. (If f is partial, then we require that the 

algorithm does not stop on some arguments of f.) (Clearly, all that computers can do is 

computable (recursive) in the intuitive sense.) 

In the 1930’s various models of computability were developed in order to treat the intuitive 

notion by formal methods. Some of them serve even today to study the notion and the 

properties (like complexity in time and space) of algorithms, for example Turing Machines, 

Markov Algorithms, λ-calculus, µ-recursive functions, Register Machines,.... 

It was shown that all these models are equivalent, which means that they define exactly the 

same class of functions over N, called recursive functions. 

It is clear that all these functions are intuitively computable (intuitively recursive). The 

equivalence of the formal models of computability and the apparent impossibility to find a 

stronger formal concept which generates more than the recursive functions and still obeys the 

intuitive understanding of an algorithm gave rise to the assumption that the class of the 

intuitively recursive functions and the class of the recursive functions coincide. This led A. 

Church to state his famous thesis (Church’s Thesis, 1936) that identifies the intuitive with the 

formal notion of computabilty. That is: 

A function f over N is intuitively recursive if and only if it is recursive. 
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Church’s Thesis is not a theorem of mathematics, since it contains the notion of an effective 

procedure, which is only intuitively explained. But it is accepted and confirmed in practice 

until today and provides an important philosophical understanding of computability.  

A subset of Nk, (k∈N), is said to be decidable or recursive, if its characteristic function is 

recursive. Recursion Theory provides a structure theory of the subsets of Nk, namely the 

Kleene-Hierarchy, dividing these subsets by the complexity of their definitions by first order 

formulas (number of alternating quantifiers in front of a recursive relation). The bottom of this 

hierarchy (more exactly the relations which are both recursively enumerable (r.e.) and 

complements of r.e. relations, that is the relations definable by both formulas with one 

existential quantifier in front of a recursive relation and formulas with one universal quantifier 

in front of a recursive relation) is formed by the recursive relations. 

So Recursion Theory goes beyond the world of recursiveness. But Computer Science, as the 

science of computability is restricted to investigate this bottom level of the Kleene Hierarchy, 

that is the recursive relations or, equivalently, the decidable (computable) problems. While the 

mathematician is more interested in undecidable problems (like the theory of the natural 

numbers, the theory of groups, rings, fields, the word problem in group theory, the halting 

problem of Turing machines, ...) considering decidable (recursive) sets as trivial, the work of 

the computer scientist begins here in the world of recursiveness. In this framework of the 

recursive problems there arose Complexity Theory (Computational Complexity), Automata 

Theory and others. 

The existence of an algorithm of a (recursive) problem raises the natural – and, in particular, 

from the engineering standpoint, important - question about its complexity in time and space 

required by a machine that carries out the algorithm. (We will see that the question of the 

complexity of an algorithm is not only interesting for the engineer but has also philosophical 

and mathematical significance.) It was important to discover that the complexity essential 

does not depend on the model of computation mentioned above (Turing Machine, Register 

Machine, µ-recursive function ...). Thus, the notion of complexity in time and space can be 

considered as a fundamental concept and we can speak about the ¨complexity of the problem¨ 

without referring to a special machine model or calculus. 
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This allows to classify the recursive sets into complexity classes corresponding to the amount 

of resources required by one of the equivalent models of computation to accept the set. 

Usually one chooses the intuitive very clear model of Turing Machines to work in practice. 

 

Let us explain this classification of the recursive sets more exactly. We code a recursive 

problem (set) into a decidable language over an alphabet τ, say τ={0,1}. By T(M) we mean 

the language A over τ which is accepted by the Turing machine M. (The language A is 

accepted by the Turing machine M, if M stops after finitely many steps on all inputs a∈A.) 

Let f:N→N be a function. The class TIME(f(n)) consists of all languages A such that there is 

a Turing machine M with A=T(M) and timeM(x) ≤f(|x|), where timeM:τ*→N means the 

number of steps of the calculation of M on the input x∈τ*. If we also admit non deterministic 

Turing machines, then let timeM(x) be the minimum number of steps of possible calculations 

of M on input x. |x| denotes the length of x. 

The class SPACE(f(n)) is defined in an analogous way replacing timeM by spaceM:τ*→N, 

which means the number of cells of the work tape which have been scanned (or the minimum 

number of the possible numbers of scanned cells in the non deterministic case). 

 

Some important complexity classes are: 

 

PTIME (=P)=∪{TIME(p(n))|p a polynomial function, all considered Turing machines are 

deterministic} 

 

NPTIME (=NP) is defined like P, but non-deterministic Turing machines are admitted  

 

PSPACE (=PS)=∪{SPACE(p(n))| p polynomial, only deterministic Turing machines} 

 

LOGSPACE (=L)=∪{SPACE(f(n))| f(n)=[clog(n)], c>0, all M deterministic}, where [r] 

means min{m| r≤m, m∈N}, for r a real number 

 

NLOGSPACE (=NL) is the non-deterministic version of L. 
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Obviously we have L⊆NL⊆P⊆NP⊆PSPACE. 

However, nothing is known about strict inclusion up to NL⊂PSPACE. 

 

In this way Computational Complexity provides a fine structure theory of the recursive world 

inside the Kleene-Hierarchy, dividing the recursive sets into complexity classes. So we can 

consider Computational Complexity as a ¨sub theory¨ of Recursion Theory. 

However, measuring the complexity of a problem by the resources of time and space of a 

machine model is more an engineering standpoint to understand the phenomenon but does not 

allow an elegant, general mathematical approach. 

Such an approach was discovered in 1974, when Ron Fagin [Fag] showed that the complexity 

class NP is exactly the set of problems describable in second order existential logic. This was 

a spectacular breakthrough in Theoretical Computer Science. Since then more complexity 

classes were identified by appropriate extensions of first order logic and it became clear that 

the measures time and space are expressible by the richness of a logic language needed to 

specify the problem. Thus, in this way the apparently technical measures time and space are 

confirmed as deep mathematical concepts. The area, which investigates the world of 

computability by identifying natural complexity classes via logic languages, is called 

Descriptive Complexity and shows that virtually all measures of complexity can be mirrored 

in logic. 

The way to connect complexity classes with appropriate logic languages goes about finite 

(word-) models (finite structures). The discipline, which deals with the interaction between 

theories (sets of sentences) of a logic language and their semantics, i.e. an interpretation in 

structures, is called Model Theory. Below we shall give some general remarks about Model 

Theory, its methods and some highlights of its history. But first let us return to the question as 

to why Model Theory becomes an important tool for us. 

As mentioned above, we can understand a (recursive) problem coded as a formal language, 

i.e. as a set of words over, say, {0,1}. In the following we will give a short survey of how 

words can be considered as finite structures and, on the other hand, how finite structures can 

be coded as words. This way formal languages naturally correspond to classes of structures. 

Now, classes of structures can be classified by their descriptive complexity, that is, by the 
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logical means that are necessary to axiomatize them, i.e. to write them as model classes of 

sentences of a certain logic. 

Vocabularies τ are finite sets consisting of relation symbols R,... and constant symbols c,... . 

For simplicity we mainly consider the case  τ={E} with a binary relation symbol E. By a τ-

structure we mean a finite τ-structure. Str(τ) is the class of all (finite) τ-structures. By a class 

of structures we mean a class closed under isomorphisms. We shall code structures by words 

over {0,1}. For this we need a linear ordering on the domain. Let τ<:=τ∪{<}, with < a binary 

relation symbol, <∉τ, and OStr(τ<):={(A,<A)| A∈Str(τ), <A a linear ordering of A} the class 

of ordered structures. Then <A induces the lexicographic orderings <A
2, <A

3, ... on A2, A3, ... 

for (A,<A)∈OStr(τ<). 

Define, e.g. for τ={E}, code:OStr(τ<)→{0,1}* by  code(A,EA,<A):=1...1wEA, (|A| times ¨1¨), 

where wEA=e0...e|A|2-1, with ei=1, if EA(a,b) for the i-th pair (a,b)∈A2 in the ordering <A
2; ei= 

0, else. 

Elements cA of A are coded by bin(i), the binary representation of i, where cA is the i-th 

element of A with respect to <A. For K⊆OStr(τ<) let code(K):={code(B)| B∈K}. 

Then we have that code(K) is a formal language over {0,1}. The following definition allows 

handling structures without orderings: 

 

Let M⊆Str(τ), <∉τ. M<:={(A,<A)∈OStr(τ<)| A∈M}. 

Note that for all A∈Str(τ): 

         A∈M  iff  there is <A such that (A,<A)∈M<, 

                    iff  for all orderings <A we have (A,<A)∈M<. 

 

Let code:Str(τ)→powerset of {0,1}* be defined by:  

code(A):={code(A,<A)| <A an ordering on A}, and put code(M):=∪{code(A)| A∈M}. 

 

Thus, with each class of structures, in particular with each class of ordered structures, we have 

associated a formal language. Concerning the other way round, we code words by ordered 

{P}-structures for a unary relation symbol P, i.e. by structures from OStr({P}<). 
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For this purpose, let w∈{0,1}* be of length n. Set Bw:=(B,PB,<B) with B:={0,...,n-1}, <B the 

natural ordering on B, i∈PB  iff  the i-th letter of w is 1. 

(W.l.o.g. we restrict ourselves to nonempty words w to ensure that the BW’s are not empty.) 

Define str:{0,1}*→powerset of OStr({P}<) by Str(w):={B| B≈Bw}, (where ¨≈¨denotes the 

isomorphism-relation), and for L⊆{0,1}* set str(L):=∪{str(w)| w∈L}. 

 

Then str(L) is a class of ordered {P}-structures. 

In the following we consider complexity classes C, that contain L (=LOGSPACE). This 

ensures that the class of Turing machines witnessing that some language belongs to C is 

closed by adding subroutines that are in SPACE(clog(n)), c>0 a natural number. 

Then we have for any formal language L (L⊆{0,1}*): 

            

                    L∈C  iff  code(str(L))∈C. 

 

Hence, we lose nothing if we redefine a complexity class C as {K∈OStr(τ<)| τ vocabulary, 

code(K)∈C}. 

So, we can look at complexity classes as classes of classes of ordered structures. As we have 

already indicated, this change enables us to apply methods of Logic and Model Theory to the 

investigation of complexity classes. 

Various extensions of first order logic were developed in order to capture (describe) well-

known complexity classes. The aim is to characterize the complexity classes by logics in the 

following sense: 

 

Logic L characterizes complexity class C  iff  for all classes K of structures we have: 

(*)  K∈C  iff  K=ModL(ϕ) for some L-sentence ϕ. (ModL(ϕ) denotes the class of all (finite) 

models of ϕ.) 

We will be more precise below. 

 

In all known cases where (*) holds, we have in addition: 
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(**) To each L-sentence ϕ one can effectively assign a Turing machine that accepts ModL(ϕ) 

and is resource bounded according to C. 

 

Assume that (*) and (**) hold. Then: 

- we can consider the set of L-sentences as a universal programming language for C;  

- if the set of L-sentences is recursive (recursive enumerable) we get a recursive (r.e.) 

representation of C; 

- in many cases, every L-sentences is equivalent to an L-sentence describing the behaviour 

of a Turing machine that accepts ModL(ϕ), i.e. we have a normal form theorem for L. 

 

Without giving the definitions (see [EbFl] for more details) we quote some appropriate logics: 

 

∑1

1
existential second order logic 

FO(PFP)  partial fixed-point logic 

FO(IFP) inflationary (or inductive) fixed-point logic 

FO(TC)  transitive closure logic 

FO(DTC)  deterministic transitive closure logic. 

 

All these logics are extensions of first order logic. 

We have: 

FO≤FO(DTC)≤FO(TC)≤FO(IFP)≤FO(PFP), 

Where L1≤L2 means that every L1-sentence is equivalent over finite structures to an  L2-

sentence, hence L2 is at least as expressive as L1 (over finite structures). All inclusions are 

strict up to FO(IFP)≤FO(PFP). Here strictness is open since it is equivalent to P≠PSPACE 

(see below). 

 

Now we would like to give more precise definitions in order to explain what it means to 

logically characterize a complexity class. 

We say that 

(a) L weakly captures C  iff  for all τ and all K⊆OStr(τ<): 
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                  K is L(τ<)-axiomatizable ⇔ K∈C. 

(b) L strongly captures C  iff  for all τ and M⊆Str(τ): 

                  M is L(τ)-axiomatizable ⇔ M<∈C. 

 

One can show that if L strongly captures C, then L weakly captures C. 

Let us quote some important results: 

 

Theorem: 

(1) FO(DTC) weakly captures LOGSPACE 

(2) FO(TC) weakly captures NLOGSPACE 

(3) FO(IFP) weakly captures PTIME 

(4) ∑1

1
strongly captures NPTIME 

(5) FO(PFP) weakly captures PSPACE 

 

Point (4) of the theorem goes back to Fagin [Fag], as mentioned above, and can be seen as the 

first important result of Descriptive Complexity. (1) and (2) go back to Immerman (1987), (3) 

goes back to Immerman (1986) and Vardi (1982), and (5) to Abiteboul and Vianu (1989). 

Apart from (4), it’s proved, that none of these results can be strengthened to strong capturing. 

 

Since we can look at complexity classes as classes of languages as well as classes of ordered 

structures – as it was shown above – we get the following consequences of the theorem: 

 

(a) PTIME=PSPACE  iff  FO(IFP)≡FO(PFP) on ordered structures 

(b) PTIME=NPTIME  iff  FO(IFP)≡∑1

1
on ordered structures 

 

(Point (b) can be strengthened by substituting ¨∑1

1
¨  by ¨SO¨ (second order logic).) 

 

One open problem concerns the question whether there is a logic which strongly captures the 

class PTIME. The great importance of such logic, if it exists, lies in the fact that it could be 

considered as a database language allowing expressing all feasible queries, and only these. 
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The question of the existence of a query language that could express exactly the polynomial 

time generic queries on a relational database was in fact posed by A. Chandra and D. Harel 

(1982), and since then much work in Finite Model theory has been devoted to tackle this 

problem. 

Another open problem is the question whether the classes PTIME and NPTIME coincide. 

(Clearly we have PTIME⊆NPTIME.) Some researchers consider this question, known as the 

¨P-NP-Problem¨ since around 1970, as the most important problem of Theoretical Computer 

Science. Obviously it is philosophically interesting question whether a problem which can be 

solved in polynomial time by a non-deterministic machine can also be solved in polynomial 

time by a deterministic machine, or, in other words, whether or not non-deterministic 

machines are stronger in this sense than deterministic ones. 

Practical reasons for the importance of the P-NP-Problem are that there are a lot of significant 

problems in practice for which it is easy to see that they are in NP (for instance ¨the travelling 

salesman¨), but it is not known if there are deterministic polynomial algorithms (P-algorithms) 

to handle the problem. Furthermore, there was developed a very nice structure theory (S. 

Cook (1971) and R. Karp (1972)) showing that either all NP-problems, of which it is 

unknown whether they have a P-algorithm, have a P-algorithm (if P=NP) or none of these 

problems have a P-algorithm (if P≠NP). 

We have seen above, that by methods of Descriptive Complexity we are able to reduce the 

difficult P-NP-Problem to a logical one: 

 

                        P=NP  iff  FO(IFP)≡SO  on ordered structures. 

 

The expressiveness of the quoted logic languages one can now investigate by purely model 

theoretical means. By such model theoretical methods (especially games) one can show for 

instance that  

                                  FO(DTC)<FO(TC)<FO(LFP). 

This makes it clear that we can use (Finite) Model Theory as a powerful tool to handle 

questions concerning Theoretical Computer Science. 
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Without giving more details here, we would like to mention that Finite Model Theory has also 

important applications in the theory of (relational) databases, since a database is exactly a 

finite relational structure. 

 

Model Theory has experienced a steady and strong development since the 1950’s. It studies 

the connection between the syntax of logic languages and their semantics, that is, their models 

in a very general frame. Since the 1970’s a lot of applications in ¨core mathematics¨ have 

been found. 

The theorem of Loewenheim and Skolem (formulated in a general way by A. Tarski) and the 

compactness theorem represent the foundations of the discipline. The compactness theorem 

says that a set of sentences has a model if every finite subset has a model. This theorem has 

many applications and is perhaps the most used tool in Model Theory. The theorems of 

Loewenheim and Skolem guarantee that a set of sentences, which has an infinite model, has 

larger models in every infinite cardinality and has also some smaller models. Thus, it is 

impossible to find a set of sentences whose models have a given infinite cardinality. 

The compactness theorem (and the completeness theorem) only holds in first order logic. That 

is why this logic is the most prominent language in Model Theory (first order logic is also 

sufficient to formalize virtually all important things in core mathematics, so we can build up 

mathematics by the axioms ZFC of set theory using first order logic). But there have also been 

studies on the model theoretical properties of extensions of first order logic, like infinitary 

logics and logics with new quantifiers. 

Core notions of Model Theory are ¨elementary equivalence¨ and ¨elementary extension¨. Both 

notions have applications in model constructions, in algebra, set theory and other parts of 

mathematics. Another notion, which plays an important role in particular in some recent 

developments of the discipline, is the concept of a ¨type¨, which is a consistent set of formulas 

in the same free variables. 

Complete axiomatizable theories are decidable (recursive). The question of decidability and 

completeness of theories and the development of sharp-witted methods to prove these 

properties were and still are an important motivation in mathematical logic. Some of these 

techniques, which have their origin in Model Theory, are: 



 18 

Vaught´s test, Ehrenfeucht games (and other games), quantifier elimination, Robinson’s 

method of model completeness, and others. 

The study of ultraproducts also formed an important part of Model Theory in the past. 

M. Morley gave a very significant impulse in the discipline in 1965. A theory T is called 

categorical in a cardinal κ≥ω, if T has only one model up to isomorphism in cardinality κ 

(that is all models of cardinality κ are isomorphic). Morley proved that a countable complete 

theory T that is categorical in some uncountable cardinal is categorical in all uncountable 

cardinals. Morley also introduced the notion of Morley-rank and totally transcendental theory 

which gave rise to a powerful dimension theory generalizing the notion of dimension in 

vector spaces and fields. Another important concept introduced by Morley was the ω-stability 

of a theory, which would play an important role in the future. Baldwin and Lachlan, after 

Morley, insisted on the study of uncountably categorical theories (also called ω1-categorical 

theories). The Baldwin-Lachlan-Theorem (1971) says (among other things), that a countable 

theory T that is ω1-categorical but not ω-categorical has ω-many countable models. The 

theorem gives also a certain structure theory of the countable models of T (using the notion of 

strongly minimal sets and dimension theory). 

In this moment S. Shelah entered the scene and became the leading and most creative 

researcher of the area (and also in set theory) for the next decades. Shelah formulated a 

program to investigate the countable first order theories by classifying the models they have. 

For this it was necessary to see, in which case such a classification was possible. The main 

dichotomy developed by Shelah was the dividing of the theories in stable and unstable. A 

theory T is said to be stable if there does not exist a formula ϕ(x,y) and tuples ai, bi (i<ω) such 

that T|=ϕ(ai,bi) iff i≤j<ω. Shelah proved that a theory T that is not stable has 2λ - many models 

in any cardinal λ≥ω1+T (note that for λ≥|T|, 2λ is the maximum number of models of 

cardinality λ which T can have). 

This is called a ¨non-structural theorem¨, because in this case it is impossible to classify the 

models of T. On the other hand, if it is possible to classify the models of a theory T (and by 

the above result we can restrict ourselves to stable theories) then we say that T has a ¨structure 

theorem¨. Uncountable categorical theories have the ¨best¨ structure theorem, since they have 

only one model in every uncountable cardinality. (Moreover, they satisfy a strong form of 

stability, the ω-stability, this was an important fact on Morley’s original work.) 
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The spectrum function of a complete first order theory is a map I(-,T) such that for any 

cardinal λ, I(λ,T) is the number of models of T of cardinality λ. In the late 1960´s Morley 

conjectured that the spectrum function of a complete countable first order theory is non 

decreasing on uncountable cardinals, i.e. for all uncountable cardinals λ<κ, I(λ,T)≤I(κ,T). 

Shelah´s proof of the conjecture spanned almost 15 years and is the main topic of [Sh1]. Part 

of the proof is the development of the forking dependence relation on a stable theory. The 

theme through much of Shelah´s book is to find subsets of a model of a stable theory on 

which forking dependence is nice enough to admit a dimension theory. 

The stability spectrum of T is the class of cardinals λ such that T is stable in λ (where ¨T is 

stable in λ¨ means: whenever M is a model of T of cardinality λ, the number of complete 

types over M is also λ; it holds that T is stable iff it is stable in some infinite cardinal). Shelah 

gave a description of the stability spectrum of T. He characterized the class of cardinalities 

λ≥2|T|, such that T is stable in λ. 

Under the assumption of stability, Shelah developed a sophisticated model theoretical 

machinery (forking, orthogonality, regular types, etc.) in order to classify the models of the 

theory. Perhaps the most important of these was (non-) forking, which serves as a notion of 

independence in models of stable theories. Meaning was given to the expression: ¨a is 

independent from b over A¨ (a, b tuples, and A some set in a model M of T). 

 

Finite Model Theory evolves without much contact with the classical part of Model Theory. 

First motivations to develop a model theory of finite structures were B. Trakhtenbrot´s 

Theorem (1950) on the failure of the completeness theorem in the finite, and H. Scholz´s 

Spectral Problem (1952). Later Complexity Theory and Database Theory mainly motivated it. 

A set of first order sentences which has for every n<ω a model of cardinality n, has an infinite 

model, by the compactness theorem. In the other case, if the hypothesis does not hold, there 

are only finitely many finite models and they can be axiomatized by one first order sentence. 

Hence, Finite Model Theory is a very special case of the general one, that is concerning also 

infinite models (as we have seen, the cardinality of infinite structures of a theory is not 

bounded (Loewenheim, Skolem)). 

The methods of Finite and classical Model Theory are quite different. Transfinite or set 

theoretical combinatorics are replaced by finite combinatorics, classical results like the 
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completeness theorem no longer hold when we restricted to finite models, and the set of 

sentences valid in all structures is no longer recursively enumerable by only admitting finite 

structures (Trakhtenbrot´s Theorem). 

Many questions turn out to be trivial or irrelevant in the finite. On the other hand the spectrum 

problem, formulated by Scholz in 1952, which is trivial in the infinite (by Loewenheim, 

Skolem) represent a difficult and unsolved problem in the finite case: 

The function assigning λ the value I(λ,T) is called the spectrum function of the theory T, 

where I is, as above, the number of non-isomorphic models of T of cardinality λ. The 

spectrum problem is to find the set S={λ| I(λ,T)>0} for a given T. If λ≥ω lies in S, then every 

infinite cardinal is in S (Loewenheim, Skolem). Hence, we can restrict the problem to the 

nontrivial case S={n| I(n,ϕ)>0} for n a natural number and ϕ a first order sentence. S is called 

the spectrum of ϕ. Open questions are whether the spectra are closed under complement (If S 

is a spectrum of ϕ, is S´=ω-S also a spectrum of some sentence ψ?) and the description of the 

spectrum of a sentence. It is interesting to notice that these problems are intimately linked to 

the P-NP-Problem. 

The spectrum theorem says that a set S⊆ω is a spectrum of a first order sentence if and only if 

S (more exactly the binary code of S) is in NP. 

Since in the infinite case the spectrum problem is trivial, it is natural to go ahead and ask for 

the values of the spectrum function in the infinite. In this way we arrive at the purposes of 

Shelah´s program formulated in his Classification Theory and briefly discussed in some 

aspects above, to compute the spectrum function for given T and infinite cardinals. 

 

There is a feeling by many researchers that the techniques currently in use in Finite Model 

Theory seem to be too limited to tackle the open problems, for instance in Descriptive 

Complexity and Database Theory. In recent years much effort has been spent on trying to 

handle finite structures with the powerful tools of classical Model Theory, especially Stability 

Theory (Classification Theory), that is the sophisticated machinery developed by Shelah (and 

some others). 

This area is called Embedded Finite Model Theory and studies finite models that are 

embedded in infinite structures, using classical techniques of Model Theory. Recently it has 

become clear that this way to look at finite structures represent a very promising application 
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of Stability Theory and that the time is ripe for researchers in Descriptive Complexity to look 

back to some modern developments in the classical part of Model Theory. 

There are two important trends in Embedded Finite Model Theory we would like to mention 

here. The first one is due to J. Baldwin, M. Benedikt  and others and is motivated mainly by 

the theory of relational databases. Baldwin defines an embedded finite model as follows: 

Let L be a language disjoint from S, and let M be an L-structure with domain U. For any 

(finite) S-structure A with domain contained in U, let M(A) denote the unique L∪S-structure 

that expands M and agrees with A on the interpretation of the predicates in S. Such an A is 

called an embedded finite model. 

The second approach to deal with finite structures in the infinite context uses the notion of a 

smoothly approximable (or smoothly approximated) structure, which was introduced, it 

seems, by Lachlan. 

Such an object is, by definition, a countable relational ω-categorical structure M that is the 

union of an increasing chain of finite homogeneous substructures of M. By a ¨homogeneous 

substructure of M we mean a subset A of M, such that for any finite tuples a and b chosen 

from A, a has the same type as b in M if and only if there is an automorphism of M which 

fixes A setwise and takes a to b. (A type of a tuple c is a consistent set of formulas in the same 

free variables satisfied by c, that is a set of formulas, such that every finite subset is consistent 

replacing the same free variables by the tuple c.) 

One can show that ω-categorical, ω-stable structures are smoothly approximable (and 

smoothly approximable structures are simple, see the next chapters). Major progress in this 

area is done by Hrushovski and Cherlin [Hr], [ChHr]. 
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 2    Simple First Order Theories 
  

2.1  From stability to simplicity 
 

One of the reasons why researchers are interested in stable theories is that there is a notion of 

non-forking, introduced and developed essentially by Shelah [Sh1] which provides a concept 

of independence between sets in a structure to develop a dimension theory representing a 

generalization of well known concepts like ¨algebraic independence¨ in fields and ¨linear 

independence¨ in vector spaces. This is a very important motivation of investigation in Model 

Theory and Mathematics in general (first investigations about a general notion of 

independence in algebra were done, it seems, by van der Waerden in [vdW]). Forking/non-

forking is a basic tool of Stability Theory for proving classification theorems and can be 

called a core notion. 

The importance of simple theories is that they represent a generalization of stable theories and 

satisfy some nice properties, especially with respect to forking. Non-forking provides an 

independence notion for any simple structure, as well as for stable structures. In this way it is 

possible to study much better the structural properties of the models. The notion of 

independence made it possible to classify models. For instance, two vector spaces over the 

field of the rational numbers with the same dimension are isomorphic. Shelah developed  

stability theory in order to respond to the question of which theories (models of these theories) 

allow to define dimensions. (The theories which are not stable and - inside the stable theories 

- the theories which are not superstable, do not.) Shelah created a calculus and a theory of 

forking to treat in general the abstract independence notion. This calculus is valid in the 

general context of stable theories – and in the broader class of simple theories too.  

The class of simple theories includes stable theories, but also many more such as the theory of 

the random graph. Moreover, many of the theories of particular algebraic structures, that have 

been studied recently (pseudofinite fields, smoothly approximable structures, a.o.), turn out to 

be simple. The interest is basically that a large amount of the machinery of stability theory, 

invented by Shelah, is valid in the broader class of simple theories. 
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Simple theories were introduced by Shelah in 1980 [Sh2] and remained unnoticed for some 

time. In the early 1990´s, E. Hrushovski noticed that the fact that the first order theory of an 

ultraproduct of finite fields is simple (and unstable) has far reaching consequences. His 

spectacular application to Diophantine Geometry attracted much attention to the general 

theory of simple theories. A. Pillay consequently prompted his Ph.D student B. Kim to study 

in the general context of simple theories a property that he and Hrushovki isolated and called 

the ¨Independence Property¨. Kim found a new characterization in terms of Morley sequences 

for the property ¨ϕ(x,y) divides over A¨. From this important characterization he managed to 

derive that for simple theories forking it is equivalent to dividing and forking satisfies the 

symmetry and transitivity properties [Kim1] (generalizing Shelah who proved this for stable 

theories). By these results one can define simplicity in terms of symmetry of the independence 

relation, what we are going to do in the following.  

Since there are several examples of simple unstable theories that are of interest in their own 

right (mainly the random graph, pseudofinite fields, smoothly approximable structures), the 

study of simple theories turned out to be a main topic in Model Theory and many researchers 

are rewriting results in stable theories in the broader context of simple theories. 

 

 

2. 2 Notation and some prerequisites 
 

Let us first fix the notation. 

T is a theory with no finite models, in a first order language L. We use x, y, … and a, b, c, … 

to denote (possible infinite) sequences of variables, elements.  

A type p(x) in the tuple x of variables over a set A of parameters is a nonempty set of 

formulas with parameters in A, consistent with T. All formulas in p(x) have their free 

variables among the tuple x. An n-type is a type with n free variables.  

Since a type p(x) is a consistent set of formulas (in the same free variables), it can be satisfied 

by a tuple c from some model of T. We say that c realizes the type p and write c╞p(x). 

If the type p is over the parameter set A, we say that the domain of p, dom(p), is A.  

p, q, … denote types, α, β, κ, λ, µ, … ordinals or cardinals, card(A) the cardinality of a set A. 

We work in a huge κ’-saturated model C of a given theory T, called the monster model or 
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universal domain, which will contain as elementary substructures all models of T we are 

interested in. C is also strongly κ’-homogeneous. (Recall that a model is κ-saturated if it 

realizes every 1-type over every set of cardinality <κ and a model is strongly κ-homogeneous, 

if whenever A, B are subsets of the model of cardinality <κ and f is a bijection between A and 

B which is an elementary map in the model, then f extends to an automorphism of the model.) 

The existence of such a monster model is guaranteed by the following fact [Ba1],[ChK]:  

 

Fact : 

If κ’ is a regular cardinal > card(L), then there is a model C of T which is κ’-saturated and 

strongly κ’-homogeneous.  

 

(Now choose κ’ larger than all the models of T we are interested in.) 

 

Sets A, B, C, ... are always subsets of C. It is assumed that the cardinalities of the sets and 

(elementary) submodels are strictly less than κ’. We say that a set is bounded, if its cardinality 

is strictly less than κ’, and the set is unbounded otherwise. 

We often write AB, Ab to denote the unions A∪B, A∪{b}, where A, B are sets, b a tuple or a 

(infinite) sequence.  

For a set A let T(A) denote the theory of a model (M,A) in the language L(A) obtained from 

model M of T by adding constants c∈A. An A-automorphism of M is an automorphism of M 

fixing A pointwise. Aut(M/A) is the group of all A-automorphisms of M. 

 

tp(c/B) denotes the complete type realized by c over B, where complete means: for all 

formulas ϕ(x) over B hold ϕ(x)∈tp(c/B) or ¬ϕ(x)∈tp(c/B) (where c, x are tuples of the same 

length.).  

We shall extend the notion of a type in an obvious way working with infinite sequences 

instead of finite tuples. Let I be an arbitrary (infinite) index set. We extend the formal 

language introducing new variables {xi : i∈I}. The free variables of formulas of the obtained 

language are in {xi : i∈I}. Then an I-type p is a consistent set of formulas with free variables 

in {xi :i∈I}. It is complete, if for any formula ϕ of the language it holds that, either ϕ∈p or 
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¬ϕ∈p. SI(A) denotes the set of complete I-types with parameters in A. Now we can consider 

also types of infinite sets or sequences over some parameter set. If B is a set, enumerated as a 

sequence of cardinality ≤card(I), then tp(B/A) is a complete I-type consisting of formulas 

ϕ(x,a), where a⊆A and x is a finite subtuple of (xi : i∈I). 

 

The following fact is highly important and in the following we shall make tacitly use of 

it. [Bue1],[ChK] 

  

Fact :  

Let a, b be sequences from the monster model C (of cardinality less than κ’). Then the 

following holds: 

tp(a/A)=tp(b/A)   if and only if   there is an A-automorphism of C sending a to b.  

 

This fact is guaranteed by the strongly κ’-homogeneity of the monster model C, which means, 

that every partial automorphism (elementary map) between two subsets of cardinality less 

than κ’ can be extended to an automorphism of C. 

Sequences, or sets C, D, with tp(C/A)=tp(D/A), we call A-conjugated. 

 

If ϕ(x) is a formula, where x=(x1,…,xk), k>0, then ϕ(M) will denote the set {m∈M : 

M╞ϕ(m)}, where m=(m1,…,mk).  

 

Defnition 2.2.1: 

Let M be a L-structure. A subset X of Mk is 

1. definable if there are a tuple c ⊂ M of parameters and an L(c)-formula ϕ(x1,…,xk,c) 

such that X=ϕ(M), and 

2. type-definable, if X is the intersection of an arbitrary family of definable subsets. That 

is, X is the set of realizations of some partial type. 

If all the parameters used for some (type-)definable set X are contained in a subset A of M, 

we say that X is (type-) definable over A, or A-(type-) definable. We shall often identify a 

formula with the set it defines (where the model is given implicitly). 
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The proof of the following fact uses a topological argument and can be found in any textbook 

of model theory. 

 

Fact : Let D⊆Ck be type-definable (over some set of parameters). If D is A-invariant, that is, 

if for any f∈Aut(C/A), f(D)=D, then D is type-definable over A. 

If D is definable and A-invariant, then D is definable over A. 

If p(x,a0) is a type over Aa0 and tp(a0/A)=tp(a1/A), then p(x,a1) is an image of p(x,a0) under an 

A-automorphism. 

S(A) is the set of all complete types over A and Sn(A) the set of all complete n-types over A, 

that is,  the complete types in an n-tuple of variables. Then S(A)=∪{Sn(a)| n<ω}.  

 

Definition 2.2.2 : Let A be a set of parameters, p∈S(A). The sequence (ai : i∈I) is a sequence 

of type p (or in type p), if ai╞p for all i∈I. 

If the index set I is ordered, the sequence (ai : i∈I) is n-indiscernible over A, if for all 

i1<i2<…<In the type tp(ai1…ain/A) does not depend on the choice of indices. It is indiscernible 

over A, if it is n-indiscernible over A for all n<ω. 

 

Let us quote two very useful combinatorial principles: 

 

Theorem 2.2.3 Ramsey’s Theorem : Suppose X is an infinite set and the set of unordered n-

tuples of X is painted in k different colors. Then there is an infinite monochromatic subset Y, 

i.e. a subset Y⊆X whose n-tuples all have the same color. 

 

Theorem 2.2.4  Erdös-Rado Theorem : Suppose κ is a cardinal, X is an infinite set of 

cardinality (2κ)+, and the set of unordered n-tuples of X is painted in κ different colors. Then 

there is an infinite monochromatic subset Y⊆X of size κ+. 

 

Sometimes one finds another formulation of these two theorems: The notation 

                                                                    κ→(λ)νµ 
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means that if A and B are sets of cardinality κ and ν respectively, and f:[A]µ→B is a function 

from the set of unordered µ-tuples of A to the set B, then there is a subset A’⊆A of cardinality 

λ, such that f is constant in A’, i.e. there is some b∈B such that for all a∈[A]µ, f(a)=b.  

Then Ramsey’s Theorem says that for all n, m<ω, ω→(ω)m
n. The Erdös-Rado Theorem says 

that for all cardinals κ and all n<ω, (2κ)+→(κ+)κn. 

A stronger form of the Erdös-Rado Theorem says that for all cardinals κ and all n<ω, 

(ℑn(κ))+→(κ+)κn+1, where ℑn(κ) is the beth-function. 

 

The following result about indiscernibles is often useful. Its proof (see e.g. [Kim1]) uses the 

Erdös-Rado Theorem, a technique discovered by Morley to prove his Omitting Types 

Theorem ([ChK, Theorem 7.2.2]) and further set theoretical combinatorics. 

 

Proposition 2.2.5 : Let κ≥card(T) a cardinal and let λ=ℑµ, where µ=(2κ)+. Let A be a set of 

cardinality ≤κ and let (ai : i<λ) be a sequence of sequences ai of length ≤κ. Then there is an A-

indiscernible sequence (bi : i<ω) such that for every n<ω there exist i0<…<in<λ with 

tp(b0,…,bn/A)=tp(ai0,…,ain/A).  

 

Remark :  

This Proposition implies the following result, which we will need sometimes:  

If I is a B-indiscernible sequence and B⊆C, then there exists another sequence I’ which is B-

isomorphic to I (that is, there is an automorphism fixing B and mapping I to I’) and C-

indiscernible. Hence, there is also a set C’, an B-isomorphic image of C, such that I is C’-

indiscernible. 

 

Proof : By compactness, we may assume that I is the sequence (ai : i<λ) of cardinality λ, like 

in the Proposition. Then, by the Proposition, there is some C-indiscernible sequence (bi : i<ω) 

with the properties given in the Proposition (substituting A by C). Consider the set X of 

formulas expressing that I’=(xi : i<λ) is a C-indiscernible sequence, B-isomorphic to I. Any 

finite subset of X in n variables is satisfiable by some (ai0,…,ain)⊆I, i0<…<in<λ, like in the 
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Proposition (by C-indiscernibility of (bi : i<ω) and B-indiscernibility of I). By compactness, X 

is consistent.  

Now, mapping I’ by a B-automorphism to I, we obtain the B-automorphic image C’ of C with 

the property that I is C’-indiscernible. 

q.e.d. 

 

We shall now introduce Shelah’s eq-construction, which allows us to deal with equivalence 

classes (modulo a definable equivalence relation) just as if they were real elements (or tuples) 

in the structure. 

For L a language and T a theory in L, Leq and Teq are defined as follows (we suppose that L 

and T are 1-sorted). Let Ε be the set of all formulas E(x,y) over ∅ such that for some n and 

every model M of T, E defines an equivalence relation on Mn. Let I={IE : E∈Ε} be a 

collection of distinct sorts. For each E∈Ε let fE be a function symbol taking n-tuples from the 

sort i= into the sort IE. Finally let Leq be the I-sorted language which contains {fE : E∈Ε} and 

for each element  of L a corresponding element whose arguments are required to range over 

the sort i=. The axioms for Teq are the axioms for T restricted to the sort i=, together with all 

statements expressing: fE is a surjective map of n-tuples from i= onto iE such that 

∀xy(E(x,y)↔fE(x)=fE(y)), where x, y are n-tuples. From hereon we will identify T with its 

copy on i= in Teq.  

Statements made in Teq can always be reduced to statements in T. This is made precise in the 

following lemma, which is easily proved by induction on formulas. 

 

Lemma 2.2.6 : For any formula ϕ(v0,…,vn) of Leq, with vj a variable of sort IEj, there is a 

formula ϕ*(w0,…,wn) of L such that 

 

         Teq╞∀w0…wn(ϕ(fE0(w0),…,fEn(wn))↔ϕ*(w0,…,wn)). 

 

Let T be a complete theory in L with monster model C. Let Ceq be an expansion of  C to a 

model of  Teq. (For E a formula defining an equivalence relation on n-tuples let (Ceq)iE=Cn/E 

the E-equivalence classes on Cn, and fE be the quotient map.) Notice that Ceq is obtained from 

C simply by closing under the functions of the language Leq. This observation makes it clear 
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that Ceq is the unique model N of Teq with C=Ni=. Furthermore, an automorphism f of C can 

be extended uniquely to an automorphism of Ceq. It is easy to sea that Ceq is a monster model 

of Teq. 

 

Definition 2.2.7 : Let T be a complete theory, possibly many sorted, with monster model C. 

(i) If D is a definable set in Cn, d is called the canonical parameter for D if f(D)=D 

↔ f(d)=d for all f∈Aut(C). (This means, that f fixes D setwise if and only if f fixes 

d pointwise.) 

(ii) If every definable set has a canonical parameter in C, we say that T has 

elemination of imaginaries or T has built-in-imaginary elements. 

 

 

Proposition 2.2.8 : Given a complete theory T, Teq has elimination of imaginaries. 

 

Proof. Let C be the monster model of T and D=ϕ(C,a), where ϕ(x,y) is a formula of L, a, x, y 

are tuples. Let E(y,y’) be the equivalence relation: E(y,y’)  iff  ∀x(ϕ(x,y)↔ϕ(x,y’)). Then, for 

all b and c, ╞E(a,b)  iff  ϕ(C,a)=ϕ(C,b). Hence, an automorphism of Ceq permutes the set D if 

and only if it fixes a/E. Thus, a/E is a canonical parameter for D in Ceq. In a similary way one 

can show that if D is a definable subset of (Ceq)n, for some n, then there is also a canonical 

parameter for D in Ceq.  

q.e.d. 

 

From hereon, unless stated otherwise, we restrict our attention to theories with elimination of 

imaginaries and we will work in Ceq, however, we usually will omit the notation eq. 

 

Definition 2.2.9 : Let A be a set of parameters. 

(i) An element a is definable over A if it is fixed under all A-automorphisms. 

(ii) An element a is algebraic over A if it has only finitely many images under A-

automorphisms. 

(iii) A set X is A-invariant if it is stabilized setwise under all A-automorphisms. 

(iv) Two sets X and Y are A-conjugate if there is an A-automorphism mapping X to Y. 
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The algebraic closure of A, denoted by acl(A), is the set of all elements algebraic over A. The 

definable closure dcl(A) over A is the set of all elements definable over A. If we want to 

emphasize that we take the algebraic or definable closure in Ceq, we denote this by acleq(A) 

and dcleq(A). 

 

Lemma 2.2.10 : Let A and a be as above. Then a is definable over A if and only if there is an 

L(A)-formula ϕ(x) whose sole realization is a. It is algebraic over A if and only if there is an 

L(A)-formula realized by a and having only finitely many realizations. 

 

Proof. ⇐ is obvious in both cases, as ϕ(C) is invariant under Aut(C/A). For the other 

direction, suppose a∈dcl(A) and consider p(x)=tp(a/A). By κ-saturation of C, it must be 

inconsistent to say p(x)∪p(x’)∪{x≠x’}. But this means that q(x)∪q(x’)∪{x≠x} is inconsistent 

for some finite part q of p, and ϕ(x)=∧q(x) will do. The case a∈acl(A) is similar.  

q.e.d. 

 

Now it is easy to see that dcl(), acl() are idempotent. 

 

 

2.3  Dividing and forking 
 

Definition 2.3.1 : Let k<ω. A formula ϕ(x,a) k-divides over A if there is a sequence (ai : i<ω) 

of type tp(a/A) such that {ϕ(x,ai) : i<ω} is k-inconsistent, i.e. any finite subset of size k is 

inconsistent. 

A partial type p(x) k-divides over A if there is a formula ϕ(x) implied by p(x) which k-divides 

over A. A formula or a partial type divide over A if they k-divide for some k<ω. 

A partial type p(x) forks over A if there are n<ω  and formulas ϕ0(x),…,ϕn(x) such that p(x) 

implies ∨i<nϕi(x), and each ϕi(x) divides over A. 
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If A⊆B and p(x)∈Sn(B) (or p∈SI(B), for an I-type) does not fork over A, we call p a non-

forking extension of pA. (pA denotes the partial type contained in p whose parameters are 

restricted to the set A.) 

 

Remark :  Let k<ω. For every formula ϕ(x,y) and every set A there is a partial type q(y) over 

A such that for any a holds: 

                 ϕ(x,a) k-divides over A if and only if ╞q(a). 

The type q(y) will express that there is a sequence (yi : i<ω) of type tp(y/A) such that the set 

{ϕ(x,yi) : i<ω} is k-inconsistent. 

 

Some basic properties of dividing and forking are expressed in the following 

 

Lemma 2.3.2 :  

1. Dividing implies forking. 

2. If p and q are two partial types which fork over A, so does p∨q. 

3. If p├q and q divides (forks) over A, so does p. (monotonocity) 

4. ϕ k-divides over A if and only if it k-divides over all finite tuples a∈A. 

5. In the definition of dividing, we may require the sequence (ai : i<ω) to be indiscernible 

over A. 

6. A partial type p(x) k-divides (forks) over A if and only if there is a finite conjunction 

ϕ(x) of formulas in p which k-divides (forks) over A. 

7. No p∈Sn(A) divides over A. (existence of nondividing extensions) 

8. Let A⊆B⊆C. If tp(a/C) does not divide (fork) over A, then it does not divide (fork) 

over B, and tp(a/B) does not divide (fork) over A. (partial transitivity) 

9. tp(a/Aa) divides (forks) over A if and only if a∉acl(A). 

10. Let A⊆B. tp(a/B) does not divide (fork) over A if and only if for each finite tuple b∈B 

tp(a/b) does not divide (fork) over A. (finite character)    

 

Proof: 1.-3. and 8. follow quickly from the definition of dividing and forking. 
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4.: The direction from left to right is clear. For the other direction, suppose that ϕ(x,c) k-

divides over all finite a∈A and consider the set of formulas expressing that there is a sequence 

(ci : i<ω) of type tp(c/A), such that {ϕ(x,ci) : i<ω} is k-inconsistent. By hypothesis and 

compactness this set is consistent, hence ϕ(x,c) k-divides over A. 

5.: Let n<ω. Consider the set X of formulas in the variables (xi : i<ω) saying that all the xi are 

distinct, of type tp(a0/A) and that (xi : i<ω) is an n-indiscernible sequence. In order to show 

that this set is consistent, consider the finite subset X0 of X:   

X0={ϕm(xi1,…,xin)↔ϕm(xj1,…,xjn) : xik, xjk ∈ (xi : i<ω) for 0<k<n+1, ϕm∈L, m<r} where the 

indices are increasing and r<ω is fixed. So we can color the n-tuples of (ai : i<ω) in 2r 

different colors, according to which of the r formulas ϕm(xi1,…,xin), m<r, they satisfy. By 

Ramsey’s Theorem there is an infinte monochromatic subset of (ai : i<ω) satisfying X0. By 

compactness X is consistent. Since n<ω was arbitrary, we can suppose that there is an 

indiscernible sequence of type(a0/A). 

6:  Consider a formula ϕ(x,a) implied by p which k-divides over A, as witnessed by a 

sequence (ai : i<ω). Then there is a finite part q(x,b) such that q(x,b)├ϕ(x,a); since 

tp(ai/A)=tp(a/A), there is a sequence (bi : i< ω) with tp(bi/A)=tp(b/A) and q(x,bi)├ϕ(x,ai). 

Then this sequence witnesses that ∧q k-divides over A; the case of forking is obvious. 

Clearly 6. implies 7. 

9: From left to right it is sufficient to show that any infinite indiscernible sequence over A 

must be indiscernible over acl(A) too: So let I be indiscernible over A. By Ramsey’s Theorem 

and compactness we can find an sequence J⊆I indiscernible over acl(A) having the same type 

over A like I. Hence there is an automorphism f∈Aut(C/A) sending J to I and fixing A. Then I 

must have been indiscernible over f(acl(A))=acl(A). 

For the other direction of 9. consider the formula x=a. 

10: Follows from 6. 

q.e.d.  

 

Remark : From hereon, by 2.3.2.5, we will normally work with indiscernible sequences in the 

definition of dividing.  
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Intuitively, dividing is the right notion of dependence. Suppose that tp(c/Ab) divides over A. 

tp(c/Ab) is a (dividing) extension of the type tp(c/A), and, clearly, every realization of 

tp(c/Ab) realizes tp(c/A). By 2.3.2.6 there is a ϕ(x,b)∈tp(c/Ab) dividing over A. Hence, there 

is a sequence (bi| i<ω) with tp(b/A)=tp(bi/A), i<ω, generating ω-many A-isomorphic images 

of tp(c/Ab), taking b to bi, i<ω. Thus, the set of realizations X of tp(c/Ab) breaks up that of 

tp(c/A) into ω-many pieces Xi, each Xi is an A-automorphic image of X. This means in some 

sense that c satisfies more relations with Ab than it does with A. 

Why, then is forking introduced over dividing? With forking, we have the following extension 

axiom (for types). 

 

Lemma 2.3.3 : Let A⊆B and let p be a type over B which does not fork over A. Then there is 

a complete type q over B extending p, which does not fork over A. 

 

Proof: We show that for any B-formula ϕ(x,b) either p∪{ϕ} or p∪{¬ϕ} does not fork over 

A. So suppose otherwise. Then there are formulas ϕ1(x),…,ϕm(x) and ψ1(x),…,ψn(x), all of 

them dividing over A, such that p∪{ϕ}├∨iϕi and p∪{¬ϕ}├∨jψj. Hence p├(∨iϕi)∨(∨jψj), so p 

forks over A, a contradiction. 

As non-forking over A is a local property by Lemma 2.3.2.6, it is closed under unions of 

chains. (That is, if p=p0⊆p1⊆p2⊆…⊆pn⊆… is a chain of non-forking extensions of p, then the 

union of this chain is a non-forking extension too. Otherwise, by 2.3.2.6 (or by compactness), 

there would be an i such that pi forks over A.) The existence of a non-forking completion of p 

now follows from Zorn’s Lemma.  

q.e.d. 

 

Remark : An alternative proof of Lemma 2.3.4 is to show that the set  

                                                    p(x)∪{ϕ(x) : ¬ϕ(x)∈L(B) divides over A}  

is consistent (it is clear that this set is also complete). Suppose not, then there is a finite subset 

which is inconsistent. Hence p├¬ϕi  for some 0≤i≤n, and ¬ϕi divides over A. It follows that p 

forks over A, a contradiction.   

 

The following definition gives particular examples of non-forking extensions. 
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Definition 2.3.4 : Let A⊆B and p be a partial type over B. We say that p is finitely satisfiable 

in A if every finite conjunction of formulas in p is satisfied by some tuple in A. 

If M is a model of T, p∈S(M) and M⊆B, then an extension q∈S(B) of p is called a coheir of 

p if it is finitely satisfiable in M. 

 

Lemma 2.3.5 : Let A⊆B and q be a partial type over B which is finitely satisfiable in A. Then 

q has a completion p∈S(B) which is finitely satisfiable in A. If b, b’∈B with tp(b/A)=tp(b’/A) 

and c╞p, then tp(cb/A)=tp(cb’/A). Furthermore, p does not fork over A. 

 

Proof. As finite satisfiability is closed under unions of chains, it is enough to show that for 

every B-formula ϕ either q∪{ϕ} or q∪{¬ϕ} is finitely satisfiable in A. So suppose not. Then 

there are finite bits q0⊆q and q1⊆q such that q0∪{ϕ} and q1∪{¬ϕ} are both not satisfied by 

any tuple in A. But then q0∪q1 is not satisfied by any tuple in A, a contradiction. So q can be 

completed to a type which is finitely satisfiable in A. 

Now suppose b, b’∈B with tp(b/A)=tp(b’/A) and c╞p. If there is a formula ϕ with 

╞ϕ(c,b)∧¬ϕ(c,b’), then by finite satisfiability there is a∈A with ╞ϕ(a,b)∧¬ϕ(a,b’), 

contradicting tp(b/A)=tp(b’/A). 

Finitely, let q be finitely satisfiable in A, and suppose q(x)├∨i<nϕ(x,bi). By finite satisfiability, 

there must be some a∈A and some i<n with ╞ϕi(a,bi). But then for any A-indiscernible  

sequence I with bi∈I we have ╞ϕi(a,b’) for all b’∈I., so ϕi(x,bi) cannot divide over A.  

q.e.d. 

 

Remark :  

If p is a type over a model M, then p is finitely satisfiable in M by consistency of the type p. 

If B⊇M, then p can be viewed as a partial type over B. So by the first part of Lemma 2.3.5, p 

has a completion q over B, which is a coheir of p. Therefore types over models always have 

coheirs. However, not every type over B which does not divide (or fork) over M⊆B is a 

coheir of its restriction to M.  

 
Proposition 2.3.6 : The following are equivalent: 
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1. tp(a/Ab) does not divide over A. 

2. For any A-indiscernible sequence I with b∈I, there is a tuple a’ realising tp(a/Ab) such 

that I is indiscernible over Aa’. 

3. If I is an A-indiscernible sequence with b∈I, then there is an Ab-automorphic image J 

of I which is indiscernible over Aa. 

 

Proof. The equivalence of 2. and 3. follows by taking an Ab-automorphism mapping a to a’ 

and J to I. 

Suppose tp(a/Ab) does not divide over A, and let I be an A-indiscernible sequence with b∈I. 

Write tp(a/Ab)=p(x,b). 

Claim: q(x):=∪b’∈Ip(x,b’) is consistent. 

If not, then for some formula ϕ(x,b)∈p(x,b) the conjunction ∧b’∈Iϕ(x,b’) is inconsistent, and 

hence k-inconsistent by compactness and indiscernibility of I, for some k<ω. So p(x,b) 

divides over A, a contradiction. This proves the claim. 

Let Γ(x) be the set of formulas expressing that I is an indiscernible sequence over Ax, and let 

Γ0(x) be a finite subset. A formula in Γ0(x) is of the form: ϕ(bi1,…,bim,x,a)↔ϕ(bj1,…,bjm,x,a), 

where a is a tuple of elements of A and bik, bjk∈I. If Γ0(x) contains n formulas of this form,  

then for an arbitrary interpretation c of x there are 2n possible combinations for any m-tuple  

from I to satisfy the n subformulas on the left side of the equivalences by substituting the 

bi1,…,bim. Now let us paint the increasing m-tuples of I in 2n different colors, according to the 

way in which they satisfy the subformulas on the left side in Γ0(x). So we can find – by 

Ramsey’s Theorem - an infinite subsequence J of I such that all increasing m-tuples of J are of 

the same color, whence satisfy the set Γ0(c) (the elements of I in Γ0 are substituted by the 

elements of J). Since J and I have the same type over A (by indiscernibility), there is a 

corresponding realization c’ of  Γ0(x), mapping J by an A-automorphism to I. When we 

choose for c a realization of q(x), then c’ realizes q(x)∪Γ0(x). (Note that c’ then automatically 

realizes p(x,b)=tp(a/Ab), since b∈I.)  

By compactness, q(x)∪Γ(x) is consistent. Now we take for a’ a realization of q(x)∪Γ(x).  

For the converse, suppose that tp(a/Ab) divides over A. Then there is a infinite A-

indiscernible sequence I with b∈A, and a formula ϕ∈tp(a/Ab), such that X={ϕ(x,b’) : b’∈I} 
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is inconsistent. By 2. there is a tuple a’ realizing tp(a/Ab) such that I is Aa’-indiscernible. So 

a’ realizes X, a contradiction. Hence tp(a/Ab) does not divide over A. 

Q.e.d. 

 

Proposition 2.3.7 : Let A⊆B, and suppose tp(ai/Ba0,…,ai-1) does not divide over Aa0,…,ai-1 

for all i≤n. Then tp(a0,…,an/B) does not divide over A. 

 

Proof. It is sufficient to show that tp(a0,…,an/Ab) does not divide over A for every tuple b∈B. 

Let I be an A-indiscernible sequence with b∈I. By hypothesis, tp(a0/Ab) does not divide over 

A. Now suppose that we have found a’0,…,a’i-1 realising tp(a0,…,ai-1/A) such that I is 

indiscernible over Aa’0…a’i-1. If a’ is such that tp(a0…ai-1ai/Ab)=tp(a’0…a’i-1,a’/Ab), then 

tp(a’/Aba’0…a’i-1) does not divide over A by invariance of dividing under automorphisms. By 

Proposition 2.3.6 there is a’i realizing tp(a’/Aba’0…a’i-1) such that I is indiscernible over 

Aa’0…a’i. Inductively, we find a’0…a’n╞tp(a0…an/Ab) such that I is indiscernible over 

Aa’0…a’n, and we finish by Proposition 2.3.6.  

q.e.d. 

 

Note that in the proof above, the tuples ai may be infinite. 

 

 

2.4 Simplicity 
 

Definition 2.4.1 : A set A is independent of C over B, denoted A┴BC, if tp(a/BC) does not 

divide over B for any finite tuple a∈A. To express the negation we write A┬BC. 

A (complete first-order) theory is simple if independence is a symmetric notion (that is A┴BC 

if and only if C┴BA, for all subsets A, B, C of the monster model). 

We shall call a structure simple if its theory is. 

 

Definition 2.4.2 : Let ϕ(x,y) be a formula and k<ω. The rank D(.,ϕ,k) is defined inductively 

on partial types as follows: 

1. D(p(x),ϕ(x,y),k)≥0 if p(x) is consistent. 
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2. D(p(x),ϕ(x,y),k)≥n+1 if there is a tuple b such that D(p(x)∧ϕ(x,b),ϕ,k)≥n, and ϕ(x,b) 

k-divides over the domain of p.    (p(x)∧ϕ(x) means p(x)∪{ϕ(x)}.) 

3. D(p(x),ϕ(x,y),k)=n if D(p(x),ϕ(x,y),k)≥n and not D(p(x),ϕ(x,y),k)≥n+1. 

4. D(p(x),ϕ(x,y),k)=∞ if D(p(x),ϕ(x,y),k)≥n for all n<ω. 

 

Remark 2.4.3 :  

(i) Let p be a partial type over some parameters A. Then D(p(x,A),ϕ,k)≥n can 

be expressed by a partial type over A. (This type says that there is a 

sequence (bj : 0≤j<n) of tuples such that {p(x,A)∪ϕ(x,bj) : j<n} is 

consistent and ϕ(x,bj) k-divides over dom(p)∪{bi : i<j}, for every j<n.) 

(ii) It is clear by the definition, that D(p(x),ϕ(x,y),k)≤D(q(x),ϕ(x,y),l) if p├q 

and k≤l, since D(p(x),ϕ(x,y),k)≥n implies D(q(x),ϕ(x,y),l)≥n, for all n<ω. 

 

We shall write D(a/A,ϕ,k) for D(tp(a/A),ϕ,k). 

 

Definition 2.4.4 : Let ϕ(x,y) be an L-formula, k<ω, and α an ordinal. A (ϕ,k)-tree of heigth α 

is a sequence (aµ : µ∈ω<α) such that  

(i) for all µ∈ω<α- the set {ϕ(x,aµ∧i) : i<ω} is k-inconsistent (where α- is the least 

ordinal whose successor is ≥α and µ∧i is the concatenation of the sequence µ=(µj : 

j<β) with i, for some β<α-) 

(ii) for every µ∈ωα, {ϕ(x,aµi) : i<α} is consistent (where µi denotes the sequence (µj 

: j<i)). 

We say that ϕ has the k-tree property if there is a (ϕ,k)-tree of heigth ω. Finally, ϕ has the tree 

property if ϕ has the k-tree property for some k<ω.  

Furthermore, we say that the theory T has the tree property if there is a formula which has the 

tree property. 

 

Remark 2.4.5 : 
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It is clear by compactness, that if ϕ has the k-tree property, then for every cardinal κ and 

every cardinal λ there exist parameters (as : s∈λ<κ) such that for any s∈λ<κ the set {ϕ(x,as∧j) : 

j<λ} is k-inconsistent, and for any α∈λκ the set {ϕ(x,aαj) : j<κ} is consistent.  

 

Definition 2.4.6 : Let α be an ordinal, ϕ(x,y) a formula. A dividing chain of length α in 

ϕ(x,y) is a sequence (ai : i<α) such that {ϕ(x,ai) : i<α} is consistent, and for all i<α holds: 

ϕ(x,ai) ki-divides over {aj : j<i}, for some ki<ω. It is a k-dividing chain if ϕ(x,ai) k-divides 

over {aj : j<i} for all i<α. We say that ϕ (k-)divides α times if there is a (k-)dividing chain of 

length α in ϕ. 

If p(x) is some partial type over A, and p∪{ϕ(x,ai) : i<α} is consistent, and ϕ(x,ai) divides 

over A∪{aj : j<i} for all i<α, we say that (ai : i<α) is a dividing chain in ϕ, consistent with p. 

 

Proposition 2.4.7 : The following are equivalent: 

1. There is a (ϕ,k)-tree of heigth n, for all n<ω. 

2. There is a (ϕ,k)-tree of heigth α, for all ordinals α. 

3. ϕ k-divides n times, for all n<ω. 

4. ϕ k-divides α times, for all ordinals α. 

5. For every n<ω, there is some type p with D(p,ϕ,k)≥n. 

6. For every ordinal α, there is some type p with D(p,ϕ,k)≥α. 

 

Proof. 1.⇒2. and 3.⇒4. are true by compactness, 6.⇒5. is trivial. 

2.⇒3.: Let the sequence (aµ : µ∈ω<n) be a (ϕ,k)-tree of height n. First, by compactness, we 

can extend the sequences (aµ∧i : i<ω), for µ∈ω<n-1, as long as we want (for any infinite ordinal 

λ, we obtain a k-inconsistent sequence (aµ∧i : i<λ)). Now, by Proposition 2.2.5, we may 

assume that (aµ∧i : i<ω) is indiscernible over (av : v≤µ), for all µ∈ω<n-1. But that means that 

(aµ : µ∈{0}<n) is a k-dividing chain in ϕ of length n. 

4.⇒6.: Let (ai : i<ω) be a k-dividing chain of length ω. Let c╞∧i<ωϕ(x,ai), and suppose there is 

an ordinal α, such that D(p,ϕ,k)<α for all types p. Since ϕ(x,ai) k-divides over (aj : j<i) for all 

i<ω, we get D(c/(aj : j≤i),ϕ,k)<D(c/(aj : j<i),ϕ,k) for all i<ω. But this yields an infinite 

descending sequence of ordinals, a contradiction. 
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5.⇒1.: We show by induction on n that if D(p(x),ϕ,k)≥n, then there is a (ϕ,k)-tree of height n 

consistent with p. This is clearly true for n=0, as both conditions merely say that p is 

consistent. So suppose that it is true for n, and D(p,ϕ,k)≥n+1, where p is a partial type over A. 

So there is some tuple b such that ϕ(x,b) k-divides over A, and D(p(x)∪{ϕ(x,b)},ϕ,k)≥n. If 

n=0, then the single tuple b is a (ϕ,k)-tree of height 1, consistent with p(x). So suppose that 

n>0. Then there is a tuple c such that ϕ(x,c) k-divides over A∪{b}, and 

D(p(x)∪{ϕ(x,b),ϕ(x,c)},ϕ,k)≥n-1. By induction hypothesis, there is a (ϕ,k)-tree (cµ : µ∈ω<n) 

consistent with p(x)∪{ϕ(x,b),ϕ(x,c)}. By the definition of dividing, there is an A-

indiscernible sequence (ci : i<ω) of type tp(c/Ab) such that {ϕ(x,ci) : i<ω} is k-inconsistent. 

Let (di∧µ : µ∈ω<n) denote the image of (cµ : µ∈ω<n) under an Ab-automorphism mapping c to 

ci. By these ω-many Ab-automorphisms we obtain ω-many (ϕ,k)-trees of height n, consistent 

with p∪{ϕ(x,b)}. When we join these trees by the root d∅:=b we get the desired (ϕ,k) tree of 

height n+1. More exactly: (dµ : µ∈ωn+1) is a (ϕ,k)-tree of height n+1, consistent with p. Q.e.d. 

 

Corollary 2.4.8 : For every type p, formula ϕ(x,y), k<ω, n<ω, the following are equivalent: 

 

1. D(p,ϕ(x,y),k)≥n 

2. There is a (ϕ,k)-tree of heigth n, consistent with p.  

      That is, there is a set of tuples {av : v∈ω<n} such that 

(i) for each v∈ω<n-1, {ϕ(x,av∧i) : i<ω} is k-inconsistent 

(ii) for every u∈ωn, p∪{ϕ(x,aui) : i<n} is consistent. 

      3.   There is a k-dividing chain of length n in ϕ, consistent with p. 

 

Proof: 1.⇒2. follows immediately from the proof of Proposition 2.4.7. 

2.⇒3. Like the proof of Proposition 2.4.7(2.⇒3.). 

3.⇒1. Let (ai : i<n) be a k-dividing chain of length n in ϕ, consistent with p. Let 

c╞∧i<nϕ(x,ai), and suppose D(p,ϕ,k)<n. Since ϕ(x,ai) k-divides over {aj : j<i} for all i<n, we 

get D(p∪{ϕ(x,aj) : j≤i})<D(p∪{ϕ(x,aj) : j<i} for all i<n. This yields an descending sequence 

of length n, a contradiction. 

We would like to give an additional proof for 2.⇒1: 
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We use induction on n. The case n=0 is clearly true. So suppose there is a (ϕ,k)-tree of height 

n+1, consistent with p, witnessed by {av : v∈ω<n+1}. Then first, for each i<ω, {ai∧v : v∈ω<n} is 

a (ϕ,k)-tree of height n, consistent with p∪{ϕ(x,ai)}, witnessing that D(p∧ϕ(x,ai),ϕ,k)≥n, by 

the induction hypothesis. And secondly, {ϕ(x,ai) : i<ω} is k-inconsistent, by the definition of 

a (ϕ,k)-tree. Now, as in the proof of Proposition 2.3.7 (2.⇒3.), we can assume that (ai : i<ω) is 

indiscernible over dom(p). Hence ϕ(x,ai) k-divides over dom(p) and D(p,ϕ,n)≥n+1.   

q.e.d.  

 

Corollary 2.4.9 :  If D(p,ϕ,k)≤n, then there is a finite part p0 of p with D(p0,ϕ,k)≤n. 

D(.,ϕ,k)=n is a local property, that means, if D(p,ϕ,k)=n then there exists a finite p0⊆p with 

D(p0,ϕ,k)=n. 

 

Proof: The second assertion follows from the first. So let us prove the first assertion. Suppose 

that D(p0,ϕ,k)≥n+1 for all finite p0⊆p. Corollary 2.4.8 and compactness imply D(p,ϕ,k)≥n+1, 

a contradiction.  

q.e.d.  

 

Proposition 2.4.10 : Let ϕ(x,y) be a formula. Then the following are equivalent: 

1. ϕ has the tree property. 

2. ϕ divides ω1 times. 

3. ϕ divides α times, for all ordinals α. 

4. D(x=x,ϕ,k)=∞, for some k<ω. 

 

Proof: 1.⇒3. follows from Proposition 2.4.7 together with Remark 2.4.5, 3.⇒2. is obvious. 

So assume that ϕ divides ω1 times, witnessed by (aj : j<ω1). Hence there is a function  

f:{aj : j<ω1} ω,  with f(aj)=k if ϕ(x,aj) k-divides over {ai : i<j}. By set theory, f must be 

constant in ω1-many arguments, that means that ϕ k-divides ω1 times, for some k<ω. Now 

follows 1. by Proposition 2.4.7.  

Since D(x=x,ϕ,k)≥D(p,ϕ,k) for all partial types p, the equivalency of 2. and 4. follows by the 

same consideration proving 2.⇒1. and by Proposition 2.4.7. 
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Q.e.d.  

 

Lemma 2.4.11 : Let q(x) be a partial type over A such that D(q,ϕ,k)≥n, for some n<ω. Then 

there is a completion p∈S(A) of q with D(p,ϕ,k)≥n.  

 

Proof: We use induction on n; the assertion being trivial for n=0. So suppose it holds, and 

D(q,ϕ,k)≥n+1. The property D(.,ϕ,k)≥n+1 is (by Corollary 2.4.9) closed under union of 

chains (that is, if q0⊆q1⊆…⊆qj⊆… is a chain of types with D(qi,ϕ,k)≥n+1, for all i<ω, then 

D(∪i<ωqi,ϕ,k)≥n+1). Whence, by Zorns’s Lemma it is sufficient to show that for any A-

formula ψ(x) either D(q∧ψ,ϕ,k)≥n+1 or D(q∧¬ψ,ϕ,k)≥n+1. 

By definition, there is an A-indiscernible sequence (bi : i<ω) such that D(q∪{ϕ(x,bi)},ϕ,k)≥n, 

for all i<ω, and {ϕ(x,bi) : i<ω} is k-inconsistent. By inductive hypothesis, there is a 

completion p(x,b0) of q(x)∪{ϕ(x,b0)} with D(p,ϕ,k)≥n. Let ai realize p(x,bi) for i<ω. Then 

either infinitely many ai realize ψ, or infinitely many realize ¬ψ, according as ψ is an element 

of infinitely many p(x,bi) or not. In the first case 

                     D(q(x)∪{ψ(x),ϕ(x,bi)},ϕ,k)≥D(p(x,bi),ϕ,k)≥n 

for infinitely many i<ω, whence D(q∪{ψ},ϕ,k)≥n+1. In the second case, similarly 

D(q∪{¬ψ},ϕ,k)≥n+1.  

q.e.d. 

 

Remark 2.4.12 :  

(i) Propostion 2.4.11 remains true substituting “≥n” by “=n”, since D(.,ϕ,k)=n+1 is a 

local property (again by Corollary 2.4.9) and we can use the same proof with 

Zorn’s Lemma. 

(ii) The proof of Proposition 2.4.11does not work for n≥ω. 

 

Proposition 2.4.13 : If dividing or forking is symmetric, then D(p,ϕ,k)<ω for all partial types 

p(x), all formulas ϕ(x,y), and all k<ω.  

Hence, if T is a simple theory, then D(p,ϕ,k) is finite for all p, ϕ,  k. 
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Proof: Suppose D(x=x,ϕ,k)≥n for all n<ω. By Proposition 2.4.7, ϕ k-divides λ times for any 

ordinal λ. That is, there is a k-dividing chain (ai : i<λ) in ϕ and a tuple b such that ╞ϕ(b,ai) for 

all i<λ. Thus, by Proposition 2.2.5 or Ramsey’s Theorem and compactness we can find a b-

indiscernible sequence (ci : i≤ω) with the same properties ( (ci : i≤ω) is a k-dividing chain in ϕ 

of length ω+1, and ╞ϕ(b,ci) for all i≤ω). In particular, tp(b/cω, ci : i<ω) divides (forks) over (ci 

: i<ω), since ϕ(x,cω)∈tp(b/cω, ci : i<ω). But tp(cω/b,ci : i<ω) is finitely satisfiable in (ci : i<ω) 

by b-indiscernibility of (ci : i≤ω), and therefore does not fork (thus, does not divide) over {ci : 

i<ω} (Lemma 2.3.5). Hence neither dividing nor forking is symmetric. 

q.e.d. 

 

Proposition 2.4.14 : Let T be simple, A⊆B, and p∈S(B). Then the following are equivalent: 

1. p does not fork over A. 

2. p does not divide over A. 

3. D(p,ϕ,k)=D(pA,ϕ,k) for all formulas ϕ and all k<ω. 

 

Proof:  1.⇒2. is trivial. 

3.⇒1.: Suppose p forks over A. Then there are n<ω and formulas ϕi(x,bi) which ki-divide 

over A for i<n, with p├∨i<nϕi(x,bi). Let ψ(x,y0,…,yn-1,z) be the formula ∨i<n[ϕi(x,yi)∧z=yi], 

and k=max{ki : i<n}. Clearly, we may replace ki by k, and every ϕi(x,bi) by ψ(x,ci), where 

ci=b0…bn-1bi , for every i<n. 

Choose a completion q of p over B∪{ci : i<n}, with D(q,ψ,k)=D(p,ψ,k), (by Remark 

2.4.12(i)). Then there is i0<n such that q├ψ(x,ci0), whence  

                             D(p∪{ψ(x,ci0)},ψ,k)=D(p,ψ,k) 

                                                               =D(pA,ψ,k) (assuming 3.). 

Hence D(pA∪{ψ(x,ci0)},ψ,k)=D(pA,ψ,k) (this follows by Remark 2.4.3(ii)). 

As ψ(x,ci0) k-divides over A, we get D(pA,ψ,k)≥D(pA,ψ,k)+1, a contradiction. 

2.⇒3. Suppose p does not divide over A. We shall show inductively on n that D(pA,ϕ,k)≥n 

implies D(p,ϕ,k)≥n. From this follows D(pA,ϕ,k)=D(p,ϕ,k). 

This is clearly true for n=0 by consistency of p, so assume it holds for n, and 

D(pA,ϕ,k)≥n+1. Let (bi : i<ω) be an A-indiscernible sequence such that 
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D(pA∪{ϕ(x,bi)},ϕ,k)≥n for all i<ω, and {ϕ(x,bi) : i<ω} is k-inconsistent. By Lemma 2.4.11 

there is a completion q∈S(Ab0) of pA∪{ϕ(x,b0)} with D(q,ϕ,k)≥n. If c╞q and d╞p, then 

there is an A-automorphism f with f(c)=d. This f moves q to some q’∈S(Af(b0)) such that 

D(q’,ϕ,k)=D(q,ϕ,k) (rank is invarinat under automotphisms) and q’∪p is consistent (namely 

realized by d). So we can assume without lost of generality that there is a realization a of q∪p. 

By 3.⇒1. trivially tp(b0/Aa) does not fork over Aa, and has a non-forking extension to Ba by 

Lemma 2.3.3. Conjugating over Aa, we may assume that tp(b0/Ba) does not fork over Aa, 

whence b0┴AaB. As a┴AB by assumption, Lemma 2.3.7 yields b0a┴AB, whence a┴Ab0B by 

symmetry and Lemma 2.3.2.8. By inductive hypothesis, 

                                                       D(a/Ab0,ϕ,k)=D(q,ϕ,k)≥n 

implies D(a/Bb0,ϕ,k)≥n. Finally, since B┴Ab0 by symmetry, there is a B-indiscernible Ab0-

conjugate (bi’ : i<ω) of (bi : i<ω) by Proposition 2.3.6, witnessing 

D(a/B,ϕ,k)≥D(a/Bb0,ϕ,k)+1≥n+1. 

q.e.d. 

 

Remark 2.4.15 : Note that the implication 3.⇒1. needs simplicity only in the form 

D(p,ϕ,k)<ω for all formulas ϕ and all k<ω. Furthermore, it also works for a partial type r 

instead of p. 

 

Definition 2.4.16 : A formula ϕ(x,y) has the strict order property if it defines a partial order 

with arbitrarily long chains. 

A theory T has the strict order property if some formula has it in some model of T. 

 

Lemma 2.4.17 : A simple theory does not have the strict order property. 

 

Proof: Suppose ϕ(x,y) is a formula with the strict order property. By compactness and 

Ramsey’s Theorem, there is a model of T where ϕ orders an indiscernible chain (ai : i∈Q), 

where Q denotes the set of the rational numbers.  

Let ψ(x,yy’) be the formula ϕ(y,x)∧ϕ(x,y’). Let i,j∈Q, i<j, and k0=j, kn+1=(i+kn)/2. Clearly, 

the set {ψ(x,aiakn) :  n<ω} is consistent, but ψ(x,aiaj)∧ψ(x,asat) is inconsistent for i<j≤s<t. So 
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it is easy to see that there exists an infinite dividing chain in ψ, hence  

D(x=x,ψ(x,yy’),2)=D(x=x,ϕ(y,x)∧ϕ(x,y’),2) is infinite, and T is not simple by Proposition 

2.4.13. 

q.e.d. 

 

We shall now collect the properties of non-forking (independence) in a simple theory. 

 

Theorem 2.4.18 : Properties of Independence  

Suppose T is simple, and A⊆B⊆C. Then the following hold: 

1. Existence  If p∈S(A), then p does not fork over A. 

2. Extension  Every partial type over B which does not fork over A has a 

completion over B which does not fork over A. 

3. Reflexivity  B┴AB if and only if B⊆acl(A). 

4. Monotonicity  If p and q are types with p├q and p does not fork over A, then 

q does not fork over A. 

5. Finite Character  D┴AB if and only if d┴AB for every finite tuple d∈D. 

6. Symmetry  D┴AB if and only if B┴AD. 

7. Transitivity  D┴AC if and only if D┴AB and D┴BC. 

8. Local Character  For any p∈S(A) there is A0⊆A with card(A0)≤card(T), such 

that p does not fork over A0. 

 

Proof:  

7.: Left to right is Lemma 2.3.2. For the other direction let d∈D and suppose d┴AB and d┴BC. 

Then D(d/C,ϕ,k)=D(d/B,ϕ,k)=D(d/A,ϕ,k) for all formulas ϕ and all k<ω, by Proposition 

2.4.14. Therefore d┴AC for all d∈D, again by Proposition 2.4.14, whence D┴AC. 

8.: Consider p∈S(A). For every formula ϕ and every k<ω there is a finite aϕ,k∈A with 

D(p,ϕ,k)=D(paϕ,k,ϕ,k) by Corollary 2.4.9. If A0 is the union of all these aϕ,k for all formulas 

ϕ and all k<ω, then D(p,ϕ,k)=D(pA0,ϕ,k). for all ϕ, and all k<ω. So p does not fork over A0 

by Proposition 2.4.14, and clearly, card(A0)≤card(T). 
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The others assertions are obvious by the equivalence of dividing and forking and by Lemma 

2.3.2 and Lemma 2.3.3. 

q.e.d.   

 

Note that there are examples of theories in which dividing and forking is the same, but 

independence is not symmetric. Hence, simplicity is not implied by the equivalence of 

dividing and forking. 

 

The following is often useful: 

 

Proposition 2.4.19 : Let T be simple.   

(i) Let B⊆C and A┴BC. Then for any set D with C⊆D there is A’ such that 

tp(A’/C)=tp(A/C) and A’┴CD. 

(ii) Let A, B, C be sets with B⊆C. There is A’ such that tp(A’/B)=tp(A/B) and A’┴BC. 

(iii) A┴DB and A┴DC if and only if A┴DBC. 

  

Proof:  (i) follows from Theorem 2.4.18.2, and (ii) follows from Theorem 2.4.18.1. and (i). 

Right to left of (iii) is clear. The other direction: From A┴DC follows trivially A┴DBC. Since 

A┴DB we can use transitivity of forking (Theorem 2.4.18.7) with D⊆DB⊆DBC to obtain 

A┴DC. 

q.e.d. 

 

Lemma 2.4.20 : If T is simple, then for every complete type p(x)∈S(A) and every partial type 

Φ(x,y) there is a partial type q(y) such that for any tuple a there is a non-forking extension of 

p to Aa containing Φ(x,a) if and only if ╞q(a). 

 

Proof : If D(p,ϕ,k)=n(ϕ,k), then q(y) is the partial type expressing D(p(x)∪Φ(x,y),ϕ,k)≥n(ϕ,k) 

for all formulas ϕ and all k<ω. (see Remark 2.4.3) 

q.e.d. 
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Definition 2.4.21 : A type p∈S(A) is stationary if it has only one non-forking extension to 

any superset of A. 

 

Corollary 2.4.22 : If q∈S(A) ia a stationary type in a simple theory, then for every formula 

ϕ(x,y) there is a formula ψ(y) over A, such that ╞ψ(b) if and only if ϕ(x,b) is in the (unique) 

non-forking extension of q to Ab. 

 

Proof : By Lemma 2.4.20 there are partial types p and p’ such that ╞p(b) if and only if ϕ(x,b) 

is in the non-forking extension of q to Ab, and ╞p’(b) if and only if ¬ϕ(x,b) is in the non-

forking extension of q to Ab. Since q is stationary, exactly one of the two cases must hold. 

Hence we get ╞p(y)∧p’(y) is inconsistent, and for all tuples b: ╞p(b) or ╞p’(b). Compactness 

implies that we can replace p and p’ by finite subtypes, i.e. formulas χ and χ’. Then 

ψ(y)=χ(y)∧¬χ’(y), or equivalently ψ(y)=χ(y).  

q.e.d.   

 

Definition 2.4.23 : Let ϕ(x,y) be a formula. A type p(x)∈S(A) is ϕ-definable over B if there is 

a formula dpϕ(y) over B such that for any a∈A we have ╞dpϕ(a) if and only if ϕ(x,a)∈p. We 

call dpϕ a ϕ-definition for p over B; it is also denoted as dpxϕ(x,y). Finally, p is definable if it 

is ϕ-definable over A for all formulas ϕ; a defining scheme for p is the collection of its ϕ-

definitons, for all formulas ϕ. 

 

Remark 2.4.24 : A stationary type in a simple theory has a unique canonical defining scheme 

(up to equivalence), namely the defining scheme for all its non forking extensions given by 

Corollary 2.4.22. 

 

Theorem 2.4.25 : Let M be a model of a simple theory, A⊆M and p∈S(M).  

If p is definable over A, then p does not fork over A. 

If pA is stationary and p does not fork over A, then p is definable over A. 
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Proof : Suppose for every formula  there is a ϕ-definition dpϕ over A. For a formula ϕ(x,b)∈p  

let (bi : i<n) be a sequence of type tp(b/A) in M. Then M╞dpϕ(bi) for all i<n, so ∪i<nϕ(x,bi) is 

a subset of p and thus consistent. It follows that ϕ(x,b) does not fork over A, and neither does 

p. q.e.d. 

 

2.5  Morley Sequences 
 

B. Kim used in his thesis [Kim1] an important technical tool to prove the equivalence of 

dividing and forking, namely Morley sequences. The original definition by Shelah [Sh2] (and 

in Kim’s thesis too) of a simple theory was in terms of finiteness of the local D(.,ϕ,k)-ranks. 

In this section, we shall prove that symmetry of independence, and hence simplicity, is 

equivalent to a number of conditions. To this end we need the notion of a Morley sequence. 

 

2.5.1 Definition : A sequence (ai : i∈I) is independent over A, or A-independent, if  

                                                              ai┴A(aj : j<i) for all i∈I. 

 

Remark : Suppose T is simple.Let I be an ordered index set and (ai : i∈I) an A-independent 

sequence. Then ai┴A(aj : j≠i) for any i∈I. 

 

Proof : Suppose that ai┬A(aj : j≠i). By symmetry (aj : j≠i)┬Aai, so by Finite Character there is a 

minimal finite set J⊆I-{i} such that (aj : j∈J)┬Aai. If j<i for all i∈J, symmetry yields a 

contradiction to our assumption; otherwise let k be the maximal element of J. So (aj : j∈J, 

j≠k)┴Aai, by minimality of J; as ak┴Aai and thus trivially ak┴A(aj : j∈J, j≠k)ai, symmetry and 

transitivity yield ai┴A(aj : j∈J), a contradiction. 

q.e.d.     

 

2.5.2 Definition : Let A⊆B and p∈S(B). A Morley sequence in p over A is a B-indiscernible 

sequence (ai : i<ω) of realizations of p, such that tp(ai/Ba0…ai-1) does not fork over A, for all 

i<ω. 

If A=B, a Morley sequence in p over A is simply called a Morley sequence in p. 
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Thus, a Morley sequence in p∈S(A) is an A-indiscernible, A-independent sequence of 

realizations of p. We may occasionally index Morley sequences by infinite ordered sets other 

than ω. 

 

Lemma 2.5.3 : If p∈S(B) does not fork over A⊆B, then there is a Morley sequence in p over 

A. (T is not necessarily simple.) 

 

Proof : Suppose for some ordinal α we have found a sequence (ai : i<α) of realisations of p, 

such that ai┴AB(aj : j<i) for all i<α and tp(ai/B,aj : j<i)=tp(ak/B,aj : j<i) whenever i≤k<α. 

(Since p does not fork over A, the existence of a sequence of length α=1 with this property is 

guaranteed by choosing some realisation of p.) By Lemma 2.3.3 there is some 

aα╞∪i<αtp(ai/B,aj : j<i) such that tp(aα/B,ai : i<α) does not fork over A. So we can find such a 

sequence of arbitrary length α. Let κ=card(A)+card(T),  µ=(2κ)+, and let α=ℑµ. By 

Proposition 2.2.5 we can find a sequence (bi : i<ω) of realisations of p, indiscernible over B 

and A-independent, hence a Morley sequence in p over A. 

Q.e.d. 

 

Corollary 2.5.4 : Every complete type in a simple theory has a Morley sequence (of arbitrary 

length). 

 

Proof : Since tp(a/A) does not fork over A, in every simple theory, the assertion follows from 

Lemma 2.5.3 with A=B. 

q.e.d. 

 

The following assertion yields Morley sequences in any theory. 

 

Definitition 2.5.5 : Let M be a model, M⊆A⊆B, and p∈S(B) a coheir of pM. Suppose (ai : 

i<ω) is a sequence of tuples of B such that ai╞pA∪(aj : j<i). Then (ai : i<ω) is called a coheir 

sequence in p over (M,A). If A=M, it is omitted. 
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Lemma 2.5.6 : Let M, A, B be as in Definition 2.5.5, and suppose I=(ai : i<ω) is a coheir 

sequence in p over (M,A). Then I is a Morley sequence in pA over M. 

 

Proof : As tp(ai/Aaj : j<i) is finitely satisfiable in M, for all i<ω, it does not fork over M, 

hence I is M-independent. 

For indiscernibility, we show by induction on n<ω that tp(a0…an/A)=tp(ai0…ain/A) for all 

i0<…<in. This is trivial for n=0. Suppose it holds for n-1. Then tp((aj : j<n)/A)=tp((aij : 

j<n)/A), whence tp(A,a0…an-1ain/M)=tp(A,ai0…ain-1ain/M) by Lemma 2.3.5. Therefore 

tp(a0…an-1an/A)=tp(ai0…ain-1ain/A). As ain realises tp(ai/Aaj : j<i) for all in≥i, considering the 

corresponding (Aaj : j<i)-automorphisms we obtain tp(a0…an-1an/A)=tp(a0…an-1ain/A), and the 

assertion follows. 

q.e.d. 

 

Theorem 2.5.7 : The following conditions are equivalent: 

1. D(x=x,ϕ,k)=∞, for some k<ω. 

2. There is an indiscernible sequence (ciai : i<ω) such that for every i<ω holds: ╞ϕ(ci,a0), 

and ϕ(x,ai) k-divides over {cjaj : j<i}, for some k<ω. 

3. There is a tuple c and a c-indiscernible sequence (ai : i<ω) such that ╞ϕ(c,a0), and for 

every i<ω holds: ϕ(x,ai) k-divides over {aj : j<i}, for some k<ω. 

4. There is a sequence (ai : i≤ω) of tp(a0) such that ╞ϕ(x,aω) divides over {ai : i<ω), and 

{ϕ(x,ai) : i≤ω} is consistent. 

 

Proof : 1.⇒2.: By Corollary 2.4.8 and compactness, 1. implies the existence of a k-dividing 

chain (bi : i<ω) in ϕ of length ω. Now we construct inductively the sequence (ciai : i<ω) such 

that ϕ(x,ai)  k-divides over {cjaj : j<i}, and ╞ϕ(ci,a0)∧…∧ϕ(ci,ai). Then, by compactness, we 

can find such a sequence of arbitrary length λ. Using Proposition 2.2.5, we then may assume 

that the original sequence is indiscernible. 

We start the construction by choosing a0=b0 and c0 such that ╞ϕ(c0,a0). ϕ(x,b1) k-divides over 

a0=b0, witnessed by some a0-indiscernible sequence I1 . By the remark after Proposition 2.2.5, 
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there is an a0c0-indiscernible sequence I1’, a0 conjugated to I1 (written I1’≡a0I1). Hence I1’ 

witnesses that ϕ(x,b1’) k-divides over a0c0, where b1’ is chosen such that  

                                                         (bi’ : i<ω)I1’≡a0 (bi : i<ω)I1,  

(i.e., b1’ is the image of b1 under the a0-automorphism mapping I1 to I1’). Choose a1=b1’ and 

c1 such that c1╞ϕ(x,a0)∧ϕ(x,a1). Now it is clear how to continue the construction: Since 

ϕ(x,b2’) k-divides over (a0,a1), witnessed by some sequence I2, again by Proposition 2.2.5, 

there is a sequence I2’ witnessing that ϕ(x,b2’’) k-divides over (a0c0a1c1), where (bi’’ : i<ω) is 

the image of (bi’ : i<ω) under the a0a1-automorphism mapping I2 to I2’.  

Then choose a2=b2’’ and c2 such that c2╞ϕ(x,a0)∧ϕ(x,a1)∧ϕ(x,a2). 

Repeating the argument ω times, we obtain the desired sequence. 

2.⇒3.: We can apply compactness to produce a sequence as in 2. of arbitrary length, in 

particular of length ω+1. Under this assumption put c=cω. Then (ai : i<ω) is c-indiscernible, 

╞ϕ(c,a0), and ϕ(x,ai) k-divides over (aj : j<i) for all i<ω. 

3.⇒4.: By compactness, there is such a sequence as in 3. of length ω+1. 

4.⇒1. Suppose ϕ(x,aω) k-divides over {ai : i<ω} for some k. Then ϕ(x,aω) k-divides over {aj : 

j<i} for all i<ω. Since tp(aω)=tp(ai), ϕ(x,ai) k-divides over {aj : j<i} for all i<ω. Then 

compactness yields a k-dividing chain in ϕ of arbitrary length. Hence D(x=x,ϕ,k)=∞, by 

Proposition 2.4.10.  

q.e.d. 

 

Remark 2.5.8 : By compactness it is clear that we can substitute in the assertions 2. and 3. of 

the previous Theorem ω by any infinite linear ordered index set. 

 

Lemma 2.5.9 : Let I=(ai : i<ω) be a Morley sequence over A, and let (a0
j,…,an

j : j<ω) be an 

A-indiscernible sequence in tp(a0,…,an/A). Then there is an A-automorphic image J of I such 

that: 

1. (a0
j,…,an

j)∧J is indiscernible over A, for all j<ω 

2. (a0
j,…,an

j : j<ω) is indiscernible over AJ. 

 

Proof : We shall inductively find bi for i<ω such that 
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(i) tp(a0
j,…,an

j,b0,…,bm-1)=tp(a0,…,an,an+1,…,an+m), and 

(ii) (a0
j,…,an

j : j<ω) is indiscernible over A∪{bi : i<m}. 

So assume we have already found those bi for i<m. Put  

                                        p(x,ai : i≤n+m)=tp(an+m+1/A,ai : i≤n+m). 

This type does not divide over A. Since (a0
j,…,an

j,b0,…,bm-1 : j<ω) is an A-indiscernible 

sequence (by (ii)) in tp(ai : i≤n+m/A) (by (i)), Proposition 2.3.6 implies that there is some bm 

realizing  

                                        ∪j<ωp(x,a0
j,…,an

j,b0,…,bm-1), 

such that the sequence remains indiscernible over Abm. Then bm will have the necessary 

properties. 

It is clear that the sequence J=(bi : i<ω) is the required A-conjugate of I. 

q.e.d. 

 

Theorem 2.5.10 : The following is equivalent: 

1. T is simple. 

2. Forking (dividing) satisfies symmetry. 

3. Forking (dividing) satisfies transitivity.   

4. Forking (dividing) satisfies local character. 

5. D(p,ϕ,k)<ω for all types p, all formulas ϕ, and all k<ω. 

6. A formula ϕ(x,a) does not fork (divide) over A if and only if for some Morley 

sequence I in tp(a/A) the set {ϕ(x,a’) : a’∈I} is consistent. 

7. A formula ϕ(x,a) does not fork (divide) over A if and only if for any Morley sequence 

I in tp(a/A) the set {ϕ(x,a’) : a’∈I} is consistent. 

 

Proof : 1. implies 2., 3. and 4. by Theorem 2.4.18. The implication 2.⇒5. is Proposition  

2.4.13. 

3.⇒5.: Consider the set ω+2+ω*, where ω*={-1,-2, …}. This set is of order type  

                                                          0<1<…<ω<ω+1<…<-2<-1. 

If D(p,ϕ,k)≥ω, that is =∞, then by Lemma 2.5.7 and Remark 2.5.8 there is an indiscernible 

sequence (ciai  : i<ω+2+ω*), such that for every i, ∼ϕ(ci,a0) and ϕ(x,ai) divides over {cjaj : 
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j<i}. Let I={ci : i<ω} and let J={ci : i∈ω*}. By indiscernibility, ∼ϕ(cω+1,aω), hence 

tp(cω+1/IJaω} divides over I. But (by indiscernibility) tp(cω+1/IJ) is finitely satisfiable in I, 

hence does not fork over I, and tp(cω+1/IJaω) is finitely satisfiable in J, hence does not fork 

over J (see Lemma 2.3.5). Thus, transitivity of dividing and of forking fails. 

4.⇒5.: If D(p,ϕ.k)≥ω, then by Lemma 2.5.7 there is a tuple c and a c-indiscernible sequence 

(ai : i<card(T)+) such that ∼ϕ(c,a0), and ϕ(x,ai) k-divides over {aj : j<i} for all i<card(T)+. If 

A={ai : i<card(T)+} and A0⊆A with card(A0)≤card(T), then there is i<card(T)+ such that 

A0⊆{aj : j<i}. However, ϕ(x,ai)∈tp(c/A) witnesses that this type divides, and hence forks, 

over A0. 

6.⇒5.: Again let ω* be the set {-1,-2,…}. If D(p,ϕ,k)≥ω, then by Lemma 2.5.7 there is a 

tuple c and a c-indiscernible sequence (ai : i<ω+ω*) such that ∼ϕ(c,a0), and ϕ(x,ai) k-divides 

over {aj : j<i} for all i∈ω+ω*. Put A={ai : i<ω}. As tp(ai/A(aj : j<i), for every i∈ω*, is finitely 

satisfiable in A (by indiscernibility) and thus does not fork over A (Lemma 2.3.5), the 

sequence (ai : i∈ω*) is a Morley sequence in tp(a-1/A). However, ϕ(x,a-1) divides (and hence 

forks) over A, while ∧i∈ω*ϕ(x,ai) is consistent. 

5.⇒6.: Assume D(p,ϕ,k)<ω for all types p, all formulas ϕ, and all k<ω, and suppose ϕ(x,a) 

divides over A. Let I be a Morley sequence in tp(a/A). As ϕ(x,a) divides over A, there is an 

A-indiscernible sequence (ai : i<ω) such that ∧i<ωϕ(x,ai) is k-inconsistent for some k<ω. By 

Lemma 2.5.9 we may assume that aj∧I is A-conjugate to I (and A-indiscernible), for all j<ω, 

and (aj : j<ω) is indiscernible over AI. 

Put p(x)=∧a’∈Iϕ(x,a’), and suppose p is consistent. Then the sequence (ai : i<ω) witnesses that 

D(p(x)∪{ϕ(x,a0)},ϕ,k)<D(p,ϕ,k). But these two partial types are A-conjugated and must have 

the same D(.,ϕ,k)-rank, a contradiction. Therefore p is not consistent. 

For the converse, note that since D(a/A,ϕ,k)<ω for all formulas ϕ and all k<ω, Remark 2.4.15 

implies that tp(a/A) does not fork over A. By Lemma 2.5.3 there is a Morley sequence I in 

tp(a/A). By definition, if ϕ(x,a) does not divide over A, then {ϕ(x,a’) : a’∈I} is consistent. 

Next, to prove the direction from right to left of 6. also in the case of forking, we show that 

forking is the same as dividing. So let ϕ(x,a) be a formula which forks over A. So there are 

n<ω and ψi(x,bi) for i<n such that ϕ(x,a)├∨i<nψi(x,bi), and each ψi(x,bi) divides over A. 
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Adding dummy variables, we may assume a=b0=…=bn-1. So we obtain ϕ(x,a)├∨i<nψi(x,a). Let 

(aj : j<ω) be a Morley sequence in tp(a/A). If ϕ(x,a) does not divide over A, then ∧j<ωϕ(x,aj) is 

consistent, say it is realized by b. Hence, ϕ(x,aj)├∨i<nψi(x,aj), for all j<ω. But then there is 

i0<n and an infinite subset I⊆ω such that b realizes ψi0(x,aj), for all i∈I. As (ai : i∈I) is also a 

Morley sequence in tp(a/A), the formula ψi0(x,a) cannot divide over A, a contradiction. Thus, 

ϕ(x,a) divides over A, and hence, forking implies dividing.  

5.⇒7. and 7.⇒5. is proved as the equivalence of 5. and 6. 

5.⇒1.: By the last part, forking is the same as dividing, and 6. holds. 

We show that our notion of independence ┴ satisfies symmetry. So suppose tp(a/Ab) does not 

fork over A, (a┴Ab) . By Lemma 2.5.3 there is a Morley sequence (ai : i<ω) in tp(a/Ab) over 

A. By partial transitivity, Lemma 2.3.2, this is also a Morley sequence in tp(a/A). But if 

ϕ(x,a,A)∈tp(b/Aa), then by Ab-indiscernibility of the Morley sequence ╞ϕ(b,ai,A) for all 

i<ω. Therefore ϕ(x,a,A) does not fork over A, by 6. Thus, tp(b/Aa) does not fork over A, 

(b┴Aa), and symmetry of independence is satisfied. Hence, T is simple. 

q.e.d. 

 

Now we can give a further characterization: 

 

Proposition 2.5.11 : The following conditions are equivalent: 

1. T is simple. 

2. There are no tuple b and a sequence (ai : i<card(T)+) such that tp(b/aj : j≤i) divides 

over (aj : j<i), for all i<ω1. 

3. No formula in T has the tree property.  

4. No formula in T divides ω1 times. 

 

Proof :   

1.⇒2. follows from local character of forking. 

2.⇒3.: Suppose ϕ(x,y) has the tree property. Then, by Proposition 2.4.10, ϕ divides ω1 times. 

Hence, there are a tuple b and types containing ϕ as in 2. 
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3.⇒1.: If T is not simple, then D(x=x,ϕ,k)≥ω, for some ϕ, k (by Theorem 2.5.10). Then 

Proposition 2.4.7 says that ϕ(x,y) has the tree property. 

The equivalence of 3. and 4. is Proposition 2.4.10. 

q.e.d.  

 

Definition 2.5.12 : A simple theory is called supersimple if no type divides over all finite 

subsets of its domain. 

(That is, if p is a type over the set A, then there is a finite subset A0⊆A such that p does not 

divide over A0.) 

 

Proposition 2.5.13 : The following is equivalent: 

1. T is supersimple. 

2. There are no b and a sequence (ai : i<ω) such that tp(b/aj : j≤i) divides over (aj : j<i) for 

all i<ω. 

 

Proof :  

1.⇒2.: Suppose ¬2. Then tp(b/(ai : i<ω)) divides over any finite subset of its domain, hence 

we get ¬1. 

2.⇒1.: Suppose that T is not supersimple, and p is a type over A which divides over any finite 

subset of A. Then A must be infinite. Let b be some realization of p. Choose some a0∈A. 

Then tp(b/A) divides over ∅. But there is some finite a0∈A such that tp(b/a0) divides over ∅. 

Now we find some a1∈A, such that tp(b/a0a1) divides over a0, and so on. So we can proceed ω 

times to produce a sequence (ai : i<ω) of elements of A which satisfies the negation of 2. 

q.e.d. 

 

Remark 2.5.14 : If a formula ϕ(x,y) divides ω times, then there are b and a sequence (ai : 

i<ω) such that ╞ϕ(b,ai), for all i<ω, and ϕ(x,ai) divides over (aj : j<i). Hence, the type {ϕ(x,ai) 

: i<ω} divides over any finite subset of its domain, and T can not be supersimple. Therefore, 

if T is supersimple, then no formula divides ω times. 
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2.6 The Independence Theorem (Amalgamation of types)  

 
In this section T will be a simple theory. 

 

Lemma 2.6.1 : Let (ai : i<ω+ω) be an A-indiscernible sequence, and put I=(ai : i<ω) and 

I’=(aω+i : i<ω). Then I’ is a Morley sequence in tp(aω/AI) 

 

Proof: I’ is clearly an AI-indiscernible sequence of realizations of tp(aω/AI). We have to 

check that it is independent. tp(aω+i/AIaω+j : j>i) does not fork over AI for all i<ω, since it is 

finitely satisfiable in I (see Lemma 2.3.5). Then for every i<ω holds: 

                                  (*)                                     aω+I┴AIaω+j, for all j>i. 

Now let j<ω. Then by (*) and symmetry:  aω+j┴AIaω, aω+j┴AIaω+1, … , aω+j┴AIaω+j-1. By a 

generalization of Proposition 2.4.19.3, we get  aω+j┴AI(aω+i : i<j). Since j was arbitrary, this 

holds for all j<ω, and I’ is independent over AI. 

q.e.d. 

 

Proposition 2.6.2 : Let p(x,a) be a partial type over Aa which does not fork over A. If (ai : 

i<ω) is a Morley sequence over A in tp(a/A), then q=∪i<ωp(x,ai) is consistent and does not 

fork over A. 

 

Proof : q is consistent by Proposition 2.3.6. Since T is simple, forking is the same as dividing. 

Suppose bΓq, and ϕ(x,ai : i<n)∈q(x) (where we have supressed possible parameters from A). 

Put bj=(ajn+i : i<n), then (bj : j<ω) is also an infinite A-indiscernible, A-independent sequence, 

and ∧j<ωϕ(x,bj) is realized by b, whence consistent. Hence ϕ(x,b0)=ϕ(x,ai : i<n) does not fork 

over A, by Theorem 2.5.10.6. If q was fork over A there would be a formula ψ which is 

implied by q and forks over A. Then ψ would be implied by some ϕ∈q which must fork over 

A too, a contradiction. 
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q.e.d. 

 

Theorem 2.6.3 : Let p(x,a) be a partial type over Aa which does not fork over A. If (ai : <ω) 

is indiscernible over A with tp(a0/A)=tp(a/A), then q=∪i<ωp(x,ai) is consistent and does not 

fork over A. 

 

Proof : Let I be a sequence of order type ω such that I∧(ai : i<ω) is indiscernible over A, and 

let r(x,a0) be a completion of p(x,a0) to AIa0 which does not fork over A. Then (ai : i<ω) is a 

Morley sequence in tp(a0/AI) by Lemma 2.6.1; since r(x,a0) does not fork over AI, the set 

∪i<ωr(x,ai) is consistent and does not fork over AI, by Proposition 2.6.2. Its restriction to AI is 

equal to r(x,a0)AI which does not fork over A. By transitivity, ∪i<ωr(x,ai) does not fork over 

A. Hence, ∪i<ωp(x,ai)⊆∪i<ωr(x,ai) does not fork over A.  

q.e.d. 

 

Definition 2.6.4 : A relation R(x,y) (which need not be definable) is A-invariant if it is 

invariant under all automorphisms fixing A pointwise. That is, for every f∈Aut(C/A) and 

every tuple a 

                                                              a∈R if and only if  f(a)∈R. 

If A=∅, we say that R is invariant. 

(Note that R is invariant in the theory T if and only if R is invariant in the theory T(A).)  

An A-invariant relation is stable if there is no A-indiscernible sequence (aibi : i<ω) such that 

R(ai,bj) holds if and only if i≤j. 

 

Remark 2.6.5 : Instead of the condition i≤j we could equally well have put i<j, i>j, or i≥j. 

 

Lemma 2.6.6 : Let p(x,y) and q(x,z) be partial types. Then the relation “p(x,a)∧q(x,b) does 

not fork over A” is a stable relation. 

 

Proof : Let (aibi : i<ω) be an A-indiscernible sequence such that p(x,ai)∧q(x,bj) forks over A if 

and only if i>j. In particular p(x,a0)∧q(y,b0) does not fork over A. But then by Theorem 2.6.3 
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the whole set ∪i<ωp(x,ai)∧q(x,bi) does not fork over A, and neither does p(x,ai)∧q(x,bj), for 

any i,j<ω, by indiscernibilty. 

 

Lemma 2.6.7 : Let R be an A-invariant relation. Suppose there is an A-indiscernible sequence 

(bi : i∈I), some i0∈I and some a, such that 

1. tp(abi/A) is constant for all i≤i0, and it is constant for all i>i0 

2. R(a,bi) holds if and only if i≤i0 

3. both {i∈I : i≤i0} and {i∈I : i>i0} are infinite. 

Then R is unstable. 

 

Proof : By compactness, we may assume that I is the set Z of integers and i0=0. By 

indiscernibility, we find ai for i∈I such that  

                                      (*)                tp((ai,bj-i : j∈I)/A)=tp((a,bj : j∈I)/A).  

By Ramsey’s Theorem we find an infinite subset J⊆I such that (ajbj : j∈J) is A-indiscernible. 

By A-indiscernibility of (bi : i∈I) there is an A-automorphism mapping (ajbj : j∈J) onto (ai’bi : 

i∈I), for some (ai’ : i∈I), and (ai’bi : i∈I) is A-indiscernible and satisfies (*). Hence, we may 

assume that the sequence (aibi : i∈I) is indiscernible over A. 

But then R(ai,bj) holds if and only if R(a0,bk) holds (for some k, with i<j if and only if 0<k, by 

indiscernibility), if and only if R(a,bk) holds (by (*)), if and only if  k≤0 (by 2.), if and only if 

j≤i. Thus, R(ai,bj) holds if and only if j≤i, and R is unstable. 

q.e.d. 

 

Theorem 2.6.8 : Suppose M is a model of T and R is an M-invariant stable relation such that 

R(a,b) holds for some a┴Mb. Then R(a’,b’) holds for all a’╞tp(a/M) and b’╞tp(b/M) with 

a’┴Mb’. 

 

Proof : Suppose R(a’,b’) fails for some a’╞tp(a/M) and b’╞tp(b/M) with a’┴Mb’. By M-

invariancy of R we may assume that a’=a. Let N be an card(M)+-saturated and –homogeneous 

elementary extension of M, and let p be a coheir of tp(b/M) to N. Le (bi : i<ω) and (bi’ : i<ω) 

be coheir sequences in p over M, with b=b0 and b’=b0’. By Lemma 2.5.6 both sequences are 
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M-independent and M-indiscernible. Since a┴Mb’, by Lemma 2.3.6 we may assume that both 

sequences are indiscernible over M∪{a}. From this follows that R(a,bi) holds for all i<ω, and 

R(a,bi’) fails for all i<ω. 

Now let (ci : i<ω) be a coheir sequence in p over M∪{bibi’ : i<ω}. Then (bi : i<ω)∧(ci : i<ω) 

and (bi’ : i<ω)∧(ci : i<ω) are coheir sequences in p over M, and thus M-independent and M-

indiscernible.  

Every infinite increasing subsequence of (ci : i<ω) is also a coheir sequence in p over 

M∪{bibi’ : i<ω}. Consider the set X of formulas expressing that (xi : i<ω) is indiscernible 

over M∪{a} and (xi : i<ω) is a coheir sequence in p over M∪{bibi’ : i<ω}. By Ramsey’s 

Theorem, any finite subset of X is satisfiable by some infinite increasing subset of (ci : i<ω), 

hence X is consistent. Thus, we may assume that (ci : i<ω) is in fact indiscernible over 

M∪{a}. 

Now either R(a,ci) holds for all i<ω, in which case the sequence (ci : i<ω)∧(bi’ : i<ω)  

contradicts Lemma 2.6.7, or R(a,ci) fails for all i<ω and (bi : i<ω)∧(ci : i<ω) contradicts 

Lemma 2.6.7. 

q.e.d. 

 

Corollary 2.6.9 : The Independence Theorem (over a Model) 

Let M be a model, p∈S(M), A, B supersets of M with A┴MB, and pA∈S(A) and pB∈S(B) 

non-forking extensions of p. Then pA∪pB does not fork over M. 

Proof : Let a╞pA and a’╞pB. Since a and a’ both realize p, there is an M-automorphism 

mapping a’ to a and B to some B’. By Proposition 2.4.19(ii) there is an M∪{a}-

automorphism mapping B’ to some B’’ with B’’┴MaA. So a realizes pA and pB’’, the isomorph 

image of pB.  
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As pA is a non-forking extension of p and hence A┴Ma, we get A┴MB’’, by transitivity. 

Furthermore A┴B’’a, since M⊆B’’. As pB is a non-forking extension of p and hence a’┴MB, it 

follows that a┴MB’, whence a┴MB’’, since independence is invariant under automorphisms. 

So we obtain a┴MAB’’ (see 2.4.19(ii)). Therefore pA∪pB’’ does not fork over M. But “pX∪pY 

does not fork over M” is a stable M-invariant relation by Lemma 2.6.6, so pA∪pB does not 

fork over M, by Theorem 2.6.8. 

q.e.d. 

 

Corollary 2.6.10 : Let M be a model, p∈S(M), (Ai : i∈I) an independent sequence over M, 

and for each i∈I consider a non-forking extension pi of p to Ai. Then ∪i∈Ipi is consistent and 

does not fork over M. 

Proof : Since consistency and non-forking are local properties, we only have to check the 

assertion for finite I. But here it follows by induction on card(I) from the Independence 

Theorem over a model. 

q.e.d. 

In simple theories a type over a model may have more than one non-forking extension to a 

given superset (this is not the case in stable theories, where a type over a model or over an 

algebraic closed set is stationary, see Chapter 2.11). For types over models or algebraic closed 

sets one can show the following two Lemmas: 

 

Lemma 2.6.11 : Suppose p∈S(M) has only a bounded number of non-forking extensions (that 

is, less than κ’=card(C)-many). Then p is stationary. 

 

Proof : Suppose not and let A be a superset of M, such that there are two distinct non-forking 

extensions p1(x,A) and p2(x,A) over A. Let (Ai : i<α) be a Morley sequence in tp(A/M) for 
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some cardinal α. By Corollary 2.6.10 for every I⊆α there is a non-forking extension qI of p 

extending (∪i∈Ip1(x,Ai))∪(∪j∉Ip2(x,Aj). Clearly qI≠qJ for I≠J. But α has 2α-many subsets, so p 

cannot have a bounded number of non-forking extensions. 

q.e.d. 

 

Proposition 2.6.12 : Suppose A=acl(A) and p∈(A) has only a bounded number of non-

forking extensions. Then p is stationary. 

 

Proof : Let M be a model containing A. By the previous Lemma it is sufficient to show that p 

has a unique non-forking extension to M. So suppose p1 and p2 are two non-forking 

extensions to M. 

Claim : p1 is definable over A. 

Proof of the claim: By Corollary 2.4.22, for every formula ϕ(x,y) there is a ϕ-definition 

d1ϕ(y) over M. Now if d1ϕ were not over A, then by compactness it would have arbitrarily 

many A-conjugates (Let b⊆M be the tuple consisting of the parameters in d1ϕ and consider 

the type tp(b/A). Since b∉A=acl(A), compactness yields arbitrarily many realisations of this 

type.). All these A-conjugates would be ϕ-definitions for distinct non-forking extensions of p. 

But this contradicts boundedness. q.e.d. claim. 

Similarly, p2 is definable over A. Let d2ϕ be the ϕ-definition for p2, and consider some b∈M. 

By Lemma 2.4.20 there is a partial type q(x) such that ╞q(a’) if and only if ϕ(a’,y) is in some 

non-forking extension of tp(b/A) to Aa’. 

Now suppose ϕ(x,b)∈p1. If a1╞p1, then ╞ϕ(a1,b), whence q(a1), since a1┴Ab and 

ϕ(a1,b)∈tp(b/Aa1) . If b∈A⊆M, then ϕ(x,b)∈p, and by the same argument follows that any 

element realizing p also realizes q. So q⊆p. In particular, ╞q(a2) for any a2╞p2. Hence, there 

is some b’╞tp(b/A) such that b’┴Aa2, and ϕ(a2,y)∈tp(b’/Aa2), which is a non-forking 



 61

extension of tp(b/A). So ╞ϕ(a2,b’), and therefore ╞d2ϕ(b’). But this formula is over A, and 

since b’╞tp(b/A) we get by some A-automorphism ╞d2ϕ(b). This means that ϕ(x,b)∈p2. 

Thus, p1⊆p2, and similarly p2⊆p1, hence p1=p2, and p is stationary. 

q.e.d. 

 

Definition 2.6.13 : Let A be a set of parameters. The group of strong automorphisms of C 

over A is the subgroup of Aut(C/A) generated by all automorphisms fixing some model M 

which contains A. We denote it by Autf(C/A). Sometimes it is also called the Lascar group. 

Two tuples a, b have the same Lascar strong type over A if they are conjugate by a strong 

automorphism over A. We write Lstp(a/A)=Lstp(b/A). 

 

So a and b have the same Lascar strong type if there are an n<ω and tuples a=a0, … , an-1, 

an=b, and models M0, …, Mn-1, each of them containing A, such that tp(ai/Mi)=tp(ai+1/Mi-1), 

for any i≤n. 

It is clear that equality of Lascar strong types is an equivalence relation, and Lstp(a/A) 

denotes the equivalence class of a. In other words, Lstp(a/A) represents the orbit of a under 

Autf(C/A). Trivially, if A is a model, then Autf(C/A)=Aut(C/A), so types over models are the 

same as Lascar strong types.  

 

Lemma 2.6.14 : Suppose A⊆M and tp(a/M)=tp(b/M). Then there is a model M’ containing A  

with ab┴AM’ and tp(a/M’)=tp(b/M’). 

 

Proof : tp(M/A) does not fork over A and can be considered as a partial type over some model 

M0, with A⊆M0. By Extension (Theorem 2.4.18), the type as a completion which does not 



 62 

fork over A, hence M0┴AM. Let M’ realize a coheir of tp(M0/M) to M∪{a,b}. Then M’ 

contains A. Furthermore, by Lemma 2.3.5, M’┴Mab, and by transitivity we get M’┴AMab. 

Again by Lemma 2.3.5 we obtain tp(M’a/M)=tp(M’b/M). This yields the assertion. 

q.e.d. 

Theorem 2.6.15 : Suppose a┴Ab and Lstp(a/A)=Lstp(b/A). Then there is a model M 

containing A with ab┴AM and tp(a/M)=tp(b/M). 

Proof : There are n<ω and a sequence a=a0, a1, … ,an=b and models M0, …, Mn-1 containing 

A, such that tp(ai/Mi)=tp(ai+1/Mi) for all i<n. Put C=∪i<nMi. 

Claim 1 : We may assume (ai : i≤n)┴AC. 

Proof of the claim : By Lemma 2.6.14 we may assume that aiai+1┴AMi for all i<n. 

Conjugating Mi over Aaiai+1 (see Proposition 2.4.19(ii)), we may also assume inductively that 

Mi┴Aaiai+1a0…anM0…Mi-1 for all i<n. Then Mi┴Aa0…anM0…Mi-1 for all i<n, by transitivity. 

Hence,  a0…an┴AM0…Mn-1 (see Proposition 2.4.19(iii)). Q.e.d. claim 1. 

Claim 2 : We may assume that (ai : i≤n) is independent over C. 

Proof of the claim : For 0<i<n choose inductively realizations ai’ of some non-forking 

extension of tp(ai/C) to Ca0’an’a1’…ai-1’ (this non-forking extensions exist by Extension 

(Theorem 2.4.18)). Then (ai’ : i≤n) is independent over C, and since tp(ai’/C)=tp(ai/C) and C 

contains all Mi, for i<n, the new sequence still witnesses the equality of Lascar strong type. 

q.e.d. claim 2. 

Note that from claim 1 and claim 2 now follows that (ai : i≤n) is independent over A: Since 

ai┴AC and ai┴C(aj : j<i) we get by transitivity ai┴A(aj : j<i), for all i≤n. 

We now use induction on n. If n=1, the assertion is already shown and follows from Lemma 

2.6.14. So assume it is true for n-1. Since (ai : i≤n) is independent over A and in particular  

a0┴Aan-1 (see the remark after Definition 2.5.1) and Lstp(a0/A)=Lstp(an-1/A), by induction 
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hypothesis there is a model M containing A such that tp(a0/M)=tp(an-1/M). This means that 

we may assume that n=2. 

Since a0a1a2┴AM0M1, we get a0a1a2┴M0M1. Furthermore, independence of {a0,a1,a2} over 

M0M1 and transitivity imply a0┴M0a1a2. Let p=tp(M1/M0a1a2), and p’ the conjugate over M0a0 

of tp(M1/M0a1), which exists since tp(a0/M0)=tp(a1/M0). Then both p and p’ are non-forking 

extensions of tp(M1/M0). By the Independence Theorem 2.6.9 over the model M0 they have a 

common realization M, such that M┴M0a0a1a2.  

We have tp(a0M)=tp(a1M1) (since M╞p’∈S(M0a0) and p’ is the conjugate of tp(M1/M0a1) 

                           =tp(a2M1) (by hypothesis) 

                           =tp(a2M) (since M╞p=tp(M1/M0a1a2)), 

hence, tp(a0/M)=tp(a2/M), and the assertion is shown. 

q.e.d. 

 

Theorem 2.6.16 : The Independence Theorem (for Lascar strong types) 

If  B┴AC, tp(b/AB) and tp(c/AC) do not fork over A, and Lstp(b/A)=Lstp(c/A), then there is 

a╞Lstp(b/A)∪tp(b/AB)∪tp(c/AC), with a┴ABC (that is, the union of the two non-forking 

extensions does not fork over A). 

 

Proof : Let M be a model containing A with M┴ABCbc (see Proposition 2.4.19(ii)), and let b’ 

and c’ realize non-forking extensions of tp(b/MB) to MBC and tp(c/MC) to MBCb’, 

respectively. Replacing b by b’ and c by c’ then preserves the types and Lascar strong types in 

question. We may thus assume Bb┴ACc (by transitivity).  

By Theorem 2.6.15 there is a model M’ containing A, such that bc┴AM’ and 

tp(b/M’)=tp(c/M’). By Proposition 2.4.19(ii) we may assume that M’┴AbcBC, whence 

M’┴ABCbc, by transitivity. But then B┴M’C (since A⊆M’ and B┴AC), and tp(b/M’B) and 

tp(c/M’C) both do not fork over M’ (since A⊆M’) and have the same restriction to M’. By 
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the Independence Theorem over M’ they have a common realization a wit a┴M’BC. So 

a┴ABC, as tp(a/M’)=tp(b/M’) does not fork over A and by transitivity. This proves the 

theorem. 

q.e.d. 

 

Remark 2.6.17 : The Independence Theorem for Lascar strong types is a generalization of the 

Independence Theorem over a model (Corollary 2.6.9), both due to Kim, Pillay [Kim1]. The 

second is exactly the same assertion as the first Independence Theorem, substituting a type 

over a model by a Lascar strong type over some set, whence, it is a considerably stronger 

result (since Lascar strong type over a model is the same as the type over the model).  

Pillay and Kim, tried to show the Independence Theorem for types over algebraic closed sets, 

but they was not able to do it. However, they discovered that the notion of Lascar strong type 

is exactly what is needed to generalize the Independence Theorem over a model to arbitrary 

sets. Later we will define the bounded closure of A, bdd(A), which contains acl(A), and see 

that Lstp(a/A)=tp(a/bdd(A)). Therefore Lstp(a/A)╞tp(a/acl(A)). See the discussion at the 

beginning of chapter 2.10. 

 

Recently, Casanovas was able to prove the Independence Theorem for Lascar strong types by 

a shorter proof, using new results about indiscernible sequence in simple theories [Cas5].  

 

 

2.7  Simplicity and Independence 
 

Theorem 2.7.1 : Suppose in a complete theory T there is an abstract independence relation 

┴0, invariant under automorphisms, such that the following hold 

 

1. SYMMETRY  a┴0
Ab if and only if b┴0

Aa. 

2. TRANSITIVITY  a┴0
ABC if and only if a┴0

AB and a┴0
ABC. 

3. EXTENSION  For any a, A, B there is a’╞tp(a/A) with a’┴0
AB. 

4. LOCAL CHARACTER  For any a, A there is A’⊆A with card(A’)≤card(T) and 

a┴0
A’A. 
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5. FINITE CHARACTER  a┴0
AB if and only if for all finite b∈B we have a┴0

Ab. 

6. INDEPENDENCE THEOREM OVER A MODEL  If  a┴0
Mb for some model M, 

x┴0
Ma, y┴0

Mb and tp(x/M)=tp(y/M), then there is z╞tp(x/Ma)∪tp(y/Mb) with 

z┴0
Mab. 

 

Then T is simple and ┴0 is non-forking independence. 

 

Proof : We shall first show that if a┴0
Ab and (bi : i<ω) is an A-indiscernible sequence in 

tp(b/A), then there is a’┴0
A(bi : i<ω) such that tp(a’bi/A)=tp(ab/A) for all i<ω. (This implies 

that ∪i<ωpi(x,Abi), for p(x,Ab)=tp(a/Ab), is consistent, and hence, tp(a/Ab) does not divide 

over A.) 

First, by compactness, we extend (bi : i<ω) to an A-indiscernible sequence (bi’ : i≤card(T)+). 

For all i≤card(T)+ we then successively find models Mi of cardinality card(T), such that 

A∪(∪j<iMjbj’)⊆Mi, and (bj’ : i≤j≤card(T)+) is indiscernible over Mi, in the following way: 

Suppose that Mj have been found for j<i. Let Mi’ be any model of size card(T) containing 

A∪(∪j<iMjbj’). By Ramsey’s Theorem and compactness we obtain an Mi’-indiscernible 

sequence (bj’’ : i≤j≤card(T)+) whose type over ∪j<iMj is the same as that of (bj’ : 

i≤j≤card(T)+). So we choose Mi to be the image of Mi’ under a ∪j<iMj-isomorphismus 

mapping (bj’’ : i≤j≤card(T)+) to (bj’ : i≤j≤card(T)+). 

Put k=card(T)+. By local character and Transitivity of ┴0 there is some i<k such that 

bk’┴0
Mi∪j<kMj. So by transitivity again, bk’┴0

Mi(bj’ : i≤j<k). By Transitivity and Mi-

indiscernibility we obtain: (*)  bj’┴0
Mi(bk’ : k<j), for all i≤j<k. 

Clearly, we may assume bj=bi+j’, for all j<ω, and b=b0, whence b0=bi’. By extension, there is 

a’╞tp(a/Ab) with a’┴0
AbMi, hence a’┴0

AMib0, by Transitivity, and by Transivity again we get 

a’┴0
Mib0. Since (by our assumption bj=bi+j’) (bj : j<ω) is ┴0-independent over Mi (by (*)), 

repeated applications of the Independence Theorem over Mi (in the same way like Corollary 

2.6.10 for ┴-independence) yield some a’’ with a’’┴0
Mi(bj : j<ω) such that 

tp(a’’bj/A)=tp(a’b0/A), for all j<ω. This clearly implies tp(a’’bj/A)=tp(ab/A), for all j<ω. And 

by transitivity, a’’┴0
A(bj : j<ω) (since a’’┴0

AMi and a’’┴0
Mi(bj : j<ω). 
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Next, we shall show that a┴0
AB if and only if tp(a/AB) does not divide over A. This will 

imply symmetry (and all the other properties) for non-dividing, and thus simplicity of T. 

Clearly, if a┴0
AB, then (using Finite Character) we have just seen that tp(a/Ab) does not 

divide over A for all finite b∈B, so tp(a/AB) does not divide over A. 

Conversely, assume that tp(a/Ab) does not divide over A. By Extension, there is some 

b0╞tp(b/A) such that b0┴0
AA. Now, again by Extension, there is some b1╞tp(b0/A) such that 

b1┴0
Ab0. So, inductively we find a sequence (bi : i≤α), for big α, such that bi╞tp(b/A) and 

bi┴0
A(bj : j<i), for all i≤α. By Proposition 2.2.5 and compactess, we may assume that (bi : 

i≤α) is A-indiscernible. As p(x,Ab)=tp(a/Ab) does not divide over A, ∪i≤αp(x,Abi) is 

consistent. In other words, there is some a’ such that tp(a’bi/A)=tp(ab/A), for all i≤α. By 

Local Character for ┴0 there is some i<α such that a’┴0
A∪(bj : j<i)bα.As bα┴0

A(bj : j<i), we get 

by Transitivity bα┴0
A{a’,bj : j<i}, whence bα┴0

Aa’, by Transitivity again. By invariance of ┴0 

under automorphisms, a┴0
Ab. 

q.e.d. 

 

 

2.8  Bounded Equivalence Relations 

 
In this section, T is not necessarily simple. We shall study equivalence relations in an 

arbitrary theory. The results of this chapter are useful in their own sake but turn out to be also 

very important for the study of Lascar strong types and strong types. Most of this material 

here presented was developed in detail during a seminar at the University of Barcelona under 

the participation of the author. The results 2.8.34 – 39 are due to the author. They imply the 

results 2.8.43 and 2.8.44. 

  

Recall that a relation R is A-invariant, if it is invariant under A-automorphisms (see 

Definition 2.6.4). 

A sequence of the form (ai : i∈I) we shall call I-sequence. 
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Lemma 2.8.1 : R is A-invariant if and only if there is a family of partial types {pi(x) : i∈I} 

over A such that  

                                                               R(a) if and only if ╞∨i∈Ipi(a). 

 

Proof : We put {pi(x) : i∈I}={tp(a/A) : R(a)}. 

 

Definition 2.8.2 : A relation R is type-definable over A if there is a partial type p(x) over A 

such that for any a 

                                                               R(a) if and only if p(a),   

that is, R=p(C). If p is finite (or, equivalently, if p consists only of one formula) then we say 

that R is definable over A.  

 

Remark : It is obvious, that definability of R implies type-definability of R, and this implies 

invariance of R. 

Since Aut(C/A) in the theory T coincide with Aut(C/∅)=Aut(C) in the theory T(A), it is clear 

that a relation R is A-invariant in T if and only if R is invariant in T(A). It is also clear that a 

relation R is type-definable over A in the theory T if and only if it is type-definable over ∅ in 

the theory T(A). 

 

Lemma 2.8.3 : If R is A-invariant and type-definable, then it is type-definable over A. 

 

Proof : If R is given by the partial type p(x,B) for some parameters B, then it is also given by 

∃Y[p(x,Y)∧Y╞tp(B/A)]. Obviously, this can be expressed by an infinite set of formulas in 

first order logic, hence by a partial type over A. 

q.e.d. 

 

Definition 2.8.4 : Let R be a binary relation between I-sequences. R is finite if there is some 

n<ω such that there is no sequence (ai : i<n) with ¬R(ai,aj), for any i<j<n. R is bounded if for 

some cardinal κ there is no sequence (ai : i<κ) with ¬R(ai,aj), for any i<j<κ. n, κ are called 

bounds of R, respectively. 
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If R is an equivalence relation, then R is finite if it has only a finite number of equivalence 

classes, and it is bounded if it has only a bounded number of equivalence classes, that is, the 

number of classes is a cardinal number. 

Note that if R is definable and bounded then, by compactness, R must be finite. 

 

Lemma 2.8.5 : A bounded intersection of bounded relations is a bounded relation. 

 

Proof : Let card(I)=λ, and let (Ri : i∈I) be a family of bounded relations. For every i∈I let κi 

be a bound of Ri, and let κ=sup{κi : i∈I}. Then κ≥λ. 

Suppose that R=∩i∈IRi were not bounded. Then, in particular, R is not bounded by (2κ)+. So 

there exist a sequence S of cardinality (2κ)+ of tuples which are not related by R. Since 

¬R(x,y) implies ¬Ri(x,y), for some i∈I, we can assign to every pair of tuples of this sequence 

an i∈I with the property that it is not related by Ri. Painting the pairs of tuples in this way in 

λ-many colors (note that λ≤κ), by the Erdös-Rado-Theorem (Theorem 2.2.4) we get a 

subsequence S’⊆S of cardinality κ+ of tuples which are not related by Ri, for some fixed i∈I. 

But the bound of Ri is κi<κ+, a contradiction. So R must be bounded (by (2κ)+). 

q.e.d. 

 

Lemma 2.8.6 : If E is a bounded A-invariant equivalence relation, and (ai : i∈I) is an infinite 

A-indiscernible sequence, then E(ai,aj), for all i≠j in I. 

 

Proof : By compactness, for any cardinal κ we can find an A-indiscernible sequence (bi : i<κ) 

with tp(ai,aj/A)=tp(b0,b1/A), for any i<j in I. So if ¬E(ai,aj) holds, then ¬E(bk,bl), for all 

k<l<κ, by A-invariance of E and A-indiscernibility. Then E has κ many classes, a 

contradiction. 

q.e.d. 

 

The following Lemma supplies a bound for the number of equivalence classes of an invariant, 

bounded equivalence relation. However, we will see below (Remark 2.8.22) that there exists a 

better bound. 
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Lemma 2.8.7 : Let E be an invariant equivalence relation between I-sequences, and let 

κ=2card(I)+card(T). If E has more than 2κ classes, then E is not bounded. 

 

Proof : Suppose that E has ≥(2κ)+ classes. There are at most κ many types tp(a,b) of I-

sequences a and b. So by Erdös-Rado (Theorem 2.2.4), there is an infinite set (ai : i<ω) 

representing infinitely many classes of E such that tp(ai,aj)=tp(al,ak), for i<j and l<k. By 

compactness, for any cardinal λ there is a sequence (bi : i<λ) such that tp(bi,bj)=tp(al,ak), for 

i<j<λ and l<k<ω. Since E is invariant we get ¬E(bi,bj), for i<j<λ. So E has at least λ many 

classes and is not bounded. 

q.e.d. 

 

In the following we will define three equivalence relations between I-sequences in an 

arbitrary complete theory T. We shall omit the reference to I in the notation assuming that it is 

clear from the context. 

 

Definition 2.8.8 :  

1. EL
A(a,b)  if and only if  E(a,b) for any bounded and A-invariant equivalence relation E 

2. EKP
A(a,b)  if and only if  E(a,b) for any bounded and over A type-definable 

equivalence relation E 

3. ESh
A(a,b)  if and only if  E(a,b) for any finite and over A definable equivalence relation 

E 

 

Remark 2.8.9 : It is clear that EL
A(a,b) holds in the theory T if and only if EL

∅(a,b) holds in 

the theory T(A), see the remark following Definition 2.8.2. Similarily for EKP
A and ESh

A. So, 

to simplify matters, we assume in the following that A=∅ and write EL, EKP, ESh. 

The letters “L”, “KP”, “Sh” refer to the names of Lascar, Kim/Pillay, and Shelah, 

respectively. 

 

Proposition 2.8.10 :  

1. EL⊆EKP⊆ESh. 
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2. EL is bounded and invariant, and refines every bounded and invariant equivalence 

relation. 

3. EKP is bounded and type-definable over ∅, and refines every bounded and over ∅ 

type-definable equivalence relation. 

4. ESh is bounded and type-definable over ∅, and refines every finite and over ∅ 

definable equivalence relation. 

 

Proof : 1. is obvious by the definitions.  

3: EKP is bounded by Lemma 2.8.5 and clearly type-definable over ∅, since it is definable by 

the union of partial types over ∅. 

4: ESh is definable by the set of all formulas which define a finite and over ∅ definable 

equivalence relation. Suppose it is not bounded. Then, by compactness, we can find a 

sequence of cardinality (2κ)+, for κ=card(T), of tuples which are not related by ESh. Since 

there are at most κ many formulas defining a finite equivalence relation, and ¬ESh(x,y) 

implies ¬E(x,y), for some definable, finite equivalence relation, by Erdös-Rado some of these 

formulas has infinite many equivalence classes, a contradiction. 

2: We shall prove that EL is bounded. It is a relation between I-sequences. Let λ=2card(I)+card(T),  

κ=2λ, and let M be a κ+-saturated model.  

Claim 1:  M contains representative elements of all equivalence classes of all bounded, 

invariant equivalence relations. 

Proof of claim 1: Consider a bounded and invariant equivalence relation E, and a maximal 

sequence (ai : i<α) such that ¬E(ai,aj), for i<j<α. By Lemma 2.8.7: α≤κ. Consider the type 

p=tp((ai : i<α)). Since M is κ+-saturated it contains a realization of p, in other words, M 

contains a representative for every equivalence class of E. 

q.e.d. claim 1. 

Claim 2: tp(a/M)=tp(b/M) implies EL(a,b). 

Proof of claim 2: Let E be any bounded and invariant equivalence relation, and let f be an M-

automorphism mapping a to b. By claim 1, there is a’∈M  such that E(a,a’). Let [a]E be the 

equivalence class of a. Since E is invariant, we get f([a]E)=[b]E. On the other hand:  

f([a]E)=f([a’]E)=[f(a’)]E=[a’]E=[a]E, since f fix M. Hence, [a]E=[b]E, and E(a,b). 
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q.e.d. claim 2. 

So EL is bounded, since the number of types of I-sequences over M is bounded. 

q.e.d. 

 

Definition 2.8.11 : A formula ϕ(x,y) is finite, if there is no infinite sequence (ai : i<ω) with 

╞¬ϕ(ai,aj), for all i<j<ω. A formula ϕ(x,y) is thick, if it is finite, reflexive and symmetric. 

 

Definition 2.8.12 : Let ϕ(x,y) and ψ(x,y) be formulas with the property that x and y are 

sequences of variables of the same length. The product of ϕ and ψ is the formula 

                                                           (ϕ○ψ)(x,y)=∃z(ϕ(x,z)∧ψ(z,y)). 

Let p1(x,y) and p2(x,y) be two partial types such that the sequences x and y have the same 

length. The product of p1 and p2 is the type 

                                                        (p1○p2)(x,y)=∃z(p1(x,z)∧p2(z,y)). 

(This means that ╞(p1○p2)(a,b) if and only if there exists some sequence c such that ╞p1(a,c) 

and ╞p2(c,b). So, by compactness, the product of p1 and p2 is in fact the type 

{ϕ1(x,y)○ϕ2(x,y) : ϕ1∈p1, ϕ2∈p2}.) 

Iterating the product, we get the definition of  the nth power  pn(x,y) of some type p(x,y), n<ω. 

 

Note that compactness implies that pn(x,y) is axiomatizable by {ϕn(x,y) : ϕ∈p}. 

If p1 defines the relation R1 and p2 defines the relation R2, then it is clear that p1○p2 defines 

the product R1○R2 of these two relations. 

 

Proposition 2.8.13 :  

1. If ϕ(x,y) is finite and ϕ(x,y)├ψ(x,y), then ψ is finite. 

2. Let ϕ(x,y) be thick and ψ(x,y) symmetric and suppose that ϕ├ψ. Then ψ is thick. 

3. If ϕ(x,y) and ψ(x,y) are finite (thick), then ϕ(x,y)∧ψ(x,y) is finite (thick). 

4. If ϕ(x,y) and ψ(x,y) are finite (thick), then ϕ(x,y)∨ψ(x,y) is finite (thick). 

5. If ϕ(x,y) is thick, then ϕn(x,y) is thick. 

6. If ϕ(x,y) and ψ(x,y) are thick, then ϕ(x,y)○ψ(x,y) is thick. 
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Proof :  

3: Suppose ϕ(x,y)∧ψ(x,y) is not finite. Then there is a sequence (ai : i<ω) such that 

╞¬ϕ(ai,aj)∨¬ψ(ai,aj), for all i<j<ω. So by Ramsey’s Theorem, there is an infinite subset I⊆ω, 

such that either ╞¬ϕ(ai,aj) for all i<j<I, or ╞¬ψ(ai,aj) for all i<j<I. Hence, either ϕ is not finite 

or ψ is not finite. 

6: Suppose ϕ(x,y)○ψ(x,y) is not finite. Since ¬∃z.ϕ(x,z)∧ψ(z,y) implies ¬(ϕ(x,y)∧ψ(y,y)) 

implies ¬ϕ(x,y), we get that ϕ(x,y) is not finite. 

The rest of the assertions is obvious. 

q.e.d. 

 

Definition 2.8.14 : ncA(x,y) is the set of all thick formulas with parameters in A.  

 

Remark 2.8.15 : If A=∅, we write nc(x,y). Since ╞ncA(a,b) in T if and only if ╞nc(a,b) in 

T(A), and most of our assertions do not depend of the constants contained in the theory in 

which we are working, we may omit the set A in the notation.  

nc(x,y) is a partial type, closed under conjunction, disjunction and product. If ϕ(x,y) is 

symmetric and nc(x,y)├ϕ(x,y), then ϕ(x,y)∈nc(x,y). This follows by the previous proposition. 

 

Proposition 2.8.16 : The following conditions are equivalent for a≠b: 

1. ╞nc(a,b). 

2. There is an infinite indiscernible sequence (ai : i<ω) with a=a0 and b=a1. 

3. There is an infinite indiscernible sequence (ai : i<ω) and there are some i≠j such that 

a=ai and b=bj. 

 

Proof : Suppose ╞nc(a,b). In order to prove 2. it is sufficient to show that there is an infinite 

sequence (ci : i<ω) such that tp(ci,cj)=tp(a,b) for any i<j<ω: Then we can apply compactness 

to extend this sequence to a sequence of arbitrary length with the same properties and use 

Proposition 2.2.5 to obtain the desired indiscernible sequence. 

So let p(x,y)=tp(a,b). We have to show the consistency of the set {xi≠xj : 

i<j<ω}∪(∪i<j<ωp(xi,xj)). By compactness, it is sufficient to prove that for every formula 
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ϕ(x,y)∈p(x,y) there is an infinite sequence (ai : i<ω) such that ╞ϕ(ai,aj) for all i<j<ω. Suppose 

there is some formula ϕ∈p and no infinite sequence with this property. Then ¬ϕ(x,y) is finite, 

whence x=y∨(¬ϕ(x,y)∧¬ϕ(y,x)) is thick and must be in nc(a,b). But this means that 

╞¬ϕ(a,b), a contradiction to our assumption ϕ∈p=tp(a,b). 

It is clear that 2. implies 3. 

3. 1.: Suppose there is some thick formula ϕ with ╞¬ϕ(a,b). By indiscernibility, we get 

╞¬ϕ(ai,aj) for all i<j<ω. This contradicts the hypothesis that ϕ is finite. Hence, ╞ϕ(a,b) for all 

thick formulas ϕ. 

q.e.d. 

 

Observation 2.8.17 :  

1. The realizations of the partial type ncn(x,y) are exactly the pairs (a,b) which are 

connected by n infinite indiscernible sequences. That is, there are a1,…,an+1 and 

indiscernible sequences  I1,…,In such that a=a1, b=an+1, and for every i≤n, ai, ai+1∈Ii. 

(This partial type is axiomatizable by {ϕn(x,y) : ϕ(x,y)∈nc(x,y)}.) 

2. nc(x,y)⊇nc2(x,y)⊇nc3(x,y)⊇… . 

3. The transitive closure of the relation defined by nc(x,y) is equivalent to the infinite 

disjunction ∨nncn(x,y). 

 

Proof : 1. follows immediately from Proposition 2.8.16.  

In order to prove 2. we use induction on n. For n=2 the assertion ncn-1(x,y)⊇ncn(x,y) follows 

from Proposition 2.8.13.6. Now suppose it holds ncn-1(x,y)⊇ncn(x,y) for n>1. Let 

ϕ(x,y)∈ncn+1(x,y). Then we may assume that ϕ=ψn+1(x,y)=ψ(x,y)○ψn(x,y), for some 

ψ∈nc(x,y). By induction hypothesis, ψn∈ncn-1(x,y). Hence, there is some ψ’∈nc(x,y) such 

that ψn=ψ’n-1, whence ϕ∈ncn(x,y). (Note that - for any n<ω - ncn(x,y) can be considered as the 

set  {ϕ1○…○ϕn : ϕi∈nc(x,y) for 1≤i≤n} and also as the set {ϕn : ϕ∈nc(x,y)}.) 

3. is clear, since ∨nncn(x,y) says that there is some n<ω such that ncn(x,y). 

q.e.d. 

 

Proposition 2.8.18 : EL
A(a,b) if and only if ╞∨nncA

n(a,b). 
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(Remark: ╞∨nncA
n(x,y) refers to the infinite disjunction: ╞ncA(x,y) or ╞ncA

2(x,y) or … or 

╞ncA
m(x,y) or … .) 

 

Proof : to simplify matters, we assume that A=∅. 

The relation defined by ∨nncn(x,y) is invariant. By Lemma 2.8.5, we know that nc(x,y) is 

bounded. Since (by Observation 2.8.17.2) nc(x,y)├ncn(x,y), for every n<ω, it follows that the 

relation defined by ∨nncn(x,y) is bounded too. Hence, it extends EL (Proposition 2.8.10) (note 

that it is an equivalence relation, by definition). For the other direction we use the transitivity 

of EL. So it is sufficient to show that ╞nc(a,b) implies EL(a,b). If a=b, then the assertion is 

trivial. Otherwise a and b are in an infinite indiscernible sequence I, by Proposition 2.8.5. By 

compactness, we can assume that I is of arbitrary cardinality. If ¬EL(a,b), then, by 

indiscernibility and invariance, ¬EL(a’,b’) for all a’, b’ ordered in the same way in I. But this 

contradicts boundedness of EL. Hence, EL(a,b) holds. 

q.e.d. 

 

Lemma 2.8.19 :  

1. If ╞nc(a,b), then there is some model M such that tp(a/M)=tp(b/M). 

2. If there is some model M with tp(a/M)=tp(b/M), then ╞nc2(a,b). 

 

Proof : 1.: We may assume that a≠b, so they start some indiscernible sequence I, by 2.8.5. Fix 

some model M. By the remark following Proposition 2.2.5, there is some model M’, an 

automorph image of M, such that I is M’-indiscernible. Hence, tp(a/M’)=tp(b/M’). 

2.: Suppose tp(a/M)=tp(b/M). By compactness, it is sufficient to see that for every thick 

formula ϕ(x,y) there is some c such that ╞ϕ(a,c)∧ϕ(c,b). So let ϕ be a thick formula and 

choose n<ω maximal such that there is some sequence (ai : i<n) with ╞¬ϕ(ai,aj), for all i<j<n. 

Since the sequence is finite, there is a formula expressing the existence of such sequence with 

this property. It follows that there is such sequence inside the model M (recall that every 

model of the theory is an elementary substructure of the monster model C), so we may 

assume that (ai : i<n) is in M. By maximality of n, there must be some i<n with ╞ϕ(a,ai). 

Since tp(a/M)=tp(b/M) we get ╞ϕ(b,ai), and by symmetry ╞ϕ(ai,b). 
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q.e.d.   

 

Example [Cas4]: We consider the theory T with an equivalence relation E with infinitely 

many classes, every class having exactly two elements. Let a, b be two different elements in 

the same class outside of a model M. Then for all m∈M: ╞¬E(a,m) and ╞¬E(b,m). Hence,  

tp(a/M)=tp(b/M), but a and b are not in some infinite indiscernible sequence, since every 

equivalence class contains only two elements. So, by Proposition 2.8.16, it does not hold 

that╞nc(a,b). 

 

Proposition 2.8.20 : EL
A(a,b)  if and only if  Lstp(a/A)=Lstp(b/A). 

 

Proof : To simplify matters, we assume that A=∅.  

EL(a,b)  there is some n<ω such that ncn(a,b) (by Proposition 2.8.18)  there are models 

M0,…,Mn-1 and sequences a0,…,an, with a0=a, an=b, and tp(ai/Mi)=tp(ai+1/Mi), for all i<n (by 

Lemma 2.8.19.1)  Lstp(a)=Lstp(b), by definition of Lascar strong type. 

For the other direction suppose that Lstp(a)=Lstp(b). Then there is some n<ω and some 

sequence of elements and models like in the first part of the proof. Lemma 2.8.19.2 then 

implies that there is some m<ω such that ncm(a,b), this means that ∨mncm(a,b), whence EL(a,b) 

(by 2.8.18). 

q.e.d. 

 

Proposition 2.8.21 : Equality of Lascar strong type over A is the finest bounded A-invariant 

equivalence relation. 

 

Proof : The Proposition follows immediately from Proposition 2.8.10 (and Remark 2.8.9). 

 

Remark 2.8.22 : We would like to give a proof of Proposition 2.8.21 which does not depend 

on our previous studies about bounded equivalence relations. This proof also provides a better 

bound of the number of classes of an A-invariant bounded equivalence relation than Lemma 

2.8.7. 
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Proof of 2.8.21 : Equality of Lascar strong types is clearly an A-invariant equivalence 

relation. Let M be a model containing A with card(M)=card(T)+card(A). Then two tuples 

which have the same type over M have the same Lascar strong type over A. It follows that 

there are at most 2card(T)+card(A) Lascar strong types over A, and the relation is bounded. 

Now let E be an A-invariant bounded equivalence relation, and consider two tuples a and b 

with the same Lascar strong type over A. By transitivity of E it is enough to show that if a and 

b have the same type over some model M containing A, then E(a,b) holds. Let N be an 

card(M)+-saturated elementary extension of M and p a coheir of tp(a/M) over N. Let (ci : 

i<ω)⊆N be a coheir sequence in p over M∪{a,b}. Then both a∧(ci : i<ω) and b∧(ci : i<ω) are 

coheir sequences over M and therefore M-indiscernible. By Lemma 2.8.6 we have E(a,c0) and 

E(b,c0), whence E(a,b). 

q.e.d. 

 

Corollary 2.8.23 : An A-invariant bounded equivalence relation has at most 2card(T)+card(A) 

many classes. 

 

Proof : Follows from the proof of Propositon 2.8.21 given in the previous Remark. 

q.e.d. 

 

Definition 2.8.24 : Let α≤ω be an ordinal. A formula ϕ(x,y) is α-thick if there is a sequence 

(ϕi(x,y) : i<α) of thick formulas such that ϕ0=ϕ, and for every 0<i<α, ϕi
2(x,y)├ϕi-1(x,y). 

(Note that a thick formula is 1-thick, by definition.) 

 

Observation 2.8.25 :  

1. Let ϕ(x,y) be thick. If ϕ is transitive, then ϕ is ω-thick. 

2. If ϕ(x,y) is α-thick, witnessed by the sequence (ϕi : i<α), then for all i<j<α: ϕj
k├ϕi, 

where k=2(j-i). In particular, for all j<α holds ϕj
k├ϕ, where k=2j. 

3. Suppose that ϕ(x,y) is α-thick, witnessed by the sequence (ϕi : i<α). If there are i<j<α 

such that ϕi and ϕj are equivalent (╞ϕi(x,y)↔ϕj(x,y)), then ϕi and ϕj are transitive. 

4. If ϕ is n-thick for every n<ω, then ϕ is not necessarily ω-thick. 
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5. If ϕ is α-thick, then for every n<α there is some thick formula ψ such that ψn├ϕ. 

6. Let ϕ be thick and k=2n, for some n<ω. Then ϕk is n+1 thick.  

 

Proof : 1.: Consider the sequence (ϕi : i<ω) with ϕi=ϕ, for all i<ω. By transitivity of ϕ, this 

sequence witnesses that ϕ is ω-thick. 

2.: We show the assertion by induction on (j-i). (Note that for any formulas ψ1(x,y) and 

ψ2(x,y), ψ1├ψ2 implies ψ1
m├ψ2

m, for m<ω.) For j-i=1 it is clearly true, since  ϕi
2├ϕi-1 holds 

for all i<α. Now suppose that ϕj
k├ϕi holds for k=2(j-i) and (j-i)≥1. Since ϕj+1

2├ϕj, it follows 

that ϕj+1
2k├ϕi, where 2k=2(j-i)+1. This shows the assertion for (j-i)+1. 

3.: If ϕi(x,y) and ϕj(x,y) are equivalent, then they nth-powers are equivalent too, for every 

n<ω. By 2., ϕj
k├ϕi, where k=2(j-i). By equivalence we may assume that ϕi=ϕj. So, we have 

ϕj
k├ϕj, and ϕi

k├ϕi. Since k≥2, ϕi and ϕj are transitive. 

4.: Note that the sequences witnessing that ϕ is n-thick can be all different for different n, and 

must not be related by inclusion. So we can’t use compactness to prove that ϕ is ω-thick.  

5.: Suppose n<α. By 2., ϕn
k├ϕ, where k=2n. ϕn

k∈nck(x,y)⊆ncn(x,y), by Observation 2.8.17. 

So there is some ψ∈nc(x,y) such that ϕn
k=ψn. 

6.: The sequence (ϕk/l : l=2m, 0≤m≤n) witnesses that ϕk is n+1 thick.  

q.e.d. 

 

Proposition 2.8.26 : Suppose that ϕ(x,y) is ω-thick, witnessed by the sequence (ϕi : i<ω). 

Then the partial type p(x,y)={ϕi : i<ω} type-defines a bounded equivalence relation. 

 

Proof : We need only to show the transitivity of p(x,y). So suppose that ╞p(a,c) and ╞p(c,b). 

Hence, ╞ϕi(a,c) and ╞ϕi(c,b) for all i<ω. That means, ╞ϕi
2(a,b) for all i<ω. Since ϕi

2├ϕi-1 for 

all 0<i<ω, it follows that ╞ϕi(a,b) for all i<ω. So we obtain p(a,b), and p is transitive. By 

Lemma 2.8.5, p is a bounded relation. 

q.e.d. 

 

Proposition 2.8.27 : EKP is type-definable by the partial type consisting of all ω-thick 

formulas. 
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Proof : By Proposition 2.8.10, we may fix some partial type q(x,y) which type-defines EKP. 

The formulas in q must be finite (since q is bounded), so we may assume that q(x,y) consists 

of thick formulas and is closed under conjunctions. We shall see that these formulas are in 

fact ω-thick. Let ϕ0 be such a formula. Since q(x,y)∪q(y,z)├ϕ0(x,z), by compactness there is 

ϕ1∈q such that ϕ1
2├ϕ0. Iterating this argument ω times we obtain a sequence of thick 

formulas which witnesses that ϕ0 is ω-thick. 

q.e.d.  

 

Definition 2.8.28 : Let R be a relation between sequences. We define cl(R) as the least 

relation which is type-definable and contains R. 

 

Observation 2.8.29 : cl(R) is type-definable by the set p(x,y)={ϕ(x,y) : if R(a,b) holds, then 

╞ϕ(a,b)}. 

 

Proof : Since cl(R) is the intersection of all type-definable relations containing R, it is  

definable by the union of all partial types defining such a relation. That is, cl(R) is definable 

by the union of all partial types q(x,y) with the property: If R(a,b), then ╞q(a,b), for all a, b. 

This proves the assertion. 

q.e.d. 

 

Proposition 2.8.30 : For ϕ a symmetric formula, the following conditions are equivalent: 

1. EL(x,y)├ϕ(x,y) (that means: every pair a, b satisfying EL also satisfies ϕ; note that EL 

is not a set of formulas) 

2. ∨nncn(x,y)├ϕ(x,y) (see the remark in 1.) 

3. ncn(x,y)├ϕ(x,y) for every n. 

4. For every n<ω there is ψ∈nc(x,y) such that ψn(x,y)├ϕ(x,y). 

5. ϕ is n-thick for every n<ω. 

 

Proof : The equivalence of 1. and 2. is clear by Proposition 2.8.18. 
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2. 3.: Let n<ω and suppose ncn(a,b). Then ∨nnc(a,b), and ╞ϕ(a,b), by hypothesis. So for all 

n<ω holds ncn(x,y)├ϕ(x,y). 

3. 4.: Is clear by compactness. 

4. 5.: ϕ is symmetric, and by 4. it must be finite and reflexive, so ϕ is thick. Let n<ω. We 

have to show that there is a sequence witnessing that ϕ is n-thick. By hypothesis, there is 

some ψ∈nc(x,y) such that ψk├ϕ, where k=2n-1. Since 

ψk∈nck(x,y)⊆nck/2(x,y)⊆nc(x,y)k/4⊆…⊆nc(x,y), there are ψ0,…,ψn-1=ψ∈nc(x,y) such that 

ψk=ψ0=ψ1
2=ψ2

4=…=ψn-2
k/2=ψn-1

k. Hence, ψk=ψi
l, where l=2i, for i<n. Then, inductively, we 

get ψi=ψk/l, with l=2i. It follows that ψi+1
2=ψk/l=ψi, for all i<n-1. So trivially holds  

ψi+1
2(x,y)├ψi(x,y), for i<n-1. Furthermore, ψ0├ϕ. Hence, ψ1

2├ϕ. Then the sequence 

(ϕ,ψ1,…,ψn-1) witnesses that ϕ is n-thick.  

5. 4. follows from Observation 2.8.25.5. 

4. 1.: Suppose ╞¬ϕ(a,b) for some pair a, b. By 4., ¬ncn(a,b), for all n<ω. Then we have 

¬(∨nncn(a,b)), whence EL(a,b) does not hold. 

q.e.d. 

 

Remark 2.8.31 : In the previous Proposition ϕ is required to be symmetric. But if  

EL(x,y)├ϕ(x,y), with ϕ not necessariliy symmetric, then follows that EL(x,y)├ϕ(x,y)∧ϕ(y,x) 

(since EL is a symmetric relation) and this is clearly a symmetric formula which implies 

ϕ(x,y). 

 

Proposition 2.8.32 : cl(EL) is type-definable by the set of all formulas which are n-thick for 

all n<ω. 

 

Proof : By Proposition 2.8.30, we have for all symmetric formulas ϕ(x,y): EL(x,y)├ϕ(x,y) if 

and only if ϕ is n-thick for all n<ω.  

Now, the assertion follows from Observation 2.8.29. (Note that by Remark 2.8.31, it is 

sufficient to consider only symmetric formulas.) 

 

Observation 2.8.33 : EL⊆cl(EL)⊆EKP. 
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Proof : This follows immediately from the definitions.  

q.e.d. 

 

The following results (including Proposition 2.8.39) are due to the author of this thesis and 

was motivated by his studies supervised by Prof. E. Casanovas at the University of Barcelona. 

 

Observation 2.8.34 :  

1. EL is type-definable if and only if EL=cl(EL)=EKP. 

2. If there exists some m<ω such that ∨nncn(x,y)≡ncm(x,y), then EL=EKP. 

 

Proof : 1. follows immediately from Propostition 2.8.10 and Observation 2.8.33.  

Recall that EL=∨nncn(x,y). By the hypothesis of 2., EL is type-definable by the set {ϕm : 

ϕ∈nc(x,y)}. So EL=EKP, by 1. 

q.e.d. 

 

Proposition 2.8.35 : The following conditions are equivalent: 

1. cl(EL)=EKP.  

2. For every formula ϕ(x,y) holds:  

                ϕ is n-thick for all n<ω if and only if ϕ is ω-thick. 

 

Proof : Suppose p, q are partial types, defining cl(EL), EKP respectively. By 2.8.27 and 2.8.32, 

we may assume that p is the set of all formulas which are n-thick for all n<ω, and q is the set 

of all formulas which are ω-thick. If 1. holds, then p=q, and 2. follows. On the other hand, if 

2. holds, then clearly p=q, and 1. folows. 

q.e.d. 

 

Proposition 2.8.36 : Let 0<m<ω. The following conditions are equivalent: 

1. ∨nncn(x,y)≡ncm(x,y). 

2. ncm(x,y) contains only ω-thick formulas. 
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Proof : 1. 2.: First, we observe that if 1. holds, then EL(x,y)=∨nncn(x,y) is type-definable, 

namely by the set {ϕm : ϕ∈nc(x,y)}, hence EL=cl(EL)=EKP, and by 2.8.25, every formula 

which is n-thick for all n<ω is ω-thick. Now suppose ϕ∈ncm(x,y), hence, by hypothesis, 

EL├ϕ. From Proposition 2.8.30 folllows that ϕ is ω-thick, so 2. holds. 

2. 1.: We have to show that ∨nncn(a,b) implies ╞ncm(a,b) (the other direction is obvious). So 

suppose there is some n<ω with ╞ncn(a,b). If n≤m, then the assertion follows from 

ncn(x,y)⊇ncm(x,y). Now suppose n>m, and ¬ncm(a,b). Then ╞¬ϕ(a,b), for some ϕ∈ncm(x,y). 

Since ϕ is ω-thick, for every n<ω there is a thick formula ψ(x,y) with ╞¬ψn(a,b). It follows 

that ╞¬ncn(a,b), for all n<ω. Contradiction. Hence ╞ncm(a,b). 

q.e.d. 

 

Remark : Note that for the implication 2. 1. it is sufficient that ncm(x,y) contains only 

formulas which are n-thick for all n<ω. 

 

Proposition 2.8.37 : Let k<ω. The following is equivalent: 

1. The set A={n<ω : there is some formula ϕ such that ϕ is n-thick, but not n+1-thick} is 

finite and its maximal element is k. 

2. If some formula is k+1-thick, then it is n-thick for all n<ω. 

 

Proof : 1. 2.: If ϕ is n-thick, for n≥k+1, then it must be n+1-thick, since otherwise n would 

be an element of A, contradicting the choice of k. Now follows inductively that ϕ is n-thick 

for all n<ω. 

2. 1.: If A was infinite or its maximal element was >k, then there would exist an n≥k+1, 

n∈A, and a formula ϕ such that ϕ is n-thick, but not n+1-thick. This contradicts 2. 

q.e.d. 

 

Propostion 2.8.38 : Let 0<m<ω and let k be the smallest integer such that 2k≥m. 

1. Suppose that ncm(x,y) contains only formulas which are n-thick for all n<ω. Then the 

set A in Proposition 2.8.37 is finite and for its maximal element l holds l≤k. 
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2. Now suppose that the set A is finite and for its maximal element l holds l<k. Then 

ncm(x,y) contains only formulas which are n-thick for all n<ω. 

 

Proof :  Suppose that the set A in Proposition 2.8.37 is infinite or its maximal element l is 

greater than k. Then 2l>m, and there is some formula ϕ such that ϕ is l-thick and not l+1-

thick. It does not hold EL(x,y)├ϕ(x,y) since otherwise ϕ would be n-thick for all n<ω, by 

Proposition 2.8.30. So there are a, b such that EL(a,b)=∨nncn(a,b) and ╞¬ϕ(a,b) hold. Since ϕ 

is l-thick, by 2.8.25.2, there is some thick formula ψ with ╞¬ψj(a,b), where j=2l-1. But 

ψj∈ncj(x,y)⊆ncm(x,y), since j=2l-1≥m. So ¬ncm(a,b) holds.  

Claim : For all n<ω holds ¬ncn(a,b). 

Proof of the claim: It is clearly true for all n≤m, since ncm(x,y)⊆ncn(x,y). Now suppose n>m. 

Since ncm(x,y) contains only formulas which are n-thick for all n<ω, by Observation 2.8.25.5, 

there is some thick formula ψ with ╞¬ψn(a,b), whence ¬ncn(a,b). This proves the claim. 

q.e.d. Claim. 

So we have ¬∨nncn(a,b), hence ¬EL(a,b). This contradicts our hypothesis EL(a,b). Hence k is 

an upper bound of A. 

q.e.d.1. 

2.: Let j=2l. We have j<m. Let ϕ be a thick formula with ϕm∈ncm(x,y). By  Observation 

2.8.25.6, ϕj is l+1-thick, whence n-thick for all n<ω, by Proposition 2.8.37. Since j<m, we 

have ϕj├ϕm, so ϕm is also n-thick for all n<ω. This proves the assertion. 

q.e.d.2. 

 

Corollary 2.8.39 : Let 0<m<ω. The following conditions are equivalent: 

1. ∨nncn(x,y)≡ncm(x,y). 

2. ncm(x,y) contains only ω-thick formulas. 

3. The set A={n<ω : there is some formula ϕ such that ϕ is n-thick, not n+1-thick} is 

finite. 

4. There exists some k<ω with the property: If some formula is k-thick, then it is n-thick 

for all n<ω. 
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Proof : Propositions 2.8.37, 2.8.38. 

q.e.d.  

 

The previous results are valid in any compete theory. In the following we shall study these 

subjects in the context of simple theories. 

 

Proposition 2.8.40 : Let T be simple, and a0┴Aa1. Then the following are equivalent: 

1. Lstp(a0/A)=Lstp(a1/A). 

2. There is a Morley sequence (ai : i<ω) over A. 

3. There is an A-indiscernible sequence (ai : i<ω). 

 

Proof : 2. 3. is trivial, and 3. 1. follows from Lemma 2.8.6. So assume 

Lstp(a0/A)=Lstp(a1/A). By Theorem 2.6.15, there is a model M containing A such that 

tp(a0/M)=tp(a1/M) and a0a1┴AM. We now construct an M-independent sequence (ai : i<ω) 

such that tp(aiaj/M)=tp(a0a1/M) for all i<j<ω. We can clearly start with a0a1, since a0┴Ma1. 

Suppose we have already found (ai : i<n) for some n<ω, and let pi(x) be the conjugate of 

tp(a1/Ma0) over Mai for all i<n. By Corollary 2.6.10 there is an an realizing ∪i<npi with 

an┴M(ai : i<n). Then tp(aian/M)=tp(a0a1/M), and we are done. 

ai┴AM, and ai╞tp(a0/A), for all i<ω. So M-independence is type-definable as “D(ai/Maj : 

j<i,ϕ,k)≥D(a0/A,ϕ,k) for all formulas ϕ and all k<ω” (see Remark 2.4.3). Then any finite 

subset of the set of formulas expressing that there is an infinite M-indiscernible, M-

independent sequence (ai
’ : i<ω) in tp(a0/M), with tp(a0’a1’/M)=tp(a0a1/M), is satisfiable by 

Ramsey’s Theorem. By compactness, and conjugating a0’a1’ to a0a1, we are done. 

q.e.d. 

 

Proposition 2.8.41 : Let T be simple. Then for any sequence a and any sets A⊆B there exists 

b┴AB such that Lstp(a/A)=Lstp(b/A). 

 

Proof : Let M⊇A be a model such that a┴AM (see Proposition 2.4.19(ii) for the existence of 

such M). Choose any b╞tp(a/M) with b┴MB (see 2.4.19(ii) again). Transitivity of non-forking 

implies b┴AB.   
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q.e.d. 

 

Proposition 2.8.42 : Let T be simple. 

1. If a┴Ab, then ╞ncA(a,b) if and only if Lstp(a/A)=Lstp(b/A). 

2. The following conditions are equivalent: 

(i) Lstp(a/A)=Lstp(b/A). 

(ii) ncA(x,a)∪ncA(x,b) does not fork over A. 

(iii) ncA(x,a)∪ncA(x,b) is consistent. 

 

Proof : 1.: Follows from Proposition 2.8.16 and Proposition 2.8.40. 

2.(i)⇒(ii): By Proposition 2.8.41, we may choose a sequence c with Lstp(c/A)=Lstp(a/A) and 

c┴Aab. Now we use 1. to show that ╞ncA(c,a)∪ncA(c,b). (ii)⇒(iii) is clear. (iii)⇒(i) by 

Lemma 2.8.6 and Proposition 2.8.26. 

q.e.d. 

 

By some of the previous results of the author we are now able to prove the following: 

  

Corollary 2.8.43 : If T is simple, then equality of Lascar strong type is type-definable. More 

precisely, for every set A and tuples x, y of the same length, Lstp(x/A)=Lstp(y/A) is given by 

a partial type rA(x,y). Furthermore, rA=∪{ra : a∈A, a is finite}. So Lstp(x/A)=Lstp(y/A) if and 

only if Lstp(x/a)=Lstp(y/a) for all finite a∈A. 

 

Proof : By Proposition 2.8.42, Lstp(a/A)=Lstp(b/A) if and only if ╞ncA
2(a,b). So equality of 

Lascar strong type is type-definable by the set {ϕ2(x,y) : ϕ∈ncA(x,y)}. The rest of the 

assertion is clear. 

q.e.d. 

 

Corollary 2.8.44 : If T is simple, then the following hold: 

1. EL=cl(EL)=EKP. 

2. ∨nncn(x,y)≡nc2(x,y). 

3. nc2(x,y) contains only ω-thick formulas. 
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4. Every formula which is n-thick for all n<ω is ω-thick. 

5. If some formula is 2-thick, then it is ω-thick. 

 

Proof : The assertions follow immediately from the previous results of this chapter. 

q.e.d. 

 

Definition 2.8.45 : Let a, b arbitrary sequences. We define dA(a,b) as the least n<ω with the 

property that there are sequences a0,…,an and infinite sets I0,…In-1 such that a0=a, an=b and for 

every i, aiIi and ai+1Ii are A-indiscernibles. If there is no such n, we put dA(a,b)=∞. 

 

Proposition 2.8.46 :  

1. If M⊇A and tp(a/M)=tp(b/M), then dA(a,b)=1. 

2. Lstp(a/A)=Lstp(b/A) if and only if dA(a,b)<ω. 

3. If T is simple, then Lstp(a/A)=Lstp(b/A) if and only if dA(a,b)≤2. 

 

Proof : 1.: Let N be an card(M)+-saturated elementary extension of M, and let I⊆N be an 

infinite coheir sequence of tp(a/M) over M∪{a,b}. Then both aI and bI are coheir sequences 

over M and therefore M-indiscernible.  

2.: The direction from left to right follows from 1. and the definition of Lascar strong type. 

For  the other direction it is enough to show that dA(a,b)=1 implies Lstp(a/A)=Lstp(b/A). This 

follows from Lemma 2.8.6 and the transitivity of equality of Lascar strong type.  

3.: Let T be simple and Lstp(a/A)=Lstp(b/A). Choose c such that c┴Aab and 

Lstp(c/A)=Lstp(a/A) (see 2.8.41). By Theorem 2.6.15, there is some model M⊇A with 

tp(a/M)=tp(c/M). By 1., dA(a,c)=1. At the same way, dA(c,b)=1. Hence, dA(a,b)≤2. 

The other direction is clear, by 2. 

q.e.d. 

 

Remark 2.8.47 : The previous Proposition implies once more the type-definability of equality 

of Lascar strong types in simple theories, since dA(x,y)≤2 can be expressed by a partial type 

over A. 
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2.9  Hyperimaginaries 
 

Hyperimaginaries appear in simple theories as canonical bases (see [HKP]). The reason why 

we are interested in hyperimaginaries is essentially that they allow to reduce the concept of 

Lascar strong types to that one of strong types (types over algebraically closed sets), and 

moreover, that the elimination of hyperimaginaries implies the equivalence of Lascar strong 

types and strong types (see the discussion below). The elimination of hyperimaginaries (and 

the resulting equivalence of Lascar strong types with strong types) is considered as the main 

problem in simple theories. 

We shall present only some definitions and results concerning hyperimaginaries, sufficient 

just for our objectives. Lemma 2.9.14 is due to the author and is a considerable improvement 

of a result of Casanovas given as Lemma 2.9.14’. As conclusions we get some of the main 

results, 2.9.16 and 2.9.17.  

We would like to mention that there was developed an extensive theory of hyperimaginaries 

([HKP],[LaP]), including a theory of forking of hyperimaginaries, showing that these objects 

in many aspects can be treated like elements of the model. However, the main objective of the 

theory of hyperimaginaries is to try to show that they can be eliminated. This could be proved 

for the subclass of supersimple theories [BPW], but remains open for simple theories in 

general.  

 

In the following we shall treat equivalence relations E(x,y), that are type-definable by some 

type p(x,y). To simplify matters, we often identify E with the type which defines it. 

 

Definition 2.9.1 : Let x, y be sequences of the same length α. A type-definable equivalence 

relation E(x,y) is countable if α and the partial type definaing α are countable; E is finitary if 

α is finite. 

 

Lemma 2.9.2 : If E(x,y) is a type-definable equivalence relation, then for some index set I 

there are type-definable countable equivalence relations {Ei(xi,yi) : i∈I}, with xi⊆x and yi⊆y 

for all i∈I, such that ╞E(x,y) if and only if ╞Ei(xi,yi) for all i∈I. 
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Proof : Since E is a type-definable equivalence relation, and hence symmetric and transitive, 

compactness implies that for every formula ϕ(x,y)∈E there is a formula ϕ’(x,y)∈E such that 

ϕ’(x,y)∧ϕ’(y,z) implies ϕ(x,z)∧ϕ(y,z). For every formula ϕi∈E let Ei be the closure of ϕi 

under the operation which assigns to ϕ the formula ϕ’. It is easy to see that Ei is reflexive, 

symmetric and transitive, and thus a type definable countable equivalence relation. Clearly 

∧i∈IEi is equivalent to E. 

q.e.d. 

 

Definition 2.9.3 : Let E(x,y) be an equivalence relation, type-definable over ∅. If a is a tuple 

of the same length as x (and y), then we denote the class a modulo E by a/E and call such a 

quantity a hyperimaginary element of type E. An hyperimaginary is countable or finitary if E 

is countable or finitary, respectively. 

If M is a model, then Mheq is M together with the collection of all countable hyperimaginaries 

modulo type-definable equivalence relations over ∅. 

 

If e is an hyperimaginary, then by Aut(C/e) we mean the set {f∈Aut(C) : f(e)=e}. 

 

Observation 2.9.4 : 

1. Every real or imaginary element is an hyperimaginary element. Every sequence of real 

or imaginary elements can be considered as an hyperimaginary. Every sequence of 

hyperimaginaries can be considered as an hyperimaginary. 

2. Let A be any set (of hyperimaginaries). Then there is some hyperimaginary e such that 

Aut(C/A)=Aut(C/e). 

3. Every automorphism of some model M extends uniquely to an automorphism of Mheq. 

4. By Lemma 2.9.2, we may restrict our attention to countable hyperimaginaries, since 

every hyperimaginary is equivalent to a set of countable hyperimaginaries (in the 

sense that any automorphism fixing the hyperimaginary also fix the set of countable 

hyperimaginaries). 

 



 88 

Proof :  The first observation of 1. is clear. If a=(ai : i∈I), b=(bi : i∈I) are sequences of 

imaginaries, then define E(a,b) if and only if ai=bi for all i∈I. Now, any automorphism which 

fixes a also fixes the hyperimaginary a/E.  

If e=(ei : i∈I) is a sequence of hyperimaginaries ei=ai/Ei, then e can be considerated as the 

hypermaginary (ai : i∈I)/E, where E((bi : i∈I),(ci : i∈I)) if and only if Ei(bi,ci) for all i∈I. 

2.: We may consider A as a sequence by enumerating its elements. Then the assertion follows 

from 1. 

3.: Is clear, since for any automorphism f must hold f(a/E)=f(a)/E, for every hyperimaginary 

a/E. 

q.e.d. 

 

Definition 2.9.5 : Let A be a set (possibly containing hyperimaginaries). 

1. The (hyperimaginary) definable closure of A, denoted dcl(A), is the set of all 

countable hyperimaginaries which are fixed under all A-automorphisms. 

2. The (hyperimaginary) algebraic closure of A, denoted acl(A), is the set of all 

countable hyperimaginaries which have only finitely many images under A-

automorphisms. 

3. The (hyperimaginary) bounded closure of A, denoted bdd(A), is the set of all 

countable hyperimaginaries which have only boundedly many (i.e. less than κ) 

images under A-automorphisms. 

 

We say that an hyperimaginary a/E is bounded, if it has bounded orbit in Aut(C), whence if 

a/E is in bdd(∅). This happens in particular if E is a bounded equivalence relation. For ex., all 

classes of EKP are bounded hyperimaginaries. M. Ziegler [Z] recently has proved, using thick 

formulas, the other direction: If a/E is a bounded hyperimaginary, then E must be a bounded 

relation. 

 

If we want to emphasize that we take the hyperimaginary definable or algebraic closure, we 

may indicate this by a superscript heq.  

We shall call two sets A and B interdefinable (resp. interalgebraic or interbounded) if  

dcl(A)=dcl(B) (resp. acl(A)=acl(B) or bdd(A)=bdd(B)). 
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Remark 2.9.6 : 

1. Every hyperimaginary is interdefinable with a sequence of countable 

hyperimaginaries. 

2. If e is an imaginary element in bdd(A), then e is in acl(A). 

3. If e is an uncountable hyperimaginary fixed under all A-automorphisms, we shall still 

say that e∈dcl(A) (and similarly for the algebraic and bounded closures). In this sense, 

A⊆dcl(A)⊆acl(A)⊆bdd(A). 

4. If a/E∈bdd(A) then for every formula ϕ(x,y)∈E(x,y) there are some ψ(x)∈tp(a/A) and 

some n(ϕ)<ω such that ∧0≤i<j<n(ϕ)[ψ(xi)∧¬ϕ(xi,xj)] is inconsistent. 

 

Proof : 1. is Observation 2.9.4.3 and follows from Lemma 2.9.2.  

2.: If e∉acl(A), and e an imaginary element, then compactness implies that there are α many 

realizations of tp(e/A) for every ordinal α. Hence, e∉bdd(A). 

4.: Suppose ϕ∈E(x,y) and there is a sequence (ai : i<ω) with ai╞tp(a/A) such that ╞¬ϕ(ai,aj) 

for all i<j<ω. Then compactness implies that there is such sequence of arbitrary cardinality λ. 

Hence, ╞¬E(ai,aj) for all i<j<λ, and a/E can not be in the bounded closure of A. 

5.: We may consider A as a sequence (ai : i<λ), enumerating its elements. Now, this sequence 

is interdefinable with some hyperimaginary e=(ai : i<λ)/E, where 

q.e.d. 

 

We shall now define the notion of types of hyperimaginaries. This suggests to treat 

hyperimaginaries in the same way like imaginaries and it is possible in many occasions. 

However, hyperimaginaries are not elements of the model.  

As we have seen in Observation 2.9.4.2, instead of sets it is sufficient to consider 

hyperimaginaries. 

 

Definition 2.9.7 :  

1. If p and q are two partial types with p├q and q├p, we shall say that p and q are 

equivalent, and denote this by p≡q. 
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2. Let E be a type-definable equivalence relation. A partial E-type is a type p(x) which is 

invariant under E, i.e. whenever E(a,a’) holds, then ╞p(a) if and only if ╞p(a’). A 

partial type over a hyperimaginary a/E is a partial type over some parameters A, such 

that for any a/E-automorphism f we have p(x)≡f(p(x)). 

 

Lemma 2.9.8 : If p(x) is a partial type over a/E and a/E∈dcl(B), then there is a partial type p’ 

over B equivalent to p. 

 

Proof : Suppose p=p(x) is a partial type over a/E with parameters A. Define q(x) as  

                                                        ∃X╞tp(A/B)∧p(x,X). 

Clearly, p├q, as A witnesses the existential quantifier. Conversely, if c╞q, there is 

A’╞tp(A/B) with ╞p(c,A’). So there is a B-automorphism mapping A’ to A; since 

a/E∈dcl(B), this is in fact an a/E-automorphism. Hence p(x,A’)├p(x,A)=p, and ╞p(c). 

q.e.d. 

 

Definition 2.9.9 : Let e=a/E and d=b/F be two hyperimaginaries. For every formula ϕ(x,y) let 

ϕE,F(x,y) be the partial type  

                                                      ∃x’y’(E(x,x’)∧F(y,y’)∧ϕ(x’,y’)). 

(That is, ϕE,F(x,y)={∃x’y’ψ1(x,x’)∧ψ2(y,y’)∧ϕ(x’,y’) : ψ1∈E ,ψ2∈F}.) 

Then we define tp(e/d) as the union of all partial types ϕE,F(x,b) associated to all formulas 

ϕ(x,y) with the property ╞ϕ(a’,b’) for some a’, b’ such that E(a,a’) and F(b,b’) hold. 

 

Remark 2.9.10 : tp(e/d) in Definition 2.9.9 is a partial type over b. It is easy to see that the 

choice of another representative for d=b/F yields an equivalent type. 

To say that an hyperimaginary a/E realizes a partial type p only makes sense if p is an E-type. 

Clearly, tp(e/d) is a partial E-type. The following Lemma shows that tp(e/d) is a partial E-type 

over the hyperimaginary d. 

 

Lemma 2.9.11 : Let e, e’, d be hyperimaginaries. Then tp(e/d)≡tp(e’/d) if and only if there is 

an automorphism which fix d (as an hyperimaginary, that is, setwise) and maps e to e’. 
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Proof : If tp(e/d)≡tp(e’/d), then e’ realizes tp(e/d). As established in Remark 2.9.10, e and e’ 

must be hyperimaginaries of the same type E. So we may assume that e=a/E, e’=a’/E, d=b/F.  

Claim : The set p(x,y)=E(x,a’)∪F(y,b)∪[tp(a,b)=tp(x,y)] is consistent. 

Proof : Trivially we have E(a,a) and F(b,b). Note that e’ realizes tp(e/d), whence ╞ϕE,F(a’,b) 

holds for every ϕ∈tp(a,b). So for every ϕ∈tp(a,b) there are u, v such that 

E(u,a’)∧F(v,b)∧ϕ(u,v) holds. Compactness then implies the consistency of p(x,y). 

q.e.d. Claim. 

If a0, b0 realize p(x,y), then E(a0,a’) and F(b0,b) and there is an automorphism which maps a in 

a0 and b in b0. Clearly, this automorphism transforms e in e’ and fixes d. 

Conversely, suppose that there is such an automorphism f. If d=b/F, then tp(e/d) is a partial 

type over b. Hence, f(tp(e/d))=q is a partial type over f(b). q is equivalent to tp(e/d), since the 

definition of hyperimaginary types does not depend on the choice of the representatives. So it 

is sufficient to show that q is realized by e’=a’/E=f(e)=f(a/E)=f(a)/E. But this is clear, since 

the fact that ϕE,F(x,b) is realized by a implies that ϕE,F(x,f(b)) is realized by f(a). 

q.e.d. 

 

Observation 2.9.12 :  

Now, analogous to Lemma 2.2.10, it is easy to see that for hyperimaginaries e, d hold: 

e∈dcl(d) if and only if the type tp(e/d) is realized only by e; and e∈bdd(d) if and only if the 

type tp(e/d) has only a bounded number of hyperimaginary realizations. 

From this observation it follows quickly that for any hyperimaginary e and any automorphism 

f∈Aut(C) holds:  f(dcl(e))=dcl(f(e)), and f(bdd(e))=bdd(f(e)). 

 

Hyperiaginaries are classes of equivalence relations which are definable over the empty set. In 

order to prove a result which connects Lascar strong types to the concept of hyperimaginaries 

we need a slightly more general notion. The following definition and results was developed 

when the author of this thesis was studying under the orientation of Prof. Casanovas [Cas4] at 

the University of Barcelona. Lemma 2.9.14 is due to the author.  
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Definition 2.9.13 : An A-hyperimaginary is the equivalence class a/E of some sequence a and 

an equivalence relation E which is type-definable over the set A. 

 

Every hyperimaginary is an A-hyperimaginary, but the converse is not true. However, we 

have been able to show that every A-hyperimaginary is equivalent to an hyperimaginary: 

 

Lemma 2.9.14 : If e is an A-hyperimaginary, then there exists an hyperimaginary e’ such that 

e and e’ are interdefinable, that is, dcl(e)=dcl(e’). If e has bounded orbit under A-

automorphisms, we may assume that e’∈bdd(A). 

 

Proof : Let A be a set, a an enumeration of A, and let Ea=E(x,y;a) be an equivalence relation, 

type-definable over the set A. Let e=b/Ea be the class of all sequences which are Ea-equivalent 

to b. We define the relation E’ by 

                         E’(xz,yu)  if and only if  (z╞tp(a)∧u╞tp(a)∧∀v(Ez(x,v)↔Eu(y,v))∨xz=yu. 

Claim: E’ is an equivalence relation, type-definable over ∅. 

Proof of the Claim: E’ is clearly type-definable over ∅. It is easy to see that E’ is reflexive 

and symmetric. We show symmetry. Suppose E’(cc’,dd’)∧E’(dd’,ff’). The case cc’=dd’ or 

dd’=ff’ is easy to prove. So we may assume that c’,d’,f’╞tp(a), ∀v(Ec’(c,v)↔Ed’(d,v)) and 

∀v(Ed’(d,v)↔Ef’(f,v)). Then follows ∀v(Ec’(c,v)↔Ef’(f,v)), whence, E’(cc’,ff’) holds, and E’ 

is transitive. q.e.d. Claim. 

Now we consider the hyperimaginary e’=ba/E’. We show that e’ has the desired properties. 

Let f∈Aut(C) fix e and put b’a’=f(ba). Then holds Ea(b,b’). Since Ea’(b’,b’), we obtain 

E’(ba,b’a’), and f fix e’. For the converse, suppose that f∈Aut(C) fix e’, whence E’(ba,b’a’), 

where b’a’=f(ba). This means that b/Ea=b’/Ea’. Then f(e)=f(b/Ea)=b’/Ea’=b/Ea=e. So 

dcl(e)=dcl(e’).  

If e has a bounded number of images of A-automorphisms, then the same must hold for e’. In 

this case, if e’ is a countable hyperimaginary, then e’∈bdd(A). If e’ is not countable, then it is  

interdefinable with a sequence of countable hyperimaginaries (by Lemma 2.9.2), all elements 

of bdd(A). 

q.e.d. 
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Remark : There is a weaker version of Lemma 2.9.14. We would like to quote it as Lemma 

2.9.14’. 

 

Lemma 2.9.14’ : If e is an A-hyperimaginary, then there exists an hyperimaginary e’ such 

that Aut(C/eA)=Aut(C/e’), that is, dcl(eA)=dcl(e’). If e has bounded orbit under A-

automorphisms, we may assume that  e’∈bdd(A).  

 

Proof : Let e=b/E, where E is an over A type-definable equivalence relation. Let a be a 

sequence enumerating A and put E=E(x,y;a). We define 

                                            E’(xz,yu) if and only if (z=u╞tp(a)∧E(x,y;z))∨xz=yu. 

This is an over ∅ type-definable equivalence relation. It is easy to see that for e’=ba/E’ holds 

Aut(C/eA)=Aut(C/e’). If e has a bounded number of images of A-automorphisms, then the 

same must hold for e’. In this case, if e’ is a countable hyperimaginary, then e’∈bdd(A), 

otherwise e’ is interdefinable with a sequence of countable hyperimaginaries (by Lemma 

2.9.2), all elements of bdd(A). 

q.e.d. 

 

Proposition 2.9.15 : For every hyperimaginary e, the relation  

                                                           F(x,y) if and only if tp(x/e)=tp(y/e) 

is type-definable over any representative of e. 

 

Proof : Let e=a/E. Consider the partial type over a defined by ∃u(E(a,u)∧tp(xa)=tp(yu)). This 

type clearly says that there is an automorphism fixing e and mapping x to y. So it defines 

F(x,y). 

q.e.d. 

 

Lemma 2.9.16 : EKP
A(a,b) if and only if tp(a/bdd(A))=tp(b/bdd(A)). 

 

Proof : Enumerating bdd(A) as a sequence of (countable) hyperimaginaries it can be coded 

into an hyperimaginary e  (Observation 2.9.4). The relation E(x,y) defined by E(a,b) if and 

only if tp(a/bdd(A))=tp(b/bdd(A)) is bounded, since there are at most 2T+card(bdd(A))+card(x) many 



 94 

types tp(x/bdd(A)). It is type-definable over some representative of e, by Proposition 2.9.15. 

Since E(x,y) is A-invariant, it is type-definable over A (see the Fact following Definition 

2.2.1). Hence, EKP
A⊆E.  

For the other direction let us suppose that E(a,b) holds. Consider e=a/EKP
A. This is an A-

hyperimaginary with a bounded orbit of A-automorphisms, since EKP
A is bounded. By Lemma 

2.9.14, there is an hyperimaginary e’ with dcl(e’)=dcl(e), and we may assume that e’∈bdd(A). 

By hypothesis, there is an automorphism f fixing bdd(A) and mapping a to b. Hence f fix e’ 

and therefore f fix e (e∈dcl(e’)). This means that e=a/EKP
A=b/EKP

A, whence EKP
A(a,b). 

Whence E⊆EKP
A. 

q.e.d.   

 

Corollary 2.9.17 : If T is a simple theory, then  

                                   Lstp(a/A)=Lstp(b/A) if and only if tp(a/bdd(A))=tp(b/bdd(A)). 

 

Proof : In an arbitrary theory Lstp(a/A)=Lstp(b/A) holds if and only if EL
A(a,b), by 2.8.20. If 

the theory is simple, then, by Corollary 2.8.43, EL is type-definable, that is EL=EKP. Now the 

assertion follows from the previous Lemma. 

Q.e.d.  

 

In the following we shall treat equivalence relations which are restricted to a complete type. If 

R is a relation between I-sequences, x is an I-sequence of variables and p(x) a type, then Rp 

will denote the restriction of R to p(C), that is, Rp={(a,b)∈R : a╞p and b╞p}. 

 

Definition 2.9.18 : We say that T eliminates hyperimaginaries (or T has elimination of 

hyperimaginaries) if every hyperimaginary e is equivalent to a sequence of imaginaries, that 

is, there exists a sequence of imaginaries (ei : i∈I) such that dcl(e)=dcl(ei : i∈I). 

 

Proposition 2.9.19 : T eliminates hyperimaginaries if and only if for every type p(x)∈S(∅) 

and every type-definable (over ∅) equivalence relation E between realizations of p there is a 

family (Ei : i∈I) of definable equivalence relations such that E=(∩i∈IEi)p. In fact, it is 
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sufficient to consider definable relations Ei such that their restrictions Eip are equivalence 

relations. 

 

Proof : First, we give the reason why it is sufficient to consider definable relations Ei whose 

restriction on p are equivalence relations: In this case we have p(x)├Ei(x,x), 

p(x)∪p(y)├Ei(x,y)→Ei(y,x), and p(x)∪p(y)∪p(z)├Ei(x,y)∧Ei(y,z)→Ei(x,z). So, by 

compactness, there is some formula ϕi∈p(x) with these properties. If we define: Fi(x,y) if and 

only if ϕi(x)∧ϕi(y)∧Ei(x,y), then Fi(x,y) is a definable equivalence relation, and 

(∩i∈IEi)p=(∩i∈IFi)p. 

 The direction from right to left is clear: Suppose that e=a/E is an hyperimaginary, and in 

p(x)=tp(a) the equivalence relation E coincides with the intersection ∩i∈IEi of definable 

equivalence relations Ei. Then dcl(e)=dcl(ei : i∈I), where ei=ai/Ei, and ai is the corresponding 

finite subsequence of a. 

For the other direction suppose that E(x,y) is an equivalence relation in p(x)∈S(∅), type-

defined over ∅. Let a╞p. By hypothesis, the hyperimaginary e=a/E is interdefinable with 

some sequence (ei : i∈I) of imaginaries ei=ai/Ei.  

Claim : Let q(x,(yi : i∈I))=tp(a,(ai : i∈I)). Then the following hold: 

1. E’(x,x’)∪q(x,(yi : i∈I))∪q(x’,(zi : i∈I))├Ej(yj,zj), for all j∈I. 

2. There is some j∈I such that: ¬E(x,x’)∪q(x,(yi : i∈I))∪q(x’,(zi : i∈I))├¬Ej(yj,zj) 

3. ╞q(a,(ai : i∈I)) 

4. p(x)├∃y(q(x,y)) 

Proof of the Claim: First, we note that if e=a/E is interdefinable with a sequence (ei : i∈I) of 

imaginaries ei=ai/Ei, then any hyperimaginary b/E, with tp(b)=tp(a)=p(x), is interdefinable 

with some sequence (di : i∈I) of imaginaries di=bi/Ei, with bi╞tp(ai). This follows immediately 

from Observation 2.9.12. 

1.: q(b,(bi : i∈I))∪q(c,(ci : i∈I)) says that there is an automorphism f mapping b to c and bi to 

ci for all i∈I. So f maps b/E to c/E. If additional E(b,c) holds, then b/E=c/E, that is, f fix b/E. 

Then f must fix all bi/Ei, that is, bi/Ei=ci/Ei must hold for all i∈I, since dcl(b/E)=dcl((bi/Ei : 

i∈I)) and dcl(c/E)=dcl((ci/Ei : i∈I). 
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2.: If ╞Ei(yi,zi) for all i∈I, and Suppose there is an automorphism f mapping x to x’ and (yi : 

i∈I) to (zi : i∈I), which is expressed by the type q, and additional ╞¬E(x,x’). Then, by 

interdefinabilty of x/E and (yi/Ei : i∈I), x’/E and (zi/Ei : i∈I), respectively, there must be at 

least one i∈I such that ╞¬Ei(yi,zi).  

3.: is obvious. 

4.: Let b╞p(x). Then there is an automorphism mapping a to b. This automorphism maps ai to 

some bi, since q(x,(yi : i∈I))=tp(a,(ai : i∈I)). Then q(b,(bi : i∈I))=tp(a,(ai : i∈I)). 

Q.e.d. Claim. 

By compactness, there is some formula ψ(x,y)∈q such that ψ satisfies 2. of the Claim, and for 

every j∈I there is ψj(x,y)∈q which satisfies 1. of the Claim. Put ϕi(x,y)=ψi(x,y)∧ψ(x,y) for all 

i∈I. Then ϕi has the same properties 1.-4. as the type q. Now we define  

                                              Fi(y,z)  if and only if  ∃uv(Ei(u,v)∧ϕi(y,u)∧ϕi(z,v)). 

Clearly, Fi(y,z) is a definable relation. It is easy to check that Fi is reflexive and symmetric. 

For transitivity suppose that ╞Fi(a,b)∧Fi(b,c). That means that there are u, v and u’, v’ such 

that ╞Ei(u,v)∧ϕi(a,u)∧ϕi(b,v)∧Ei(u’,v’)∧ϕi(b,u’)∧ϕi(c,v’). Since ╞E(b,b)∧ϕi(b,v)∧ϕi(b,u’) we 

get ╞Ei(v,u’), by 1. Then ╞Ei(u,v)∧Ei(v,u’)∧Ei(u’,v’) yields ╞Ei(u,v’). Since 

╞ϕi(a,u)∧ϕi(c,v’), we get ╞Fi(a,c), and Fi is transitive. So Fi is an equivalence relation. 

Now suppose ╞E(b,c). By 1. and 4. follows that there are bi, ci such that ╞Ei(bi,ci) for all i∈I. 

Hence, Fi(b,c) for all i∈I.  

Now suppose ╞Fi(b,c) for b, c╞p(x) and all i∈I. Then by 2. follows that ╞E(b,c). 

Hence, E=(∩i∈IFi)p. 

q.e.d. 

 

Proposition 2.9.20 : Let A be a set. If T eliminates hyperimaginaries, then T(A) also  

eliminates hyperimaginaries. 

 

Proof : Let e=a/E be a hyperimaginary in T(A). E is type-definable over A and e is an A-

hyperimaginary in T. By Lemma 2.9.14’, there is an hyperimaginary e’ in T, such that 

dcl(eA)=dcl(e’). Since T eliminates hyperimaginaries, e’ is equivalent to a sequence of 

imaginaries. Then in e is equivalent to this sequence in T(A). 
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q.e.d. 

 

Proposition 2.9.21 : Let A be a set. If T eliminates hyperimaginaries, then T eliminates A-

hyperimaginaries. (That is, every A-hyperimaginary is interdefinable with a sequence of 

imaginaries). 

 

Proof : Let e=a/E be an A-hyperimaginary, where E=E(x,y;A) is type-definable over A. By 

Lemma 2.9.14, there is a hyperimaginary e’ interdefinable with e. By hypothesis, e’ is 

interdefinable with a sequence of imaginaries. This proves the assertion. 

q.e.d.  

 

 

2.10   Strong types and the “Lstp=stp” problem 
 

In the Independence Theorem over a model (Corollary 2.6.9) we have seen that in simple 

theories two non-forking extensions of a type over a model can be amalgamated, that is, they 

have a common non-forking extension. Pillay and Kim [Kim1] found a generalization of the 

Independence Theorem over a model, namely the Independence Theorem for Lascar strong 

types (Theorem 2.6.16). By Corollary 2.9.17, we know that in simple theories a Lascar strong 

type of a sequence c over some set A is the same as the type of c over bdd(A). So in Theorem 

2.6.16, now we see that the two types tp(b/AB) and tp(c/AC) are in fact non forking-

extensions of Lstp(b/A)=tp(b/bdd(A))=tp(c/bdd(A))=Lstp(c/A), since they do not fork over A. 

Moreover, b┴bdd(A)B if and only if b┴AB, and c┴bdd(A)C if and only if c┴AC. This follows 

from Transitivity of non-forking and the fact that X┴Ybdd(Y) for all X, Y (by the remark of 

Proposition 2.2.5, an indiscernible sequence over Y is also indiscernible over bdd(Y)). Hence, 

non-forking over A is equivalent to non-forking over bdd(A). So the Independence Theorem 

for Lascar strong types says that non-forking extensions of types of the form 

tp(a/bdd(A))=Lstp(a/A) can be amalgamated.  

However, bddheq(A) is a much more complicated object than acleq(A). Its elements are not 

elements of the monster model. For this reason it is desirable to reduce types over sets 

A=bdd(A) (i.e., Lascar strong types) to types over algebraically closed sets A=acl(A), in the 
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sense that holds tp(a/acl(A))╞Lstp(a/A). In this case, strong types and Lascar strong types are 

equivalent. It is easy to see that if T eliminates hyperimaginaries, then strong types and Lascar 

strong types are equivalent. The question whether this equivalence holds we shall call the 

Lstp=stp problem. We say that Lstp=stp holds, if Lascar strong types are equivalent to strong 

types. As a consequence of Lstp=stp, the Independence Theorem holds also for strong types 

over arbitrary sets (not only for Lascar strong types or types over models).  

There are subtheories of simple theories, such as the stable theories (see below) and the 

supersimple theories [BPW], which eliminate hyperimaginaries. However, the problem 

whether all simple theories eliminate hyperimaginaries remains open. The weaker Lstp=stp 

problem is solved for the class of low simple theories [Bue2].     

 

Proposition 2.10.1 : The following conditions are equivalent for a definable relation R⊆Cn. 

1. R has finite orbit in Aut(C/A). 

2. R is a union of classes of an A-definable finite equivalence relation. 

3. R is definable over acleq(A). 

4. R is definable over any model M⊇A. 

 

Proof : 1. 2.: Let R1, … ,R2 be the distinct A-conjugates of R. Consider the equivalence 

relation E defined by E(a,b) if and only if ∧1≤i≤n(a∈Ri↔b∈Ri). E is definable and A-invariant, 

whence it is definable over A (by the fact after Definition 2.2.1). It is clear that every Ri is an 

union of classes of E. 

2. 3.: Let E be a finite equivalence relation and A-definable and suppose that R is the union 

of the classes a1/E, … an/E. Assume that E is definable by ϕ(b,x,y) with b∈A. Consider the 

relation F(ux,wy) defined by F(ux,wy) if and only if [ϕ(u,x,y) is an equivalence relation in x, 

y, and u=w, and ╞ϕ(u,x,y)] or [ϕ(u,x,y) is not an equivalence relation in x, y, and x, y, w are 

arbitrary]. It is a ∅-definable equivalence relation, so bai/F is an element of Ceq. Furthermore 

it is algebraic over A since the formula ∃xfF(b,x)=z has only a finite number of realizations, 

(where fF is the function of Ceq mapping from sort i= to sort iF and satisfying 

╞∀xy(fF(x)=fF(y)↔F(x,y))). Hence, bai/F∈acleq(A) for i=1,…,n. Now we can define R by the 

formula fF(b,x)=ba1/F∨…∨fF(b,x)=ban/F. 
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3. 4.: It is clear that R is definable over every Meq⊇A, since acleq(A)⊆Meq. By Lemma 2.2.6, 

R is also definable in C over every M⊇A. 

4.: 1.: Let M be a model of cardinality κ=card(A)+card(T). If R has infinitely many A-

conjugates, then it must have at least κ+ many, by compactness. Let (Ri : i<κ+) these A-

conjugates, pairwise distinct. The hypothesis implies that every Ri is also definable over all 

models containing A, in particular over M. But there are at most κ-many possible definitions 

with parameters en M. Hence, two of the conjugates must have the same definition, whence 

are equal. This contradicts our assumption about κ+ many pairwise distinct A-conjugates, and 

R has only finitely many A-conjugates. 

q.e.d. 

 

Definition 2.10.2 : The strong type of a sequence a over a set A is defined by 

stp(a/A)=tp(acleq(A)). 

 

Remark : A stationary type extends to a unique strong type, since any extension of a type 

over some set A to acleq(A) must be a non-forking extension. 

 

Proposition 2.10.3 : stp(a/A)=stp(b/A) if and only if for every A-definable finite equivalence 

relation E, ╞E(a,b). 

 

Proof :  If E(x,y) is an A-definable finite equivalence relation, then there are b∈A and a ∅-

definable relation F(ux,wy) such that E(a,a’) if and only if F(ba,ba’) (see the proof of 

Proposition 2.10.1). But then [ba]F∈acleq(A) and stp(a/A)├fF(b,x)=[ba]F, whence ╞E(a,a’) if 

stp(a/A)=stp(a’/A). 

For the other direction, we have to show that ╞ϕ(a)↔ϕ(b) holds for all formulas over 

acleq(A). By Proposition 2.10.1, every formula ϕ(x) over acleq(A) defines an union of classes 

of an A-definable finite equivalence relation Eϕ. Now suppose ╞ϕ(a) holds. By hypothesis, 

╞Eϕ(a,b), whence ╞ϕ(b) holds.  Similary, if ╞ϕ(b) holds, then ╞Eϕ(b,a) implies ╞ϕ(a). 

q.e.d. 
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Observation 2.10.4 : ESh
A(a,b) if and only if stp(a/A)=stp(b/A). 

This follows from the definition of ESh and Proposition 2.10.3. 

 

Definition 2.10.5 : By the “Lstp=stp Problem” we mean the question whether for all 

sequences a, b of the same length and all sets A holds  

                                        Lstp(a/A)=Lstp(b/A) if and only if stp(a/A)=stp(b/A). 

If this equivalence is true in T, then we write “Lstp=stp”. 

 

Proposition 2.10.6 : ESh=EKP if and only if for any p(x)∈S(∅) and any bounded type-

definable equivalence relation E between realizations of p there is a family of definable 

equivalence relations (Ei : i∈I) such that E=(∩i∈IEi)p. It is sufficient to consider definable 

relations Ei whose restrictions Eip are equivalence relations. 

 

Proof : Suppose ╞ESh(a,b). By Observation 2.10.4, stp(a)=stp(b), in particular tp(a)=tp(b). Let 

p(x)=tp(a), and consider EKPp. By hypothesis, EKPp is the intersection of a set of  definable 

equivalence relations Ei, i∈I, between realizations of p. Since EKPp is bounded, all Ei must be 

finite, by compactness. By Proposition 2.10.3 (or even, by definition of ESh) it follows that 

╞Ei(a,b) for all i∈I, whence ╞EKP(a,b). 

For the other direction it is sufficient to show that ESh(x,y) implies E(x,y). Then E must be 

equivalent to an intersection of definable equivalence relations on tp(x). But this is obvious, 

since EKP(x,y) implies E(x,y), and EKP=ESh, by hypothesis. 

Q.e.d. 

 

Corollary 2.10.7 : If T eliminates hyperimaginaries, then ESh=EKP in T(A), for all sets A. 

 

Proof : This follows immediately from Proposition 2.9.19 and Proposition 2.10.6. 

q.e.d. 

 

Corollary 2.10.8 : Suppose that EL=EKP holds in T(A), for all sets A. If T eliminates 

hyperimaginaries, then Lstp=stp. In particular, if T is simple and eliminates hyperimaginaries, 

then Lstp=stp. 
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Proof : If the hypothesis holds, then EL=EKP=ESh in T(A), for every A, by Corollary 2.10.7. 

Then from 2.10.3 and 2.10.4 follows the assertion. If T is simple, then EL
A=EKP

A for all A, by 

2.8.43, and the assertion follows by the first statement. 

One can show the Corollary also comparing acleq(A) and bddheq(A): 

If EL=EKP in T(A) for every A, then Lstp(a/A)=Lstp(b/A) if and only if 

tp(a/bdd(A))=tp(b/bdd(A)), by 2.8.20 and 2.9.16. It is clear that Lstp(a/A)=Lstp(b/A) implies 

stp(a/A)=stp(b/A) (Recall the definition of Lascar strong type and note that for any model M,  

acl(A)⊆M, if A⊆M.) Now suppose that stp(a/A)=stp(b/A), then there is an automorphism f 

fixing acleq(A) and mapping a to b. Let e∈bdd(A) be an hyperimaginary. By hypothesis, e is 

equivalent to a sequence of imaginaries, all of them elements of bdd(A). By compactness, 

these imaginaries are elements of acleq(A). But f fix acleq(A), whence it fixes e. Since the 

choice of e∈bdd(A) was arbitrary, f fixes bdd(A) and tp(a/bdd(A))=tp(b/bdd(A). 

q.e.d. 

 

Corollary 2.10.9 : Suppose that EL=EKP in T(A), for every set A. Then Lstp=stp if and only if 

for every type p(x)∈S(A) and every  over A type-definable and A-bounded equivalence 

relation E between realizations of p there is a family (Ei : i∈I) of equivalence relations, 

definable over A, such that E=(∩i∈IEi)p. 

 

Proof : If EL=EKP, then equality of Lascar strong type is defined by EKP, by Proposition 

2.8.20. Hence, Lstp=stp if and only if EKP=ESh in T(A) for all sets A, by Observation 2.10.4. 

Now the Corollary follows from Proposition 2.10.6. 

q.e.d. 

 

 

2.11 Some subclasses of simple theories 
 

In Definition 2.5.12 we have defined the supersimple theories. In this chapter we shall define 

further subclasses of simple theories and study some of their properties. We are interested 

mainly in the Lstp=stp problem, which is solved for some subclasses but not for simple 
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theories in general. In particular, supersimple theories eliminate hyperimaginaries [BPW], 

whence Lstp=stp. 

Stable theories, which were developed by Shelah in order to classify all models of a complete 

first-order theory, are the best investigated simple theories. In stable theories a type over a 

model or an algebraic closed set has a unique non-forking extension to any superset. Hence, 

the Independence Theorem (over a model or an algebraic closed set) holds trivially in stable 

theories. Furthermore, stable theories eliminate hyperimaginaries (see [Wag]) and are simple. 

Hence, from the previous chapter follows that Lstp=stp in stable theories. 

There is a rather natural way to define further subclasses of simple theories, using the notion 

of a dividing chain (Definition 2.4.6). Buechler [Bue2] proved that some of these theories, the 

so-called low theories, satisfy Lstp=stp. For years there have been efforts by different 

researchers (Casanovas, Shami, Wagner, Buechler and others) to answer the question whether 

these and other simple theories eliminate hyperimaginaries or whether they satisfy Lstp=stp. 

It seems that these problems are rather complicated and so far remain open. However, the 

author of this thesis found a new approach to treat the Lstp=stp problem in simple theories 

which shall present in this chapter. Furthermore, the author was able to give new 

characterizations of lowness. Separating a property that we define as the independent dividing 

chain property, this leads to one of our main results: Every ω-categorical simple theory with 

the independent dividing chain property is low. (Casanovas posed the general problem 

whether ω-categorical simple theories are low in [CasWag] where he proved that ω-

categorical short theories are low.) The foundation of these results is Theorem 2.11.30, an 

improvement of an early result due to Kim [Kim1]. 

Finally, we define a new rank that allows characterizing low and short theories and has nice 

properties with respect to Morley sequences in simple theories. This rank and the new 

characterizations of low theories are promising tools for future investigations regarding the 

Lstp=stp problem and the relationships between some subclasses of simple theories.  

 

We start by treating stable theories. These are historically the most important (Shelah’s 

Classification Theory) and best investigated class of simple theories. Our interest in stable 

theories is motivated by the fact that they have some nice properties with respect to type 

amalgamation. Non-forking extensions of types over algebraically closed sets and over 
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models can be amalgamated without the need of independence of their domains. So the 

Independence Theorem in these cases holds in a very strong form. 

 

Definition 2.11.1 : A theory is λ-stable, or stable in λ, if card(S(A))≤λ for all A of size λ. A 

theory is stable if it is stable in some infinite λ. 

 

Lemma 2.11.2 : A stable theory is simple. 

 

Proof : Suppose T is not simple. Fix a cardinal λ and let λ’ be minimal with λλ’>λ. By 

Proposition 2.5.11, there is a formula ϕ which has the tree-property, and by Remark 2.4.5, 

there is a (ϕ,k)-tree A of height λ’, such that every node has λ successors. We may assume 

that k=2. But that means that over A there are λλ’ many types (consisting of the formula ϕ in 

λ’ different parameters) such that any set of k such types is inconsistent. So we may assume 

that k=2 to see that there are λλ’ many pairwise inconsistent types over A. But  

card(A)=λ<λ’=λ. So T is not stable in λ. 

q.e.d. 

 

Theorem 2.11.3 : In a stable theory, a type over a model has a unique non-forking extension 

to any superset. 

 

Proof : Suppose not, and let M be a model, p∈S(M), and p1(x,B) and p2(x,B) be two non-

forking extensions of p to a set B⊇M. We may assume that T is countable, whence there is a 

countable elementary submodel and two non-forking extensions to a countable superset. So 

we may assume that M, B are countable.  Let (Bi : i<λ) be a Morley sequence in tp(B/M). By 

Corollary 2.6.10, for every I⊆λ the partial type  

                                                    pI=(∪i∈Ip1(x,Bi))∪(∪i∉Ip2(x,Bi)) 

is consistent. But p1(x,Bi) and p2(x,Bi) are two different types for all i∈I, so they can not have 

the same realization. It follows that the family {pI : I<2λ} is pairwise incompatible. Hence, 

there are 2λ>λ types over the λ parameters M∪(∪i<λBi). So T is not λ-stable. 

q.e.d. 
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Corollary 2.11.4 : A stable theory is λ-stable for all λ with λcard(T)=λ. 

 

Proof : Let A be a set of size λ contained in a model M of size λ. Clearly it is sufficient to 

count types over M. For every p∈S(M) there is an elementary submodel Mp of size at most 

card(T), such that p does not fork over Mp (by Local Character of non-forking). p is uniquely 

determined as the non-forking extension of pMp (by the previous Theorem), and there are at 

most 2card(T) types over Mp. On the other side, there are at most λcard(T) many submodels of 

cardinality card(T). So we get card(S(M))≤λcard(T)+2card(T)=λ. 

q.e.d. 

 

Corollary 2.11.5 : A simple theory is stable if and only if every type over a model has a 

unique non-forking extension to any superset. 

 

Proof : Left to right follows follows from Theorem 2.11.3. Suppose T is simple and every 

type over a model has a unique non-forking extension. Let A be a set of size λ. There is a 

model M of size λ containing A. The proof of the previous Corollary shows that 

S(A)≤S(M)≤λ. So T is λ-stable. 

q.e.d. 

 

Corollary 2.11.6 : A type over an arbitrary set in a stable theory has at most 2card(T) non-

forking extensions to any given superset. 

 

Proof : Suppose p∈S(A) and A⊆B. Let A0⊆A be such that p does not fork over A0 and 

card(A0)≤card(T) (Local Character of non-forking), and let M⊇A0 be a model of size card(T). 

Then any non-forking extension q of p over B can be extended non-forkingly to some 

q’∈S(M∪B), and does not fork over M, by Transitivity of non-forking. So it is uniquely 

determined by q’M. As there are only 2card(T) types over M, the assertion follows. 

q.e.d. 
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Corollary 2.11.7 : In a stable theory, every type over a model or over an algabraically closed 

set (in Teq) is stationary, and hence definable. 

 

Proof : The first part follows immediately from Propositions 2.6.11 and 2.6.12, together with 

Corollary 2.11.6.  By Corollary 2.4.22, stationary types in simple theories are definable. 

q.e.d. 

 

Remark 2.11.8 : Corollary 2.11.7 (and Theorem 2..11.3) provides a very strong form of type 

amalgamation. It says that the Independence Theorem in stable theories holds over models 

and  algebraically closed sets in a trivially form, independence of sets is not necessary: Let C 

be an algebraically closed set or a model in a stable theory. If A, B are supersets of C, and 

p∈S(A) and q∈S(B) are non-forking extensions with the same restriction to C, then p∪q is 

consistent and does not fork over C, as it is part of the (unique) non-forking extension of pC 

to A∪B. 

 

Theorem 2.11.9 : Every type in a stable theory is definable. 

 

Proof : Consider p∈S(A), and let q be a non-forking extension of p to acl(A). Then q is 

definable over acl(A) (Corollary 2.4.22), since it is stationary. For any formula ϕ(x,y) 

consider the disjunction (the conjunction) of the finitely many A-conjugates of dqϕ. This is a 

formula invariant under A-automorphisms. By the Fact after Definition 2.2.1, it is definable 

over A. So the disjunction and the conjunction of the A-conjugates of dqϕ both are ϕ-

definitions for p over A. 

q.e.d. 

 

Remark 2.11.10 : Since types over algebraically closed sets are stationary in stable theories, 

every non-forking extension of p∈S(A) to B∪acl(A) is uniquely determined by its restriction 

to acl(A). Furthermore, every extension of p to acl(A) must be a non-forking extension, since 

no element of acl(A) can be in an infinite indiscernible sequence over A. If q, q’ are two non-

forking extensions of p to some superset C⊇A, then we may assume that C=acl(A). As q, q’ 

have the same restriction p over A, there is an automorphism f fixing A and mapping q to q’. 
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(This automorphism permutes acl(A), and ϕ(x,a)∈q if and only if ╞dqϕ(a) if and only if 

f(ϕ(x,a))∈q’ if and only if ╞f(dqϕ(a)), for every formula ϕ(x,y).) Hence, all (non-forking) 

extensions of p to acl(A) are A-conjugated each other. But the ϕ-definition dqϕ is over acl(A) 

and has only finitely many A-conjugates. So if we take the disjunction in the last proof, then 

we get a formula ψ(y) over A such that ψ(a) holds for any a if and only if some non-forking 

extension of p to Aa contains ϕ(x,a). Similarly, if we take the conjunction, we get a formula 

ψ’(y) over A such that ψ’(a) holds for any a if and only if all non-forking extensions of p to 

Aa contain ϕ(x,a). This is a considerable improvement on Lemma 2.4.20, where we have only 

a partial type (and not a formula) with this property. 

 

The proof of the following fact requires more theory on hyperimaginaries and the study of 

canonical bases in stable theories. One can find these matters in [Wag]. 

 

Fact 2.11.11 : A stable theory eliminates hyperimaginaries. In particular, Ltp=stp holds. 

 

We now move on to define further subclasses of simple theories by the notion of dividing 

chain. 

 

Definition 2.11.12 :  

1. A theorie T is low if for every formula ϕ(x,y) there is a natural number nϕ such that ϕ 

does not divide nϕ times. 

2. T is superlow if for every formula ϕ(x,y) there is nϕ<ω such that ∧kϕ(x,z) does not 

divide nϕ times for all k<ω, where z=y0…yk and ∧kϕ(x,z)=ϕ(x,y0)∧…∧ϕ(x,yk). 

3. T is short, if no formula divides ω many times. 

4. T is supershort, if for every formula ϕ(x,y) there is no infinite dividing chain made of 

instances of conjunctions ∧kϕ(x,z) (for varying k) of ϕ. 

 

If ϕ(x,y) divides n times for every n<ω, we say that ϕ divides arbitrarily often. 

 

Observation 2.11.13 :  
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1. T is simple if and only if no formula divides ω1 times, this follows from Proposition 

2.4.10 and Lemma 2.5.10. So simplicity of a theorie is also definable in terms of a 

dividing chain.  

2. If T is supersimple, then no formula divides ω times (see Remark 2.5.14). Hence, T is 

short. Moreover, T is also supershort: Suppose not, then there is a formula ϕ(x,y) and 

a type p={ϕ(x,bi) : i<ω}, and any finite subset (bi : i<n) is contained in a finite subset 

(bi : i<m), n≤m, such that some conjunction ϕ(x,bm)∧ϕ(x,bm+1)∧…∧ϕ(x,bm+k) divides 

over (bi : i<m). So this conjunction also divides over (bi : i<n). Hence, the type p 

divides over every finite subset of its domain, and T cannot be supersimple. 

3. If T is superlow, then T is low and supershort. Both supershort and low theories are 

short. Short theories are simple. This follows immediately from the definitions. 

4. There are examples of simple nonshort theories [Cas1], supersimple nonlow theories 

[CasKim], and low nonsupershort theories [CasWag]. 

5. Note that bounding every dividing chain by some nϕ<ω in low theories is strictly 

stronger than the absence of a dividing chain of length ω in short theories: If some 

ϕ(x,y) divides arbitrary often, this does not imply that ϕ divides ω times, since the 

“dividing numbers” k may vary and we can not apply compactness to get an infinite 

dividing chain. 

 

Remark 2.11.15 : Low theories contain all known natural examples including also the stable 

theories. (The proof of the last fact requires a deeper study of ranks in stable theories.[Bue1]) 

 

The following rank is considered in [Bue2] to define low theories. 

 

Definition 2.11.14 : The rank D(p,ϕ) is defined for a set of formulas p=p(x) and formulas 

ϕ=ϕ(x,y) by: 

1. D(p,ϕ)≥0 if and only if p is consistent 

2. D(p,ϕ)≥α+1 if and only if there is a tuple a such that ϕ(x,a) divides over the domain of 

p and D(p∪{ϕ(x,a)},ϕ)≥α 

3. If λ is a limit ordinal, then D(p,ϕ)≥λ if and only if D(p,ϕ)≥α for all α<λ. 
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Observation 2.11.15 : The rank here defined differs from the D(p,ϕ,k)-rank in Definition 

2.4.2 only by the fact that the “dividing number” k in D(p,ϕ) is not fixed and may vary. So 

clearly we have D(p,ϕ,k)≤D(p,ϕ) for all p, ϕ, k. Furthermore, it is also clear that  

D(p,ϕ)≤D(q,ϕ), if q⊆p. Hence, D(x=x,ϕ) is maximal among all D(.,ϕ). 

 

Proposition 2.11.16 : Let p=p(x) be a type and ϕ=ϕ(x,y) a formula. The following is 

equivalent for all n<ω: 

1. D(p,ϕ)≥n.  

2. There is a dividing chain (ai : i<n) in ϕ, consistent with p.  

 

Proof : We show the assertion by induction on n. If n=0, then the assertion is clear.  

So suppose it is true for some n<ω, and let D(p,ϕ)≥n+1. By definition, there is a tuple a such 

that ϕ(x,a) divides over dom(p), and D(p∧ϕ(x,a),ϕ)≥n. By induction hypothesis, there is a 

sequence (ai : i<n) such that p∪{ϕ{x,a}∪{ϕ(x,ai) : i<n} is consistent, and ϕ(x,ai) divides over 

dom(p)∪{a}∪{aj : j<i}, for all i<n. This yields a sequence of length n+1 with the desired 

properties.  

Now suppose 2. for n+1. Then by induction hypothesis, D(p∧ϕ(x,a0),ϕ)≥n (witnessed by the 

sequence (ai : 0<i<n)). Furthermore, ϕ(x,a0) divides over dom(p). Hence, D(p,ϕ)≥n+1. 

q.e.d. 

 

Observation 2.11.17 : Suppose that (ai : i<ω) is a dividing chain in ϕ(x,y), consistent with 

p(x). Then D(p,ϕ)=∞.  

(That is, D(p,ϕ) is not ordinal valued: D(p,ϕ)≥α for all ordinals α.) 

 

Proof : D(p,ϕ)>D(p∪{ϕ(x,a0)},ϕ)>D(p∪{ϕ(x,a0),ϕ(x,a1)},ϕ)>…>… is an infinite descending 

chain. If D(p,ϕ) were ordinal valued this would be a contradiction to the well ordering of 

ordinals. 

q.e.d. 
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The following result is due to the author. 

 

Proposition 2.11.18 : The following conditions are equivalent, for p=p(x) a type and ϕ 

=ϕ(x,y) a formula: 

1. D(p,ϕ)=∞. 

2. There is some tuple b such that ϕ(x,b) divides over dom(p), and D(p∧ϕ(x,b),ϕ)=∞. 

3. There exists a dividing chain (bi : i<ω) in ϕ, consistent with p. 

  

Proof : 1. 2.: Since D(p,ϕ)≥α+1 for all ordinals α, this is witnessed by tuples bα, with the 

property  

                                       D(p∧ϕ(x,bα),ϕ)≥α, and ϕ(x,bα) divides over dom(p).  

We have that for every tuple c and every f∈Aut(C/dom(p)), D(p∧ϕ(x,c),ϕ)=D(p∧ϕ(x,f(c)),ϕ), 

since ranks are invariant under automorphisms. So if D(p∧ϕ(x,bα),ϕ)≠D(p∧ϕ(x,bβ),ϕ), then 

tp(bα/dom(p))≠tp(bβ/dom(p)). Since the number of types over dom(p) is bounded, there are 

only boundedly many bα. Hence, considering the map which assign every ordinal α some bα 

with the above property, there must be some bα with D(p∧ϕ(x,bα),ϕ)≥β for all ordinals β    

(and ϕ(x,bα) divides over dom(p)). 

2. 3.: Repeating the step 1. 2. ω times yields the disired sequence. 

3. 1.: This is Observation 2.11.17. 

q.e.d. 

 

Proposition 2.11.19 : T is low if and only if D(p,ϕ)<ω for all types p and all formulas ϕ. 

 

Proof : Suppose T is low and fix a formula ϕ(x,y). Since there is some n<ω such that there 

exists no dividing chain of length n in ϕ, D(x=x,ϕ)<n, by Proposition 2.11.16. Then holds for 

all types p, D(p,ϕ)≤D(x=x,ϕ)<n. 

Now suppose that T is not low. There is a formula ϕ(x,y) such that there are dividing chains 

of arbitrary finite length in ϕ. By Proposition 2.11.16, D(x=x,ϕ)≥n for all n<ω, whence 

D(x=x,ϕ)≥ω. 

q.e.d. 
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Proposition 2.11.20 : T is short if and only if D(p,ϕ)<∞, for all p, ϕ. 

 

Proof : Suppose D(x=x,ϕ)=∞. Then by Proposition 2.11.18, there is an infinite dividing chain 

in ϕ, and T is not short. Now suppose T is not short. Then there is some formula ϕ and an 

infinite dividing chain in ϕ. By Observation 2.11.17, D(x=x,ϕ)=∞. 

q.e.d. 

 

Casanovas has recently proved [CasWag], that D(p,ϕ) has only countable ordinals values 

whenever it is ordinal valued: 

 

Proposition 2.11.21 [CasWag] : If D(p,ϕ)≥ω1, then D(p,ϕ)=∞. 

 

Proof : Let A=dom(p) and assume D(p,ϕ)≥ω1. We construct inductively a descending chain 

(In : n<ω) of cofinal subsets In of ω1 and a sequence (mn : n<ω) of natural numbers in such a 

way that for each n<ω and each i∈In we can find tuples a0
i,…,an

i such that D(p(x)∪{ϕ(x,ak
i) : 

k≤n},ϕ)≥i, and ϕ(x,ak
i) mk-divides over A∪{aj

i : j<k} for all k≤n. Once these sequence have 

been constructed, compactness implies the existence of an infinite sequence (an : n<ω) with 

the property that p(x)∪{ϕ(x,an) : n<ω} is consistent and ϕ(x,an) mn-divides over A∪{ak : 

k<n} for each n<ω. Then we obtain D(p,ϕ)=∞, see Observation 2.11.17. 

Assume we have obtained Ik and mk for all k<n. Let i∈In-1 and choose i’∈In-1 such that i’≥i+1. 

By inductive hypothesis there are (ak
i : k<n) such that D(p∪{ϕ(x,ak

i) : k<n},ϕ)≥i’ and ϕ(x,ak
i) 

mk-divides over A∪{aj
i : j<k}. Put p’=p∪{ϕ(x,ak

i) : k<n}. Since D(p’,ϕ)≥i+1, there is a tuple 

an
i and a natural number mn

i such that D(p’∪{ϕ(x,an
i)},ϕ)≥i and ϕ(x,an

i) mn
i-divides over 

A∪{ak
i : k<n}. Now consider the map which assigns to every i∈In-1 and tuple an

i the natural 

number mn
i<ω with the described properties (let mn

i be minimal to make sure that this map is 

a function). As card(In-1)>ω, we can find a subset In⊆In-1 of cardinality ω1 such that this map 

is constant in In-1, that is, for all i, j∈In, mn
i=mn

j=:mn. 

q.e.d. 
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Lemma 2.11.22 : Let T be simple. The following conditions are equivalent:  

1. T is low. 

2. For every formula ϕ(x,y) there is some k<ω such that for all tuples a the following 

holds: If ϕ(x,a) divides over ∅, witnessed by some indiscernible sequence (ai : i<ω), 

then {ϕ(x,ai) : i<ω} is k-inconsistent. Moreover, we may choose k=D(x=x,ϕ)+1. 

3. For every formula ϕ(x,y) there is some k<ω such that for all sets A and all tuples a the 

following holds: If ϕ(x,a) divides over A, witnessed by some A-indiscernible sequence 

(ai : i<ω), then {ϕ(x,ai) : i<ω} is k-inconsistent. 

4. For any formula ϕ(x,y) there is some k<ω such that D(p,ϕ,m)=D(p,ϕ,k) for all m≥k, 

and all partial types p=p(x). 

5. For any formula ϕ(x,y) there is some k<ω such that D(x=x,ϕ,m)=D(x=x,ϕ,k) for all 

m≥k. 

   

Proof : 1. 2. Let I=(ai : i<ω) and put k=D(x=x,ϕ)+1. Suppose p(x)={ϕ(x,ai) : i<k} is 

consistent. But ϕ(x,ai) divides over {aj : j<i} for every i<k. This is witnessed by I-{aj : j<i}. 

So p(x) is a dividing chain of length k>D(x=x,ϕ). This contradicts Proposition 2.11.16. 

2. 3.: If I=(ai : i<ω) witnesses that ϕ(x,a) divides over A, I also witnesses dividing over ∅. 

3. 4. Suppose p=p(x) is a type over some set A. In any case we have D(p,ϕ,m)≥D(p,ϕ,k), if 

m≥k. We show inductively that  D(p,ϕ,m)≤D(p,ϕ,k) holds for m≥k. Clearly, D(p,ϕ,m)≥0, and 

D(p,ϕ,k)≥0. Now suppose D(p,ϕ,m)≥α+1. Then there is some tuple a such that ϕ(x,a) m-

divides over A, and D(p∧ϕ(x,a),ϕ,m)≥α. Then ϕ(x,a) k-divides over A, since every m-

contradictory A-indiscernible sequence is n-contradictory by hypothesis. By induction 

hypothesis, D(p∧ϕ(x,a),ϕ,n)≥α. Hence D(p,ϕ,n)≥α+1. 

4. 5. is clear. 

5. 1.: Suppose that for any formula ϕ there is such a number k as in 5., and assume T to be  

not low. Then by Proposition 2.11.19, there is some ϕ(x,y) such that D(x=x,ϕ)≥n for all n<ω. 

Hence, by Proposition 2.11.16, for every n<ω there is a dividing chain of length n in ϕ. 

Taking the maximal “dividing numbers” mn of these chains we get D(x=x,ϕ,mn)≥n for every 

n<ω. So if we choose n>D(x=x,ϕ,k) such that mn≥k, then D(x=x,ϕ,mn)>D(x=x,ϕ,k), a 

contradiction.  
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q.e.d. 

 

Corollary 2.11.23 : Let T be low. For any formula ϕ(x,y) there is some k such that for all sets 

A and all tuples a the following holds: 

                                     ϕ(x,a) divides over A if and only if ϕ(x,a) k-divides over A. 

Furthermore, we may choose k=D(x=x,ϕ)+1. 

 

Proof : This follows immediately from Lemma 2.11.22. 

q.e.d. 

 

By our further results in this chapter, we will be able to prove that the condition in the 

preceding Corollary is not only a conclusion of lowness, but also implies lowness 

(Proposition 2.11.33). Hence, it is a convenient characterization of lowness.  

 

Corollary 2.11.24 : If T is low, then for every formula ϕ(x,y) and any set A there is a partial 

type q(y) over A such that for all tuples a the following holds: 

                                                    ϕ(x,a) divides over A if and only if ╞q(a). 

 

Proof : The partial type q(y) will express that there is an A-indiscernible sequence (yi : i<ω) of 

tp(y/A) which is k-inconsistent in ϕ(x,y) (that is, {ϕ(x,yi) : i<ω} is k-inconsistent), where k is 

the number in Corollary 2.11.23. (The proof of Lemma 2.11.22 shows that we can choose 

k=D(x=x,ϕ)+1.) 

q.e.d. 

 

Remark 2.11.25 : This result, due to Buechler [Bue2], says that dividing over any set A in a 

low theory is type-definable over A. It is the key for Buechler’s proof (see 2.11.46) that 

Lstp=stp holds in low theories. We shall see later, that any theory in which dividing is type-

definable satisfies Lstp=stp. This motivates the following definition: 
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Definition 2.11.26 : We say that dividing over A is type-definable over B in a theory T, if for 

all formulas ϕ(x,y) there is a partial type p(y) over B such that for all tuples a the following  

holds: 

                                                ϕ(x,a) divides over A if and only if ╞p(a). 

If for all sets A, dividing over A is type-definable over A in T, we say that dividing is type-

definable in T. 

 

We now look at ω-categorical theories. Recall that a theory T is called ω-categorical, if all its 

models of cardinality ω are isomorph. ω-categoricity of a theorie T is equivalent to the fact 

that the number of n-types over any finite set is finite: card(Sn(A))<ω for all n<ω and all finite 

A. This is known as the Theorem of Ryll-Nardzewski and can be found in any textbook of 

model theory.  

 

Proposition 2.11.27 [CasWag] : An ω-categorical short theory is low. More precisely, if T is 

ω-categorical and ϕ(x,y) divides arbitrary often, then ϕ(x,y) divides ω times.  

 

Proof : Consider the tree where the nodes at level n are types q(yi : i<n), such that (ai : i<n)╞q 

implies ϕ(x,ai) divides over (aj : j<i) for all i<n, and {ϕ(x,ai) : i<n} is consistent. Let successor 

be extension of the type. Since ϕ(x,y) divides arbitrarily often, the tree has arbitrarily long 

branches. By ω-categoricity it is finitely branching and hence has an infinite branch, by 

König’s Lemma. But this means that ϕ(x,y) divides ω times. 

q.e.d. 

 

Corollary 2.11.28 : A supersimple ω-categorical theory is low. 

 

Proof : A supersimple theory is short. Now the assertion follows from the preceding 

Proposition. 

q.e.d.  

 

The following results are due to the author of the thesis. 
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Proposition 2.11.29 : If T is ω-categorical, then dividing over finite sets is type-definable in 

T. 

 

Proof : Fix some formula ϕ(x,y), and let A be some finite set. If T is ω-categorical, then there 

are only finitely many different types tp(a/A) of finite tuples a of the same length as y over A. 

Let tp(a0/A),…,tp(an-1/A) be these types. For every i<n we may choose some fixed ki (for 

example the smallest one) with the property that if ϕ(x,ai) divides over A, then ϕ(x,ai) ki-

divides over A; and put ki=0, if ϕ(x,ai) does not divide over A. Let b be any tuple of the same 

length as y. There is exactly one i<n such that b╞tp(ai/A). ϕ(x,b) divides over A if and only if 

ϕ(x,ai) ki-divides over A, since dividing over A is invariant under A-automorphisms. Now let 

k=max(ki : i<n) be the maximal element of the ki. Hence, for any b it holds that if ϕ(x,b) 

divides over A, then ϕ(x,ai) ki-divides over A, so it k-divides over A. As tp(b/A)=tp(ai/A), this 

implies that ϕ(x,b) k-divides over A. 

Now let q(y) be a partial type over A, expressing that there is an A-indiscernible sequence (yi 

: i<ω) of tp(y/A) such that {ϕ(x,yi) : i<k} is inconsistent. Then clearly, ϕ(x,b) divides over A 

if and only if ╞q(b), for all tuples b. 

q.e.d.  

 

If T is simple, then ϕ(x,a) divides over A if and only if for any (some) Morley sequence I in 

tp(a/A), {ϕ(x,a’) : a’∈I} is inconsistent. This well-known fact (see Lemma 2.5.10) was 

proved by Kim [Kim1] (and played an important role in his proof of equivalence of dividing 

and forking in simple theories). However, Kim’s proof of this fact do not supply a number k 

such that the set {ϕ(x,a’) : a’∈I} is k-inconsistent.  

The following Proposition, one of our main results, is a considerable improvement and 

stronger form of Kim’s result. We shall use it later to prove our characterization of lowness of 

a theory.   
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Theorem 2.11.30 : Let T be simple. Let p=p(x) be a partial type over A, ϕ(x,y) a formula, and 

b some tuple. If p(x)∪{ϕ(x,b)} k-divides over A, then for any A-independent sequence I=(bi : 

i<ω) of tp(b/A), ϕ(x,bi) k-divides over A∪{bj : j<i} for all i<ω.  

(In particular, this holds if I is a Morley sequence of tp(b/A).) 

Furthermore:  

(i) q:={ϕ(x,bi) : i<ω} is m-inconsistent, for m=D(x=x,ϕ,k)+1.  

(ii) q’:=p(x)∪{ϕ(x,bi) : i<ω} is m’-inconsistent, for m’=D(p,ϕ,k)+1. (Here m’-

inconsistency means that p(x)∧ϕ(x,bi0)∧…∧ϕ(x,bim’-1) is inconsistent for any 

subset {bi0,…,bim’-1}⊆I of size m’.)  

(Note that m’≤m.) 

 

Proof : If ϕ(x,b) k-divides over A, then this is witnessed by some A-indiscernible sequence 

J=(bj : j<ω), and we may assume b0=b. Let I=(bi : i<ω) be an A-independent sequence of 

tp(b/A). For every i<ω consider an A-automorphism mapping b to bi. This automorphism 

maps J to some A-indiscernible sequence Ii=(bi
j : j<ω), with bi

0=bi.  Since bi┴A{bj : j<i}, there 

is a sequence Ii’, an Abi-automorph image of Ii, such that Ii’ is A{bj : j<i}-indiscernible. (This 

follows immediately from Proposition 2.3.6.) Hence, ϕ(x,bi) k-divides over A{bj : j<i} 

witnessed by Ii’, for every i<ω. 

Clearly, q must be inconsistent: Otherwise this would be a k-dividing chain in ϕ, and 

compactness would yield a k-dividing chain of length ω1, contradicting simplicity of the 

theory. To show m-inconsistency of q, we suppose that q is m-consistent and will obtain a 

contradiction:  

Suppose there is a subset {bi0,…,bim-1}⊆I of size m such that ϕ(x,bi0)∧…∧ϕ(x,bim-1) is 

consistent. Then from the definition of D(.,ϕ,k)-rank follows that there is a chain 

D(x=x,ϕ,k)>D(ϕ(x,bi0),ϕ,k)>…>D(ϕ(x,bi0)∧…∧ϕ(x,bim-1),ϕ,k)≥0, witnessed by k-dividing of 

ϕ(x,bij) over A∪{bik : k<j} for every j<m. So D(x=x,ϕ,k)≥m=D(x=x,ϕ,k)+1, a contradiction. 

In a similarly way, if q’(x)∧ϕ(x,bi0)∧…∧ϕ(x,bim’-1) was consistent for some subset 

{bi0,…,bim’-1}⊆I of size m’, this would imply the existence of a chain 

D(p,ϕ,k)>D(p∧ϕ(x,bi0),k)>…>D(p∧ϕ(x,bi0)∧…∧ϕ(x,bim’-1),ϕ,k)≥0. This chain witnesses that 

D(p,ϕ,k)≥m’=D(p,ϕ,k)+1, a contradiction.  
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q.e.d. 

 

Corollary 2.11.31 : Let T be simple. Let p=p(x,b) be a partial type over Ab, and suppose p 

divides over A. Then there exists an m<ω such that for every A-independent sequence I=(bi : 

i<ω) of tp(b/A), the set ∪i<ωp(x,bi) is m-inconsistent (where m-inconsistency here means that 

∪j<mp(x,bij) is inconsistent for any subset {bi0,…,bim-1}⊆I of size m). 

 

Proof : If p divides over A, there is a formula ϕ(x,b) implied by p(x,b) such that ϕ k-divides 

over A for some k<ω. Put m=D(x=x,ϕ,k)+1. By the “furthermore clause” of the preceding 

Theorem, {ϕ(x,bi) : i<ω} is m-inconsistent. It follows that ∪i<ωp(x,bi) is m-inconsistent. 

q.e.d. 

 

Our next result characterizes lowness of a theory similarly to Lemma 2.11.22. However, in 

Lemma 2.11.22 only those indiscernible sequences that witness dividing of ϕ are considered. 

Here we use Morley sequences instead of indiscernible sequences, but in fact, we consider all 

Morley sequences (of the same type).  

 

Proposition 2.11.32 : Let T be simple. The following conditions are equivalent: 

1. T is low.  

2. For every formula ϕ(x,y) there is some k<ω such that for all sets A and all tuples a the 

following holds:  If ϕ(x,a) divides over A, then {ϕ(x,ai) : i<ω} is k-inconsistent for all 

Morley sequences (ai : i<ω) of tp(a/A). 

3. For every formula ϕ(x,y) there is some k<ω such that for all finite sets A and all tuples 

a the following holds:  If ϕ(x,a) divides over A, then {ϕ(x,ai) : i<ω} is k-inconsistent 

for all Morley sequences (ai : i<ω) of tp(a/A). 

 

Proof : 1. 2. : Suppose T is low. Put k=D(x=x,ϕ)+1. If ϕ(x,a) divides over A, then {ϕ(x,ai) : 

i<ω} is inconsistent for all Morley sequences (ai : i<ω) of tp(a/A), by Corollary 2.11.31. 

Hence, every Morley sequence of tp(a/A) witnesses that ϕ(x,a) divides over A. By Lemma 

2.11.22, every Morley sequence witnesses k-dividing of ϕ(x,a) over A.  
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2. 3. is clear.  

3. 1. : Suppose that 3. holds and assume that T is not low. Then there is some formula ϕ(x,y) 

which divides arbitrarily often, i.e. for every n<ω there is a dividing chain (ϕ(x,ai) : i<n). But 

if ϕ(x,ai) divides over {aj : j<i} for all i<n, then ϕ(x,ai) k-divides over {aj : j<i} for all i<n, 

witnessed by any Morley sequence J of tp(ai/{aj : j<i}). In other words, every dividing chain 

in ϕ of finite length is a k-dividing chain, for some fixed k<ω. So there are k-dividing chains 

of arbitrary finite length in ϕ. Then compactness implies the existence of a dividing chain in 

ϕ(x,y) of length ω1. This contradicts simplicity of T. Hence, T is low.  

q.e.d. 

 

As a new result we get a further and good readable characterization of lowness. In Corollary 

2.11.23 we have seen that lowness implies for every formula the existence of a number which 

witnesses dividing of ϕ over all sets and for all tuples. On the other hand, the existence of 

such a number implies lowness. 

 

Proposition 2.11.33 : Let T be simple. The following conditions are equivalent: 

1. T is low. 

2. For every formula ϕ(x,y) there exists a kϕ<ω such that for all sets A and all tuples a  

holds: 

                                        ϕ(x,a) divides over A  ↔  ϕ(x,a) kϕ-divides over A. 

 

3. For every formula ϕ(x,y) there exists a kϕ<ω such that for all finite sets A and all 

tuples a  holds: 

                                        ϕ(x,a) divides over A  ↔  ϕ(x,a) kϕ-divides over A. 

 

Proof : 1. 2. follows from Corollary 2.11.23. 

2. 3.: is clear. 

3. 1.: To show lowness of T, we prove that the condition 3 of Proposition 2.11.32 holds. So 

fix a formula ϕ(x,y) and put m=D(x=x,ϕ,kϕ)+1. Suppose that ϕ(x,a) divides over some finite 

set A. By hypothesis and by Theorem 2.11.30, for every Morley sequence I in tp(a/A), the set 
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{ϕ(x,b) : b∈I} is m-inconsistent. Since the tuple a and the set A was arbitrary, Proposition 

2.11.32 says that T is low. 

There is another way to show that T is low: If 3. holds, then by induction it is easy to see that 

D(p,ϕ,kϕ)≥D(p,ϕ) (whence, D(p,ϕ,kϕ)=D(p,ϕ)) for all formulas ϕ and all types p over finite 

sets A. In particular, D(x=x,ϕ)<ω. Then T is low, by Proposition 2.11.19. 

q.e.d. 

 

It seems that in general, in Propositions 2.11.32 and 2.11.33, respectively, for the third 

condition it is necessary to consider all finite sets A: We were not able to derive lowness of 

the theory from this condition considering dividing only over the empty set A=∅. To change 

this, we introduce the following property: 

 

Definition 2.11.34 : We say that a formula ϕ has the independent dividing chain property (or 

ϕ has idcp) if for every ordinal α and every dividing chain of length α in ϕ there is an 

independent dividing chain (ai : i<α) of length α in ϕ, i.e. ai┴(aj : j<i) for all i<α. We say that 

a theory T has the independent dividing chain property (or T has idcp) if every formula has 

idcp. 

 

Theorem 2.11.35 : Let T be simple and suppose that T has idcp. The following conditions are 

equivalent: 

1. T is low.  

2. For every formula ϕ(x,y) there is some k<ω such that for all tuples a the following 

holds:  If ϕ(x,a) divides over ∅, then {ϕ(x,ai) : i<ω} is k-inconsistent for all Morley 

sequences (ai : i<ω) of tp(a).  

3. For every formula ϕ(x,y) there exists a kϕ<ω such that for all tuples a holds: 

                                        ϕ(x,a) divides over ∅  ↔  ϕ(x,a) kϕ-divides over ∅. 

 

Proof : 1. 3.: follows from Lemma 2.11.33. 
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3. 2.: Put k=D(x=x,ϕ,kϕ)+1. By the hypothesis of 3., we have for all a, if ϕ(x,a) divides over 

∅, then ϕ(x,a) kϕ-divides over ∅. From Theorem 2.11.30 follows that {ϕ(x,ai) : i<ω} is k-

inconsistent for any  Morley sequence (ai : i<ω) of tp(a).  

2. 1.: Suppose that 2. holds. If T is not low, then there is some ϕ(x,y) that divides n times for 

all n<ω. If ϕ(x,ai) divides over {aj : j<i) for i<n, and J is a Morley sequence of tp(ai/(aj : j<i)), 

then J is a Morley sequence of tp(ai): Indiscernibility over ∅ is clear, and indepedence over ∅ 

follows from  ai┴(aj : j<i) and transitivity of the independence relation. By 2., {ϕ(x,b) : b∈J} 

is k-inconsistent and J witnesses that ϕ(x,ai) k-divides over (aj : j<i). Hence, every dividing 

chain in ϕ is a k-dividing chain. Then there are dividing k-chains of arbitrary finite length in 

ϕ, and compactness implies the existence of a dividing chain of length ω1. This contradicts 

simplicity of T. 

q.e.d. 

 

Theorem 2.11.36 : Let T be simple and ω-categorical. If T has idcp, then T is low. 

 

Proof : We show that T satisfies the third condition of Theorem 2.11.35 for any formula 

ϕ(x,y). So fix some formula ϕ(x,y), and let n be the length of the tuple y. Since T is ω-

categorical, there are only finitely many n-types over ∅. Let tp(a0), … ,tp(am-1) be these types. 

Let ki be the smallest number such that ϕ(x,ai) ki-divides over ∅, and put ki=0, if ϕ(x,ai) does 

not divide. Let k=max{ki : i<m}. Then for every tuple a (of length n) holds, a╞tp(ai) for 

exactly one i<m, and therefore: If ϕ(x,a) divides over ∅, then ϕ(x,a) k-divides over ∅. From 

Theorem 2.11.35 follows that T is low.   

q.e.d. 

 

Now we define a new rank, which allows characterizing low and short theories. 

 

Definition 2.11.37 : Let p=p(x) be a set of formulas in the variable x over A, ϕ=ϕ(x,y) a 

formula, I=(ai : i<β) an infinite sequence. We define the rank D(p,ϕ,I) as follows: 

1. D(p,ϕ,I)≥0, if p(x) is consistent. 
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2. D(p,ϕ,I)≥α+1, if D(p∪{ϕ(x,b)},ϕ,I1)≥α and ϕ(x,b) divides over A, where b is the first 

element of I, and I1 is the sequence I-{b}. 

3. D(p,ϕ,I)≥λ, for λ a limit ordinal, if D(p,ϕ,I)≥β for all β<λ. 

 

Observation 2.11.38 :  

1. D(p,ϕ,I)≤D(p,ϕ) for all p, ϕ, I. 

2. For all α≤ω: D(p,ϕ,I)≥α if and only if the first α many elements of I form a dividing 

chain in ϕ, consistent with p.  

3. If T is simple and I=(ai : i<ω) is an A-independent sequences of tp(a0/A), then 

D(p,ϕ,I)<ω for all partial types p over A, and all formulas ϕ(x,y). If ϕ(x,a0) k-divides 

over A, then D(p,ϕ,I)≤D(p,ϕ,k). In particular, this holds if I is a Morley sequence over 

A.   

4. T is low if and only if for every formula ϕ(x,y) there is some nϕ<ω such that 

D(x=x,ϕ,I)≤D(x=x,ϕ)=nϕ for all sequences I. 

5. T is short if and only if for every formula ϕ(x,y), D(x=x,ϕ,I)<ω for all sequences I. 

 

Proof : 1. is clear. 

2.: We show the assertion by induction. The assertion is trivial for α=0. Suppose it holds for 

some α, with 0<α<ω. Then: D(p,ϕ,I)≥α+1 ↔  D(p∧ϕ(x,a),ϕ,I1)≥α and ϕ(x,a) divides over 

dom(p), where a is the first element of I, and I1=I-{a} ↔ the first α elements of I1 form a 

dividing chain in ϕ, consistent with p ↔ the first α+1 elements form a dividing chain in ϕ, 

consistent with p. 

Now suppose the assertion holds for all β<ω. Then: D(p,ϕ,I)≥ω ↔D(p,ϕ,I)≥α for all α<ω ↔ 

every finite starting subsequence of I forms a dividing chain in ϕ, consistent with p ↔ (ai : 

i<ω) is a dividing chain in ϕ, consistent with p, where I=(ai : i<λ) for some ordinal λ≥ω. 

3.: This follows from Theorem 2.11.30. 

4.: If T is low  ↔  every dividing chain in ϕ is bounded by some nϕ=D(x=x,ϕ)<ω. 

5.: T is short ↔ no formula divides arbitrary often ↔ for all formulas ϕ, every dividing chain 

in ϕ is finite.    

q.e.d.    
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The general idea to prove Lstp=stp in a simple theory is clear (note that, trivially, Lascar 

strong type implies strong type): Equality of Lascar strong types is type definable in simple 

theories (see chapter 2.8). Since stp(a/A)=stp(b/A) implies ╞E(a,b) for all finite A-definable 

equivalence relations E, it is sufficient to show that equality of Lascar strong type, defined by 

some partial type p(x,y) over A, is equivalent to a conjunction of finite A-definable 

equivalence relations.  

On the other hand, by the results of chapter 2.8, we know that in simple theories equality of 

Lascar strong types is type-definable by the set of all ω-thick formulas. So if we were able to 

show that every ω-thick formula is implied by some definable finite equivalence relation, then 

we would conclude that Lascar strong type is implied by strong type, whence Lstp=stp. This 

idea motivates the following definition and results, due to the author of this thesis. 

 

Definition 2.11.39 : Let ϕ(x,y) be a thick formula. We define ψϕ(x,y):=∀z(ϕ(x,z)↔ϕ(y,z)). 

 

The following Observation is easy to prove: 

 

Observation 2.11.40 : For every thick formula ϕ, ψϕ defines an equivalence relation and 

implies ϕ. 

 

Theorem 2.11.41 : Suppose that in T holds EL
A=EKP

A for all sets A. If for every ω-thick 

formula ϕ, the formula ψϕ is finite, then Lstp=stp in T. 

 

Proof : Fix some set A and suppose stp(a/A)=stp(b/A). Then ╞E(a,b) for all A-definable finite 

equivalence relations E. In particular ╞ψϕ(a,b) for all ω-thick ϕ. So we obtain ╞ϕ(a,b) for all 

ω-thick formulas ϕ over A. Since EL
A=EKP

A, equality of Lascar strong types over A is type-

definable over A, whence it is type-definable by the set of all ω-thick formulas over A 

(Propositions 2.8.20 and 2.8.27). It follows that Lstp(a/A)=Lstp(b/A). Since A was arbitrary, 

Lstp=stp. 

q.e.d. 
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The previous Theorem leads to the question of under which conditions the formulas ψϕ define 

finite equivalence relations. The following Proposition give some answers. 

 

Proposition 2.11.42 :  Let ϕ(x,y) be a thick formula with parameters in A. The following are 

equivalent: 

1. ψϕ defines a finite equivalence relation. 

2. ϕ is invariant under strong types over A (that is, if ╞ϕ(a,b) and stp(a/A)=stp(a’/A), 

then follows ╞ϕ(a’,b)). 

3. ϕ is invariant under Lascar strong types over A. 

4. For any A-indiscernible sequence (ai : i<ω), ╞ψϕ(ai,aj) holds for all i<j<ω. 

5. For all tuples a, ψϕ(x,a) does not divide over A. 

6. D(x=x,ψϕ,k)=D(x=x,ψϕ)=0. 

If T is simple, then the following condition is also equivalent to the previous conditions 1.-6.: 

7. For all tuples a, there exists a Morley sequence in tp(a/A) such that {ψϕ(x,ai) : i<ω} is 

consistent. 

 

Proof :   

1. 2.: Suppose ╞ϕ(a,b) and stp(a/A)=stp(a’/A). Then ╞E(a,a’) for all finite A-definable 

equivalence relations, in particular ╞ψϕ(a,a’), by hypothesis. This implies ╞ϕ(a’,b), since 

╞ϕ(a,b) holds. 

2. 3.: Is clear, since equality of Lascar strong types implies equality of strong types. 

3. 1.: It is sufficient to show that EL
A(x,y)├ψϕ(x,y). Then ψϕ must be finite, since EL

A is a 

bounded equivalence relation. So suppose ╞EL
A(a,b). By Proposition 2.8.20, 

Lstp(a/A)=Lstp(b/A). As ϕ is reflexive, ╞ϕ(a,a), and from the hypothesis (invariance of ϕ 

under Lascar strong types) follows ╞ϕ(a,b). 

1. 4.: If there was an A-indiscernible sequence (ai : i<ω) with ╞¬ψϕ(ai,aj) for i<j<ω, then ψϕ 

would not be finite. 

4. 1.: Suppose ψϕ is not finite. By compactness, we can find a sequence (ai : i<λ) of arbitrary 

length λ such that ╞¬ψϕ(ai,aj) for all i<j<λ. So by Proposition 2.2.5, there exists an A-

indiscernible sequence (bi : i<ω) with ╞¬ψϕ(bi,bj) for all i<j<ω. This contradicts 4. 
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4. 5.: Let a be some tuple, and (ai : i<ω) any A-indiscernible sequence in tp(a/A) with a0=a. 

By hypothesis, we have ╞ψϕ(a,ai) for all i<ω, whence ψϕ(x,a) does not divide over A. 

5. 4.: Suppose there is an A-indiscernible sequence (ai : i<ω) such that ╞¬ψϕ(ai,aj) for all 

i<j<ω. Then {ψϕ(x,ai) : i<ω) must be inconsistent, since ψϕ defines an equivalence relation. 

Whence, ψϕ(x,a0) divides over A. 

5.↔6. is clear by the Definitions of these ranks. 

If T is simple, then the equivalence 5.↔7. follows from Theorem 2.5.10.   

q.e.d. 

 

Remark 2.11.43 : Note that in the preceding two Propositions we do not assume simplicity. 

So these results serve as an approach to the Lstp=stp problem in a more general context.  

 

Corollary 2.11.44 : Let T be simple. If for every 2-thick formula ϕ the formula ψϕ is finite, 

then holds Lstp=stp. 

 

Proof : If T is simple, then EL=EKP. This follows from type-definablity of equality of Lascar 

strong types (see chapter 2.8). Now, the assertion follws from Corollary 2.8.44 and Theorem 

2.11.41. 

q.e.d. 

 

 

Problem 2.11.45 : Let T be simple (short, supershort). Under which conditions one of the 

equivalent statements in Proposition 2.11.42 holds? 

 

Finally, we would like to present Buechler’s proof (in a slightly modified form, following 

ideas from [Wag]) that low theories satisfy Lstp=stp. Moreover, we shall see, that this proof 

works for all simple theories in which dividing is type-definable. Whence, as a Corollary of 

Buechler’ proof, we get that if T is simple, and dividing is type-definable (in T), then 

Lstp=stp holds in T. 
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Theorem 2.11.46 : Let T be a low theory. Then Lascar strong type is the same as strong type, 

over any set A. 

 

Proof : Let A be any parameter set. First, we note that equality of Lascar strong types is type 

definable in simple theories (Corollary 2.8.42), say by the type E(x,y) (to simplify matters, we 

do not distinguish between the type and the relation defined by this type). Clearly, equality of 

Lascar strong types implies equality of strong types. So suppose stp(x/A)=stp(y/A). By 

Proposition 2.10.3, it is sufficient to show that the type-definable equivalence relation E(x,y) 

describing equality of Lascar strong types of x and y over A is in fact the intersection of a set 

of definable equivalence relations. 

It is clear, that we may restrict our considerations to a complete type p(x)∈S(A), since 

stp(x/A)╞tp(x/A). So fix a complete type p(x)∈S(A), and consider a symmetric formula 

ϕ(x,y)∈E(x,y). Let Σϕ(a,b) be the following condition: 

              For all a’╞Lstp(a/A) and all b’╞Lstp(b/A) with a’┴Ab’, the formula  

              ϕ(x,a’)∧ϕ(x,b’) does not fork over A. 

Observation: By Proposition 2.8.27, 2.9.16 and 2.9.17, we may assume that ϕ(x,y) is ω-thick, 

whence ϕ∈ncA(x,y). Then from Proposition 2.8.42 follows that Σϕ(a,a). 

Claim: Σϕ(a,b) is type-definable over A on realizations a, b of p. 

Proof of the Claim: First, note that the condition “ϕ(x,a’)∧ϕ(x,b’) does not fork over A” is 

invariant under A-automorphisms. So we may assume, without loss of generality, that a’┴Aa 

and b’┴Ab in the definition of the condition Σϕ. Then we may apply Lemma 2.6.6 and 

Theorems 2.6.8 and  2.6.15 to see that the formula ϕ(x,a’)∧ϕ(x,b’) is consistent and does not 

fork over A for all independent realizations a’╞Lstp(a/A) and b’╞Lstp(b/A) if and only if this 

holds for some such a’, b’. Hence Σϕ(a,b) is type-defined by 

         there exists an A-independent, A-indiscernible sequence (aibi : i<ω) in 

         Lstp(a/A)∪Lstp(b/A) such that a0┴Ab0 and ∧i<ω[ϕ(x,ai)∧ϕ(x,bi)] is consistent, 

where the independence can be expressed by D(ai/A∪{ajbj : j<i},ψ,k)≥D(p,ψ,k) and 

D(bi/A∪{ai,ajbj : j<i},ψ,k)≥D(p,ψ,k) for all i<ω, all formulas ψ, and all k<ω (see Remark 

2.4.3 and Proposition 2.4.14). Q.e.d. Claim. 

By Corollary 2.11.24, the negation of Σϕ is type-definable. 
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Claim: There is a formula ϑ, such that for all tuples a, b╞p the following holds: Σϕ(a,b) ↔ 

╞ϑ(a,b). 

Proof of the Claim: Suppose q type-defines Σϕ, and ¬q type-defines the negation of Σϕ. Then 

q(x,y)∧¬q(x,y) is inconsistent, whence, by compactness, there are formulas ψ1∈q, ψ2∈¬q 

such that ψ1∧ψ2 is inconsistent. But q(x,y)∨¬q(x,y) is always true. Then it is easy to see that 

(ψ1∧¬ψ2)(x,y) is equivalent to q(x,y), whence it defines Σϕ.  

q.e.d. Claim. 

Clearly, Σϕ is invariant under Lascar strong type. Hence p(x)∧p(y)∧E(x,x’)∧ϑ(x,y)├ϑ(x’,y) ; 

by compactness there is a formula ψ(x)∈p such that ψ(x)∧ψ(y)∧E(x,x’)∧ϑ(x,y)├ϑ(x’,y). 

Hence 

Eϕ
p(x,x’):=[ψ(x)↔ψ(x’)]∧{ψ(x)→ϑ(x,y)↔ϑ(x’,y))]} 

defines an equivalence relation which is coarser than E. So it has only finitely many classes. 

Now suppose a, b╞p and ╞Eϕ
p(a,b) for all ϕ∈E. Choose any ϕ’(x,y)∈E(x,y). As E is an 

equivalence relation, there is a symmetric formula ϕ∈E such that  

∃z,z’,z’’[ϕ(x,z)∧ϕ(z,z’)∧ϕ(z’,z’’)∧ϕ(z’’,y)]├ϕ’(x,y). 

As Eϕ
p(a,b) holds and trivially ╞ψ(a)∧ϑ(a,a), we get ╞ϑ(b,a). So there are a’, b’ with E(a,a’) 

and E(b,b’), such that ϕ(x,a’)∧ϕ(x,b’) contains an element c. As E(x,y)├ϕ(x,y), the choice of 

ϕ yields ╞ϕ’(a,b); as ϕ’∈E was arbitrary, we get E(a,b). 

It follows that E is the conjunction of the definable equivalence relations Eϕ
p, for p∈S(A) and 

ϕ∈E. 

q.e.d. 

 

Remark 2.11.47 : Clearly, in the definition of the condition Σϕ we need only the consistency 

of ϕ(x,a’)∧ϕ(x,b’). But the type-definability of Σϕ requires the stronger condition of non-

forking over A. The invariance under Lascar strong type of the condition Σϕ plays also a role 

for the type-definability; furthermore, it guarantees that the equivalence relations Eϕ
p are 

finite. 
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2.12  Problems and future studies 
 

The Lstp=stp Problem remains open for (super-) short theories and simple theories in general. 

Our approachment to the problem by the results 2.11.41, 2.11.42, 2.11.43 could be helpful to 

solve it. 

Theorem 2.11.30 was the starting point to give new characterizations of low theories and has 

motivated the study of the rank D(p,ϕ,I). It seems to be a useful tool for investigating the 

relationships between subclasses of simple theories. To demonstrate this we would like to 

outline the following considerations, which give rise to future works:  

Let ϕ(x,y) be some formula and let J=(ai
J : i<αJ) be a dividing chain in ϕ of length αJ. We 

define kJ to be the smallest number such that ϕ(x,a0
J) kJ-divides over the empty set. Note that 

we may assume αJ≥D(x=x,ϕ,kJ). Now let I be any (infinite) independent sequence of tp(a0
J). 

By Theorem 2.11.30, the following holds: 

kJ-1≤D(x=x,ϕ,I)≤D(x=x,ϕ,kJ)≤αJ≤D(x=x,ϕ). 

The rank D(x=x,ϕ,kJ) has finite value, since T is simple. If T is short, then αJ is finite; and if T 

is low, then D(x=x,ϕ) is finite. In these cases it is interesting to ask whether for all formulas 

ϕ(x,y) and all dividing chains J in ϕ of length αJ≥D(x=x,ϕ,kJ), kJ-1 equals D(x=x,ϕ,kJ), αJ, or 

D(x=x,ϕ), respectively. If the answer was positive, then would follow that 

D(x=x,ϕ,I)=D(x=x,ϕ,kJ) for all independent sequences (including Morley sequences) I of 

tp(a0
J), where a0

J is the first element of J. That means that {ϕ(x,a) : a∈I} is D(x=x,ϕ,kJ)-

consistent for every independent (Morley-) sequence I of tp(a0
J). Whence, by Theorem 

2.11.30, in this case D(x=x,ϕ,kJ)+1 is the smallest number m such that {ϕ(x,a) : a∈I} is m-

inconsistent for some (every) independent (Morley-) sequence I of tp(a0
J).  

Furthermore, if T is short (or low), and if for all ϕ and all dividing chains J in ϕ, kJ-1=αJ (or 

kJ-1=D(x=x,ϕ)), respectively, then follows that T has idcp, witnessed by the independent 

sequences I of tp(a0
J), which are dividing chains in ϕ of length D(x=x,ϕ,I)=D(x=x,ϕ,kJ)=αJ in 

the short case, and are dividing chains in ϕ of length D(x=x,ϕ,I)=D(x=x,ϕ,kJ)=D(x=x,ϕ) in 

the low case. 

Which condition implies kJ-1=αJ (if T is short), or kJ-1=D(x=x,ϕ) (if T is low)?  

 



 127

3 References 
 

[Ba1]  Baldwin, J.T.  Fundamentals of Stability Theory. Springer Verlag, Berlin, 1988. 

[Ba2]  Baldwin, J.T.  Stability and Embedded Finite Models.  Conference Wollic 1999, 

           unpublished 

[Bue1]  Buechler, St.  Essential Stability Theory. Springer Verlag, Berlin, 1996 

[Bue2]  Buechler, St.  Lascar strong types in some simple theories, J. Symbolic Logic, Vol. 

             64, Number 2, 1999. 

[BPW]  Buechler, St. Pillay, A. Wagner F.O. Supersimple theories. Preprint, September 2000. 

[Cas1]  Casanovas, E. The number of types in simple theories. Annals of Pure and Applied 

             Logic, 98:96-86, 1999 

[Cas2]  Casanovas, E. The new example. Preprint, February 2000 

[Cas3]  Casanovas, E. Invariancia, hiperimaginarios y grupos the Galois. Seminario en la 

            Universidad de Barcelona. January 2001. Not published. 

[Cas4]  Casanovas, E. Dividing and chain conditions. February 2002, submitted. 

[Cas5]  Casanovas, E. Some remarks on indiscernible sequences. March 2002, submitted. 

[CasKim]  Casanovas, E., Kim, B. A supersimple non-low theory. Notre Dame Journal of 

                  Formal Logic 39:507-518, 1998. 

[CasLasPiZ]   Casanovas, E., Lascar, D., Pillay, A., Ziegler, M. Galois groups of first order 

                       theories. The Journal of Mathematical Logic 1,  305-319, 2001. 

[CasWag]  Casanovas, E., Wagner, F.O. Local supersimplicity and related concepts. Juny 

                  2001, submitted.      

[ChK]  Chang, C. C. and Keisler, H. J.  Model Theory, North-Holland Publishing.Co, 

Amsterdam, 1990 

[ChHr]  Cherlin, G., Hrushovski, E.  Large finite structures with few 4-types. Manuscript, 

             May 1998 

[ChLa]  Cherlin G., Lachlan, A.  Stable finitely homogeneous structures. Trans Amer. Math. 

             Soc. 296:815-50.1986 

[ChHaLa]  Cherlin, G., Harrington, L., Lachlan, A.  ω-categorical, ω-stable structures, Annals 

                 of Pure and Applied Logic 18:227-70. 

[EbFl]  Ebbinghaus, H. D., Flum, J.  Finite Model Theory, Springer Verlag, Berlin, 1995 



 128 

[Fag]  Fagin, R.  Generalized first order spectra and polynomial-time recognizable sets. In 

          Karp, Complexity of Computation, SIAM-MAS proceedings, Vol 7, pages 43-73, 1974 

[GIL]  Grossberg, R., Iovino, J., Lessmann, O.  A primer of Simple Theories. Department of 

           Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, 1998 

[Hr]  Hrushovski, E.  Finite structures with few types. In Sauer, Woodrow, Sands; Finite and 

         infinite combinatorics in sets and logic, NATO ASI series C, n 411, 1993 

[HKP]  Hart, B. Kim, B. Pillay, A. Coordinatization and canonical bases in simple theories. 

             The Journal of Symbolic Logic 65, 293-309, 2000 

[Im]  Immerman, N.  Descriptive Complexity, Springer Verlag Berlin, 1998 

[Kim1]  Kim, B.  Simple first order theories, Ph.D. Thesis, University of Notre Dame, 

             Indiana, 1996 

[Kim2]  Kim, B.  Forking in simple unstable theories, J. London Mathematical Society, 199? 

[Kim3]  Kim, B.  A note on Lascar strong types in simple theories, J.Symbolic Logic, 63, 

             926-936, 1998 

[KimPi]  Kim, B., Pillay, A.  From stability to simplicity, The Bull. Symbolic Logic 4, 17-36, 

              1998 

[KnLa]  Knight, J., Lachlan, A.  Shrinking and Stretching, and the codes for homogeneous 

             structures. In J. Baldwin, Classification Theory, Chicago 1985, Springer Verlag, New 

             York, pages 192-228, 1987 

[La]  Lachlan, A.  On countable stable structures which are homogeneous for a finite 

         relational language. Israel J. of Math. 49:69-153, 1984 

[Ob]  Oberschelp, A.  Rekursionstheorie. Mannheim, Leipzig, Wien, Zuerich: BI-Wiss. 

         -Verlag, 1993 

[Pi]  Pillay, A.  Geometric stability theory, Volume 32 of Oxford logic guides, Clarendon 

        Press, Oxford 

[Ro]  Rothmaler, Ph.  Einfuehrung in die Modelltheorie, Spektrum Akadem. Verlag, 1995 

[Wag]  Wagner, F. O. Simple Theories. Kluwer Academic Publishers. NL, 2000. 

[Sh1]  Shelah, S.  Classification Theory, North Holland, Amsterdam, 1978 

[Sh2]  Shelah, S.  Simple unstable theories, Ann Math. Logic 19, 177-203, 1980 

[vdW]  Van der Waerden, B. L.  Modern Algebra. Frederick Ungar Publishing Co., New 

            York, 1949. 




