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Abstract 

The Network Time Protocol (NTP), a protocol that synchronizes clocks from 

networked computers, has nearly two decades of existence and is continuously evolving. 

Due to its robust treatment of phase and frequency, an algorithm that disciplines the local 

machine clock, implementations available for a great deal of platforms and operating 

systems, it became a “de facto” standard. 

However, this protocol still has some drawbacks that need to be addressed to make 

it operationally more efficient, since its performance depends on good network conditions 

for a proper exchange of synchronization information and it suffers from any level of 

network congestion. Due to such limitations, in many countries (including Brazil) NTP is 

considered inadequate to provide time information in a trustable way, considering without 

legal value any time registries in systems that use it. Furthermore, many applications need a 

trustable clock control system to work correctly (for example, banking systems and 

geographically distributed database servers). This requires many companies to use 

traditional and more expensive legacy systems for a correct and legal functioning of their 

computer clocks. 

With the use of Quality of Service in computer networks, this problem can be 

elegantly approached and solved. Many Quality of Service architectures were recently 

proposed, but the Differentiated Services architecture, due to its low implementation 

complexity and to the fact that it was the most studied and implemented architecture, is the 

strongest candidate to worldwide use in the coming years. This architecture fits the 

problem of clock synchronization very well, but the solution is not trivial, as is showing this 

work. 

This dissertation suggests a framework to deal with clock synchronization using 

NTP in DiffServ domains with or without the use of bandwidth brokers. Using Well 

Defined Services (WDS) and based on the idea that applications should be aware of the 

type of treatment required by their traffic, this framework consists of the adoption of 

policies to treat NTP traffic at network nodes and the adoption of a policy to mark packets 

by the application. The proposal is validated with a case study performed with real 

measurement of the application performance over an environment based on network 

emulation. 
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Resumo 

 

O Network Time Protocol (NTP) é um protocolo para sincronização de relógios de 

computadores em rede que tem quase duas décadas de existência e está em contínua 

evolução. Com algoritmos robustos para tratamento de fase e freqüência, com um bom 

disciplinador de relógio local e tendo implementações para as mais diversas plataformas e 

sistemas operacionais de computadores e equipamentos de rede, o NTP tornou-se um 

padrão de fato. 

Entretanto, esse protocolo ainda tem problemas que precisam ser solucionados 

para ser operacionalmente eficaz, pois seu desempenho depende de boas condições de rede 

para a troca das informações de sincronização, sofrendo bastante em caso de 

congestionamento. Devido a esses problemas, em vários países (incluindo o Brasil) esse 

protocolo é considerado inadequado para prover informação de horário de forma 

confiável, fazendo com que registros de hora em sistemas que o utilizam não tenham valor 

legal. Além disso, muitas aplicações necessitam de um sistema de controle de relógios 

confiável para funcionar corretamente (por exemplo, sistemas bancários e servidores de 

bancos de dados distribuídos). Isso obriga muitas empresas a utilizar sistemas legados 

tradicionais e mais caros para poder funcionar de forma correta e legal. 

Com o advento da Qualidade de Serviço em redes de computadores, esse problema 

pode ser abordado elegantemente e resolvido. Várias arquiteturas de Qualidade de Serviço 

foram propostas, mas a arquitetura de Serviços Diferenciados (DiffServ), devido a sua 

facilidade de implementação e ao fato de ter sido a mais estudada e implementada 

experimentalmente, mostrou-se a mais forte candidata à implantação mundial e no menor 

prazo. Essa arquitetura adequou-se bem ao problema de sincronização de relógios, embora 

a solução não seja trivial. 

Essa dissertação sugere um arcabouço para lidar com a sincronização de relógios 

através do NTP em domínios DiffServ com ou sem corretores de banda. Tendo-se 

Serviços Bem Definidos (Well Defined Services – WDS) e baseado na idéia de que as 

aplicações devem conhecer o tipo de tratamento necessário ao seu tráfego, esse arcabouço 

consiste na adoção de políticas para o tratamento de tráfego NTP nos equipamentos de 

rede e na adoção de uma política para a marcação de pacotes por parte da aplicação. A 

proposta é validada com um estudo de caso feito com medição real do desempenho da 

aplicação sobre um ambiente de rede emulado. 

 ix 



Chapter 1 - Introduction 

This chapter shows a brief introduction to the problems approached by this 

dissertation, justifying the importance of well-behaved clock synchronization for 

networked computers. 

1.1. Motivation 

Clock synchronization in computer networks is very important to the well 

functioning of most distributed computer systems and is fundamental to give integrity 

guarantees to some services. 

The accuracy of clocks that are synchronized through computer networks depends 

on the delays to which the synchronization packets are submitted and especially on the 

variation of such delays (also known as jitter). Therefore, guaranteeing a minimum and 

stable delay to the transportation of these packets is a way of guaranteeing clock precision. 

Though some statistical techniques are used to yield an acceptable solution for the 

problem, these could not deal with the totally unpredictable network behavior. Even today, 

there had been no proposal, to our knowledge, to improve the quality of clock 

synchronization based on network Quality of Service (QoS). With network QoS, it is 

possible to offer some guarantees on network delay and jitter to the synchronization 

mechanism, benefiting all the applications that depend on it. 

1.2. Objectives 

As a result of the observations of real-life systems that needed reliable time from 

clocks synchronized through IP networks, it was concluded that some of these clocks 

could not make the required guarantees. For example, it was common for some of the 

observed clocks that used NTP to lose synchronism and to drift too much from their 

reference time. In other words, this occurred due to network congestion (even on non-

saturated links, due to bursts of traffic), which incurred into packet losses and high jitter. 

The network links of the observed machines were not saturated (full bandwidth utilization 

for long periods), but had occasional bursts of traffic that used the whole bandwidth of the 

link for short intervals, generating delay and jitter. 

This work intended to make an analysis of the benefits quality of service may bring 

to clock synchronization, including the metering of quality parameters for the clock service 

provided to applications. 
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1.3. Related Work 

Some more recent work [1] tried to improve the quality of synchronization by 

improving the algorithms for clock selection and time prediction based on local clock drift 

and network jitter measurements. 

No proposal had been made to combine both the clock synchronization and 

Quality of Service architectures. 

1.4. Organization of the Dissertation 

This dissertation has been structured in order to introduce the concepts involved 

and present a satisfactory solution. It was written according to the norms of the Brazilian 

Association for Technical Norms (ABNT) [2]. The remainder of this document is 

organized as follows: 

The second chapter describes the state of the art in clock synchronization, first 

detailing the problem, then explaining the basic concepts in clock synchronization and 

describing the evolution of the main solutions for clock synchronization for networked 

computers. It then explains the basic concepts in Quality of Service and describes the most 

important proposals for implementing it. 

The third chapter examines the Network Time Protocol, which is the main 

protocol used for clock synchronization of networked computers and a “de facto” standard 

for clock synchronization. 

The fourth chapter details the Differentiated Services architecture for providing 

Quality of Service on IP Packet Networks and the main issues related to its use. 

The fifth chapter brings an improved description of the stochastic process of clock 

synchronization that helps better understanding of the problem of clock synchronization, 

makes a proposal for the problem of clock synchronization infrastructure on IP networks 

and shows how to implement it. 

The sixth chapter explains a case study performed using network emulation to 

validate the proposal and details its results. 

The seventh chapter draws a conclusion for this dissertation and shows some 

interesting future works to it. 

All references used to develop this work are shown in the eighth chapter. 

Finally, the appendix brings a list of abbreviations and acronyms and a glossary of 

terms that are used throughout the text. 
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Chapter 2 - State of the Art 

This details the problem of making guarantees for clock synchronization. After 

that, it explains the basic concepts in clock synchronization and in quality of service, 

showing the most important known approaches for them. 

2.1. The Problem 

Even though the Network Time Protocol has evolved through many years of 

factual use, it is known that many time servers using NTP suffer from problems caused by 

bad network conditions. It is very common for an NTP machine to lose synchrony in cases 

of high network congestion and in cases of low network congestion if the machine is not 

dedicated to serving time. In less common but still recurring cases, some dedicated time 

servers lose synchronism even in situations of low network congestion. 

This unreliability in time keeping makes NTP use not trustable for serving time to 

neither sensitive application nor to not-so-important but legally restricted logging 

applications. In some countries, Internet connection providers and Internet service 

providers must keep logs of user connection for months or even years and must present 

these logs in case the police or a court of justice requires so. 

In the case of Brazil [3], for example, the providers are also responsible for the 

quality of the time used in these logs and federal government points at an official agency as 

the only trustable time supplier. This agency is responsible for serving time and enforcing 

secure and reliable time distribution methods. As expected, NTP is not considered a 

trustable time distribution method and it is only used to serve non-trustable time for user 

convenience reasons. 

2.2. Basic Concepts in Clock Synchronization 

The calendar system used in most of the world today is the Gregorian Calendar, 

created by Pope Gregory XIII in 1582, following the suggestions of the astronomers 

Christopher Clavius and Luigi Lilio. This system should be used for dates in the Common 

Era (AD, i.e., anno Domini) [4]. For a historical description of calendar systems, see [4]. 

In 1958, the standard second was defined as 1/31,556,925.9747 of the tropical year 

that began this century. But it was proved later that the duration of the year is not stable 

enough, relative to modern technology [4]. Given this instability, in 1967 the standard 

second was redefined as “9,129,631,770 periods of the radiation corresponding to the 
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transition between the two hyperfine levels of the ground state of the cesium-133 atom”. 

In 1972, the International Bureau of Weights and Measures (BIPM) defined the 

International Atomic Time (TAI) and started to operate – now the International Time 

Bureau (BIH) does – a cooperation among many observatories throughout the world to 

keep the Coordinated Universal Time (UTC), a standard that evolved from the 

Greenwich Mean Time (GMT). The hour is legally defined in most countries based on 

UTC. 

Since the astronomical time (time of the day, phase of the moon, time of the year) 

doesn’t evolve deterministically (stably), other standards were defined based on UTC. 

Based on apparent mean solar time, the UT0 timescale was defined adding corrections for 

earth orbit and inclination over UTC, the UT1 timescale (conventional civil time) was 

defined by also adding corrections for polar migration and the UT2 timescale by also 

adding corrections for known periodic variations. Whenever the difference between TAI 

and UT1 approaches 0.7 second, a second - called leap second - is inserted or deleted 

from TAI in the last day of the month. For more detailed information on timekeeping 

standards, see [4]. 

In the design of a clock synchronization system for UTC, some important items 

must be considered. Trustable clocks (like GPS, that bring time and date information) and 

time tickers (such as atomic clocks, which show precisely the passage of time but must be 

adjusted to the correct time before starting to operating) are rather expensive. One of these 

must be connected to (or embedded in) a device that will serve timestamps to other devices 

(which can be a handheld computer, a military supercomputer, a microwave oven, a 

telephone exchange, etc) with less expensive and less trustable clocks. Such timeserving 

device is called a primary source of time. Since this device may fail, systems that require 

trustable time for proper operation need some redundancy (in equipment and/or 

networking) in time synchronization, making the system even more expensive. 

When analyzing the quality of synchronization between two devices, an important 

metric is the offset, i.e., the difference, measured in seconds, between the times marked by 

both devices at a given instant. Some synchronization systems estimate this offset, or the 

maximum possible offset given the running conditions. Another metric is the skew, which 

consists of the variation of the offset with time and shows how stable is the system. Skew 

estimation is also important to notice if (and how much) the system is affected by different 

conditions like temperature changes or time of the year (season), if analyzed on long use of 
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the system. The drift is an important metric that is defined as the variation of skew with 

time. It is useful for analyzing the stability of a system on long runs. 

Since they are applied to the results of synchronization, these metrics can be used 

to analyze: 

• The time distribution part of a time synchronization system with trustable 

clocks in both devices; 

• A single local clock with a trustable clock as a reference and a trustable time 

synchronization system; 

• The “additive” result of having a not-so-accurate clock and a time distribution 

system with a trustable clock as a reference (it can even show which part of the 

system is strongly affecting accuracy, if any: the local clock or the time 

distribution); 

• Candidate reference clocks (comparatively) with a not-so-good local clock and 

a time distribution system. In this case, experience shows that with a few 

candidates maximum likelihood estimation gives very good tips on which 

candidates are trustable and which are not. 

2.3. Clock Synchronization Systems Evolution 

Many clock synchronization systems have been proposed in the last decades. In 

1983 the Daytime [5] and Time [6] protocols were standardized. A Daytime server acts as 

a simple time supplier and offers time in human readable format. It is recommended that 

no machine should read this format to synchronize time. A Time server also acts as a time 

supplier, but it supplies GMT time (not local time) in a binary format for another machine 

(a Time client), which will simply update its own time with no further analysis of the 

received time. Both protocols have a resolution of 1 second, which is very bad for any 

serious time keeping needs. 

The Automated Computer Time Service (ACTS) first went on-line in 1988 [7], 

operated by the National Institute of Standards and Technology (NIST). It is composed by 

timeservers and clients that communicate over telephone lines and modems. Since there 

normally are very few lines serving ACTS time in a country, it is common to use long 

distance calls, turning the system a bit expensive. ACTS timestamps have a resolution of 1 

second, but it provides a propagation compensation scheme that guarantees very well 

configured systems with a dedicated server a maximum error of few milliseconds. It only 

provides phase correction of time oscillators, not clock discipline. 
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The Distributed Time Service (DTS) [8] proposed by the digital Equipment 

Corporation in 1989 is well suited for managed local network environments [4]. It 

exchanges timestamps between servers and “clerks” with a resolution of 100 nanoseconds. 

It provides error estimation and server selection algorithms, but similarly to the previous 

protocols it doesn’t provide clock discipline. Just phase correction of time oscillators. 

The Fuzzball routing protocol [9] incorporates time synchronization information 

directly into its routing messages, using minimum paths (one link) between the routers. It 

uses a spanning tree to propagate time offsets. This information is used to synchronize 

local clocks using the algorithm described in [4]. No server selection is used. It is designed 

for its local networks and doesn’t apply to the Internet. 

The Network Time Protocol (NTP) was first standardized in 1985 [10] and has 

much evolved since. It was initially based on the Fuzzball protocol, but after taking some 

ideas from DTS and improving many of its algorithms, the official implementation of the 

version 4 of the standard [11] is has proven to be the best technique achieved so far for 

time synchronization throughout the Internet. It is composed by a hierarchical set of time 

serving machines, where those attached to a high precision clock make the first level of the 

hierarchy. One of the main aspects of NTP is the introduction of clock discipline 

algorithms that not only adjust the phase of the local oscillators (clocks), but also their 

frequency. The timestamps in NTP have a resolution of about 232 picoseconds. A well-

designed time system (with reasonably good local clocks and a predictable congestion-free 

network service) based on NTP can yield an error of about 1 millisecond. But almost all 

networks in the Internet have some level of congestion, which makes it hard to design a 

good timekeeping system in the Internet without the use of QoS. 

2.4. Basic Concepts in Quality of Service 

The Internet was first designed to be a military network where interoperability and 

resilience were the main issues. It should be able to recover quickly from problems (like a 

dead router) but wasn’t supposed to deal with high congestion levels or service assurance. 

With the growth of the Internet as a worldwide commercial network, many efforts 

were made to solve issues like accountability and predictable service. A few architectures 

were proposed for dealing with QoS. The three most important ones are presented in 

section 2.5. 
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2.4.1. Quality of Service Metrics 

A service on the Internet can be defined by certain metrics required for its proper 

functioning. The most commonly used metrics are: 

• Delay – the time a packet takes to go from the origin to the destination. It can 

be defined as maximum delay, as average delay or even as maximum delay for a 

percentage of the packets. 

• Jitter – the variation of the delay. Some services (especially the ones with media 

streaming) are not much disturbed by delay, but suffer some quality loss with 

the variation of such delay. 

• Bandwidth – the network bandwidth required by the service. It can be 

specified by minimum necessary, maximum that will be used (peak bandwidth) 

and/or average. Some common categories for defining bandwidth derive from 

QoS classes in ATM networks [12]: Constant Bit Rate (CBR), Variable Bit Rate 

(VBR), Available Bit Rate (ABR) and Unspecified Bit Rate (UBR). 

• Loss – the loss rate that is acceptable by the service, generally calculated as a 

percentage of packets, or Path Error Rate (PER). 

These are the most relevant metrics used for Quality of Service, but most proposals 

use only a subset of them and some do not use them explicitly, making a generic guarantee. 

The IP Performance Metrics (IPPM) Working Group from the Internet Engineering 

Task Force (IETF) [13] provided some discussions on these and some other metrics and 

how they can be measured [14][15][16]. 

2.4.2. The Best-Effort Service 

The standard service offered by the Internet with no QoS support is known as 

Best-Effort (BE). It makes no metrics-based service guarantee; just the implicit guarantee 

that routers will do all they can to deliver the packets. Here, all packets get the same 

treatment, and packets carrying any type of data, from any connection, can be discarded 

due to congestion or physical layer (transport media) failure. 

2.5. Quality of Service Architectures 

Below are outlined the most important proposed architectures for dealing with QoS 

in the Internet and details of their behavior. 
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2.5.1. Integrated Services 

Being the first QoS proposal made by the Network Working Group of the IETF 

[13], the Integrated Services (IntServ) [17] architecture was designed to be very effective at 

providing QoS for individual flows by reserving network resources on every router in a 

transmission path. The idea behind IntServ is that one cannot make guarantees on Quality 

of Service without making explicit resource reservations. 

2.5.1.1. Main Service Definitions 

Besides offering the Best-Effort Service, the IntServ architecture also offers two 

other types of service: 

• Guaranteed QoS Service [18] – it provides firm guarantees on the throughput 

and delay of a connection, as long as the connection respects the agreed traffic 

profile. Such a connection can only be accepted after the verification that the 

network can implement it (admission control). This behavior is comparable to 

leased lines, and each connection needs some state information on each router. 

Therefore, it is impossible to scale IntServ to be deployed on the Internet, 

where some routers serve millions of connections simultaneously, making the 

processing of so much state information very expensive, if not impossible. 

• Controlled Load Service [19] – it does not provide strong guarantees, packets 

will be treated as in a lightly loaded best-effort network. Most packets will be 

delivered successfully and will not be much more delayed than the minimum 

possible, as long as the submitted traffic is according to the agreed traffic 

profile. It was designed to support many applications being designed to the 

Internet today that don’t need special guarantees but will not work on a heavily 

congested network. Each connection needs to use some state information on 

routers, as in the guaranteed service. 

2.5.1.2. Architecture Components 

IntServ is an implementation framework with four components: 

• Signaling protocol – a protocol for reserving resources on the desired path. 

IntServ was designed to work in conjunction with any reservation protocol, but 

all experiments carried out used the Resource Reservation Protocol (RSVP) 

[20] for resource reservation, which was designed for Integrated Services. 

Therefore, the literature sometimes refers to the “IntServ/RSVP” architecture. 
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• Admission Control routine – it is responsible for verifying if there are enough 

resources for granting a requested service and should be used only during 

communication setup or reconfiguration. 

• Packet Classifier – it classifies every incoming packet in a router to decide 

which service it should receive. 

• Packet Scheduler – an algorithm used to make packets receive their requested 

QoS by scheduling them correctly. 

2.5.1.3. The Resource Reservation Protocol 

The Resource Reservation Protocol (RSVP) was designed for IntServ and is the 

only reservation protocol with a specification for it. RSVP is a receiver driven soft-state 

protocol, i.e., the reservations are requested by the receiver and they are valid for a limited 

time, being continuously refreshed until the end of the connection. 

Sender

PATH PATH PATH
PATH

PATH
PATH PATH

PATH

RESV
RESVRESVRESVRESVRESVRESV

RESV

Receiver
Data traffic

Sender

PATH PATH PATH
PATH

PATH
PATH PATH

PATH

RESV
RESVRESVRESVRESVRESVRESV

RESV

Receiver
Data traffic

 

Figure 2-1: RSVP Message Exchange 

The message exchange is done as shown in Figure 2-1 [32]. After the receiver 

requests a transmission from the sender, the latter sends back a PATH message, which will 

describe the required traffic profile and install some reverse routing information on each 

router along the way (chosen by whatever routing protocol that is in place) to the receiver. 

Upon receipt of this message, the receiver sends back a RESV message, which will traverse 

the reversed path (and not the path chosen by the routing protocol) reserving the resources 

in the routers. The RESV message is send hop-by-hop in order to follow the reversed path 

and make the correct reservations. 

Considering that the reservation is soft-state and must be refreshed, the 

reservations must be refreshed often enough so that the loss if a single message will not 

falsely allow the removal of a connection [17]. 
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2.5.2. Differentiated Services 

The Differentiated Services architecture (DiffServ) [21] was proposed by the 

Network Working Group of the IETF four years after IntServ primarily to solve its 

scalability problems. Here, routers neither keep state information nor exchange signaling 

information. Therefore, the memory, processing and network control bandwidth 

requirements are much smaller and simpler to deal with. 

The key idea in DiffServ is that services can be defined into classes, and all 

applications that require a certain service will be treated the same way. Packets are marked 

using a previously unused field (the Type of Service field – TOS [22] – now called 

DiffServ Code Point – DSCP [23]) in the IP header, which will not change protocol 

headers neither affect legacy systems that ignore the field. This treatment is called Per Hop 

Behavior (PHB). 

2.5.2.1. Per Hop Behaviors 

DiffServ has two official PHB specifications, besides the Best Effort: 

• The Assured Forwarding (AF) PHB group [24] was defined to treat different 

types of traffic in relation to each other. There are four AF Classes, each with 

three drop precedences (12 combinations). It was designed for use of the same 

service within a class, where more important packets have a higher priority 

over others by being marked differently. The classes do not have precedence 

order between each other. 

• The Expedited Forwarding (EF) PHB [23] should guarantee that packets in 

this class will not be dropped and their delay and jitter will be very close to 

minimum, if traffic agrees to the configured profile. It should function as a 

virtual leased line (VLL). 

The Best Effort (BE) PHB, though not officially specified, represents the service 

already in place in the Internet and is sometimes called the default PHB. In DiffServ, no 

guarantees are made for BE, except that the BE will be made to forward packets correctly 

and that all packet flows of this PHB will be treated fairly among themselves. 

2.5.2.2. DiffServ Network Topology 

The DiffServ architecture has the following elements: 

• The DiffServ Domain (DS Domain) is a network with DiffServ enabled. 
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• The Core Router (CR) is a DiffServ-aware router that can treat packets within 

PHBs according to the DSCP marking of the packet. 

• The Edge Router (ER) has the same functions of the CR, plus classification, 

marking, policy enforcement and traffic shaping. It is supposed to be used at the 

borders of DS Domains to exchange traffic with other Domains (either DS 

Domains or not). 

• The Bandwidth Broker (BB) makes contracts with end-users and with BBs from 

other DS Domains to request services. It is not mandatory for a DS Domain 

and has not been totally specified. There is no standard protocol for BBs in 

DiffServ to this date, just a suggestion that limits the possibilities in Diffserv to 

very few services [26]. 

2.5.2.3. Service Level Agreements 

A Service Level Agreements (SLA) is a contract made between two networks with 

different owners. It can be physical (paper document) or virtual (digitally signed document 

using a BB). 

A SLA must define network service guarantees, billing method, contingencies and 

penalties (in case of contract breach by any of the participants). 

2.5.3. Multiprotocol Label Switching 

While not being a real QoS architecture, Multiprocotol Label Switching (MPLS) is a 

packet-forwarding scheme that breaks and improves the hop-by-hop forwarding strategy 

used in the Internet, thus making a clear separation between routing and forwarding. It 

works between the Physical Media Dependent Layer (or Data Link Layer, in the OSI 

Reference Model [12]) and the Network layer (OSI and IP Reference Model [12]) by adding 

a header to packets and attributing a label on this header to allow forwarding. 

MPLS uses Label Switched Paths (LSP), which gives a more effective control on 

where packets are being forwarded through. The MPLS enabled routers are called Label 

Switched Routers (LSR). LSRs keep some state information of forwarding paths, but no 

information on the passing flows, making them scale elegantly. The labels are defined on a 

per-link basis and can be grouped on Forwarding Equivalence Classes (FECs). Therefore, 

forwarding tables do not grow too much. New labels can be issued with a request based on 

traffic engineering or routing changes and can also be issued on demand due to a new path 

requested by a new connection. 
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Figure 2-2: Packet forwarding and label switching in MPLS 

The forwarding tables consist of Next-Hop Label Forwarding Entries (NHLFEs). 

These map incoming labels into outgoing interfaces and new labels, which are called 

Incoming Label Mapping (ILM). MPLS Domains interact with non-MPLS Domains 

through the use of FEC-to-NHLFE (FTM) maps to label unlabelled incoming packets and 

remove of unnecessary labels on border LSRs (see Figure 2-2). 

2.6. Summary 

NTP is the only reliable protocol for sharing time on top of IP networks. It has 

some problems with bad network connections and may require some network QoS to be 

properly deployed. 

The IntServ architecture shows an elegant way of putting QoS on IP networks. 

Unfortunately, it is very costly and does not scale to today’s Internet. MPLS is being used 

on many backbone providers, but its only effective on a big network with redundant paths. 

It won’t of much help for users/networks with only one connection to the Internet. 

The DiffServ architecture was chosen because of its actual deployment in some 

research networks worldwide and also because of its easiness of deployment and scalability. 

It is explained in more details in Chapter 4. In the next chapter we will discuss the NTP 

protocol and show some of its main weakness. 
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Chapter 3 - The Network Time Protocol 

The Network Time Protocol (NTP) [1][11], standardized by the Internet Engineering 

Task Force (IETF), has been the “de facto” standard for clock synchronization for over 2 

decades and has evolved with time. Nowadays, a huge (in hundreds of thousands) number 

of time servers [11][27] around the world utilize it to replicate time information to other 

machines. 

3.1. NTP Hierarchy 

NTP uses a hierarchical and distributed algorithm to share time, as shown in Figure 

3-1 [4]. Physical clocks [28] are used as references of time and can be of many types: 

atomic, radio waves, crystal oscillators and GPS-based (Global Positioning System) clocks 

are the most common ones. Each of these clocks is attached to a computer called primary 

reference or stratum 1 [11]. These computers serve a very trustable time, but aren’t very 

common due to their high price, to the required skill to install and configure them and to 

the easiness of clock synchronization on networked computers. 

1 

3 

2 

3 3 

2 
x 

1 

3 

3 

3 3 

2 

 

Figure 3-1: NTP Stratum tree (a) in normal hierarchy and (b) when link "x" fails 

Any computer that synchronizes its time using a stratum 1 computer as a reference 

is then called secondary reference or stratum 2, and it may serve time to stratum 3 ones 

(also called secondary reference) and so on up to stratum 15, forming a synchronization 

tree. So, the stratum of a computer measures its distance to a physical clock, in network 

nodes. Each computer has an internal clock (normally a quartz oscillator) to keep time, 

called local clock, which is less trustable and very cheap. The idea is that the machines at 

the leaves of the tree do not need a very good precision. User machines are commonly 

stratum 4, but if you need a machine with very good time accuracy (banking or distributed 

database, for example) you should bring it upwards on the synchronization tree: directly 

connected to a physical clock (the machine is stratum 1 and NTP is only used to discipline 
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the local clock) or synchronizing its time from a stratum 1 computer through a low jitter 

network path (in other words, one is better of buying a physical clock than paying the extra 

network link to one). A computer that is not synchronized to any other source is said to be 

stratum 16 (tough the protocol uses the value 0 as default [11]). 

3.2. NTP Packet 

Some information is needed for a correct packet exchange for clock 

synchronization. The NTP packet format [11] is specified in Table 3-1 with all the possible 

fields. 

Table 3-1: NTP packet format 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
LI VN Mode Stratum Poll Precision 

Root Delay (32 bits) 

Root Dispersion (32 bits) 

Reference Identifier (32 bits) 

Reference Timestamp (64 bits) 

Originate Timestamp (64 bits) 

Receive Timestamp (64 bits) 

Transmit Timestamp (64 bits) 

Key Identifier (optional) (32 bits) 

Message Digest (optional) (128 bits) 

 

The Leap Indicator (LI) signals an impending leap second to be inserted or 

deleted in the last minute of the current day. This is indicated by astronomers as a 

correction of UTC time in relation to UT1 (see section 2.2) and can be manually set on 

stratum 1 servers or these servers must check periodically for the need of a leap second on 
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an observatory server. So far, leap seconds have only been inserted on the last minute of 

the year and have never been deleted. The server sets this field. 

 The Version Number (VN) refers to the version of NTP being used. The latest 

version is 4 [11]. Both  (the server and the client) set this field, but the server only replies to 

the request if it supports the version of the client. 

 Mode refers to the mode of synchronization, and can be: client, server, broadcast 

(poor synchronization) or symmetric (active or passive). The other 3 possible values are 

reserved. On symmetric modes the server maintains a state for each client, which is 

unreliable without access control (due to the unpredictable number of clients). Both the 

client and the server set this field. 

 Stratum is the stratum of the machine that sent the packet. Both the client and the 

server set this field. 

 Poll is the interval between two requests from a client, measured in seconds. It is 

always a power of 2. The client sets this field. 

 Precision is the precision of the local clock. Both the client and the server set this 

field. 

 Root Delay is an estimation of the round trip delay from client all the way to the 

root server (stratum 1), passing through the intermediary servers, in seconds (the first 16 

bits represent the integer part). Both the client and the server set this field. 

 The Root Dispersion represents the estimated error from the root server. Both 

the client and the server set this field. 

 The Reference Identifier represents where the machine synchronizes. If the 

machine is a secondary reference, it must put the IP of its server. If it is a primary 

reference, these 4 bytes represent an ASCII string describing the local clock, e.g., GPS, 

NIST (modem service), WWV (radio waves), etc. Both the client and the server set this 

field. 

The Reference Timestamp represents the time at which the local clock was last 

set or corrected. Both the client and the server set this field. 

The Originate Timestamp is the time when the request departed from the client, 

in seconds (the first 32 bits represent the integer part). It has a reasonable 232 picoseconds 

precision, considering the guarantees of NTP in the range of a millisecond for well-

configured time-keeping systems. 

The Receive Timestamp represents the time the request arrived at the server. 

Transmit Timestamp is the time when the reply departed the server. 
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 The Key Identifier defines the authentication algorithm used. Both (the client and 

the server) if using any type of authentication set this field. 

 The Message Digest represents the checksum of all the fields in the packet, 

encrypted with the authentication key agreed by both the client and server. Keys are not 

exchanged through NTP. Both the client and the server set this field if authentication is 

used. 

3.3. NTP Authentication 

NTP can use authentication mechanisms to prevent having many unauthorized machines 

use its clock as reference to generate undesired network load that may compromise other 

clocks (including the reference clock itself). These mechanisms are beyond the scope of 

this dissertation and are explained in detail in [4]. 

3.4. NTP Metrics 

Some interesting (and often confusing) metrics [4] can be used to analyze time 

synchronization problems and are explained here. They are estimated by the NTP 

implementation to help investigate the quality of synchronization of a given clock. 

The stability of a clock is how well it can maintain a constant frequency, while 

accuracy is how well its frequency compares to time standards and the precision is how 

precisely these quantities can be maintained on a system (maximum error estimation). In 

NTP, timestamps (which measure seconds) are 64 bits long with 32 bits for the integer part 

(136 years) and 32 bits for the decimal part. This gives us a timestamp accuracy of 232 

picoseconds. 

The offset of two clocks (here, an NTP client and a server) is the time difference 

between them at a specific instant. The skew represents the frequency difference between 

them (computed as the first derivative of offset with time), measured in seconds/second or 

in parts per million (PPM) and the drift is the variation of skew (second derivative of offset 

with time). The drift is a good measure of stability. 

Local quartz oscillator clocks have a high skew, and the clocks drift (i.e., the skew 

varies) too much. Frequent room temperature change is one of the most common causes 

of drift. 

 16 



3.5. Clock Synchronization Process 

The full stochastic process of clock synchronization is modeled in [1], but this work 

proposes a simpler one to study the clock synchronization, explained in section 5.1. In 

RFC 1305 [4], Mills shows a very simple description of this stochastic process, explained 

next. 

The timestamp exchange is represented in Figure 3-2. In the -th iteration, the 

client generates a timestamp T  and immediately sends a message to the server with this 

originate timestamp. The server receives the message and generates a receive timestamp, 

. After processing the message and generating a response, the server generates a 

transmit timestamp, T , puts it on the response and sends it. Upon receipt of the message, 

the client generates another timestamp, T . After this message exchange, the client has 

four timestamps, two of them generated by the server. 

i

i1

iT2

i3

i4

T4i 

T3i T2i 

T1i 

Figure 3-2: Timestamp exchange 

Then, the client generates a sample of the clock offset δ  and the roundtrip time θ  

estimations using the following equations: 

)()( 2314 iiiii TTTT −−−=δ  

2
)()( 4312 iiii

i
TTTT −+−

=θ  

NTP gives these computed values to the correction calculator, which will generate 

an estimation of time based on the last samples and give commands to the operating 

system to correct its time. 

The interval between each T1i, also called polling interval ( ), is based on how well 

the system is maintaining the synchronization. Generally, when NTP is started, it assumes 

the value of 64 seconds and rises (in powers of 2) up to the value 1024 (generating less 

network activity) if time keeping conditions are good. Noisy data (bad server or high 

network jitter) and many lost packets make this value shrink down to 64 seconds again. 

P
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3.6. Clock Filtering and Reference Clock Selection Algorithms 

NTP client computers are normally configured with more than one reference clock 

(with possibly varying strata), but it utilizes some statistical techniques (specially maximum 

likelihood) to choose only the best ones. Some commonly used clock-selection algorithms 

can be found in [29][4] and are detailed below. The NTP Specification does not require 

these algorithms be implemented, but it requires that a secondary reference NTP server (a 

machine that synchronizes through NTP and serves time to others) uses at least algorithms 

with equivalent functionality. 

At first, NTP polls all the candidate servers in order to put aside bad clocks (or 

clocks with bad internet connections to it), leaving only reasonably good clocks. For each 

polled clock, it calculates a dispersion value based on the total polling time, system 

precision and sample age. Then, it creates a table with the relative dispersion ε  between 

each pair of server candidates (the dispersion of each one compared to the dispersion of all 

the others), weighted by the synchronization distance  (dispersion plus one-half the 

absolute delay) [4]. The equation to calculate the terms of the table is shown below: 

w

∑
−

=

+=
1

0

1
n

i

i
ijj wεε  

Through the maximum likelihood, it orders the clocks according to the growing 

mean relative dispersion. 

3.6.1. Clock Filtering Algorithm 

Clock filtering is used to select the best samples from a given clock. Each time a 

poll is accomplished, the sample is compared to other ones from the same server and all 

the samples are re-evaluated to discard bad and old ones. 

Each sample generates three variables: offset, distance and dispersion. The 

dispersions of old samples are updated (since they depend on age) and samples with an 

offset or dispersion higher than the maximum acceptable (configurable) are discarded and 

will not be used for time correction calculation. 

3.6.2. Clock Selection Algorithms 

The clock selection is done using combinations of an intersection algorithm and a 

clustering algorithm. The intersection algorithm uses the offset and the dispersion of each 

clock to generate a clock interval for comparison. Some of these intervals will not have 

intersection, so an intersection interval of as many clocks as possible is generated in order 
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to choose the best clocks and discard the others from the server candidate list. If it is not 

possible to choose an interval that reaches a simple majority of the clocks, no clocks will be 

used and synchronization will not occur. 

The clustering algorithm orders the retained servers according to stratum and 

synchronization distance and similarly those with high distance can be discarded. The 

remaining servers will be polled regularly, but only the best ones will be used as a source 

for synchronization. Since this variable changes over time, the source can be changed if it 

becomes considerably worse than others, but in order to avoid instability it is done only 

when the difference may provide a very good deal of improvement in accuracy. Finally, the 

data coming form the selected clocks will be combined to produce a phase signal for the 

clock discipline algorithms explained next. 

3.7. Clock Discipline Algorithms 

In NTP, the clock discipline corrects the computer clock time, compensates for 

intrinsic frequency error and adjusts various parameters dynamically in response to 

measured network jitter and oscillator frequency stability (also called oscillator wander) [1]. 

This can be achieved through the combination of two feedback control systems. One is a 

Phase-Lock Loop (PLL), where updates are used directly to minimize phase error and 

indirectly to minimize frequency error. The other one is the Frequency-Lock Loop (FLL), 

where updates are used directly to minimize frequency error and indirectly to minimize 

phase error. 
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Figure 3-3: Clock discipline algorithm 
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The discipline is implemented as the feedback control system shown in Figure 3-3 

[1].  represents the reference phase produced by the update (receipt of an NTP 

response) and θ  represents the control phase produced by the variable-frequency 

oscillator (VFO), which controls the computer clock. The phase detector produces the 

instantaneous phase difference between them, V . The clock filter will filter, select and 

combine the best clocks to produce V . This sporadic signal will be converted in a periodic 

signal  (generated at intervals of one second) by the loop filter, which will use it to 

correct the frequency and phase of the VFO. 

rθ

V

c

d

s

c

The loop filter uses a phase predictor (the PLL) and a frequency predictor (FLL). A 

hybrid PLL/FLL design (presently used in NTP) permits the loop filter to adapt to 

different running conditions. Depending on the polling period , PLL or FLL has a 

greater weight on the resulting clock adjustments. The higher is , the greater the weight 

of FLL. This allows for a big value of  with smooth (i.e., controlled) loss in accuracy. 

P

P

P

The PLL loop predicts a frequency adjustment  as an integral of V , using 

past (recent) values of V . This can drive both time error to zero with a fast convergence 

and can also drive frequency error to zero. 

PLLy Ps

s

The FLL loop predicts a frequency adjustment  as an exponential average of 

past frequency changes, computed from V  and . The goal of the algorithm is to reduce 

future values of V  to zero. 

FLLy

s P

s

3.8. Quality of Synchronization 

 Mills says [28] that NTP yields better results (i.e., the offset can be measured with 

the smallest error) when the network load isn’t high and even that is not a problem because 

a network link generally spends very little time with high loads. But practice shows that on 

these periods and even on some low load periods, due to the lack of control over packets 

bursts that generate jitter (because of queuing) and loss, NTP loses synchrony and the 

machine depends solely on its local clock to keep the time. Then, it must wait until the 

network “goes back to normal” and NTP [28] synchronizes again (which can take quite a 

few minutes). 

 Clock Synchronization depends on reference clock quality (which isn’t much of a 

problem nowadays), local clock stability (though NTP tries to discipline the local clock), 

network delay and jitter [30]. Therefore, by guaranteeing minimum and stable network 
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delay for NTP packets one guarantees permanently good synchronization for computers 

that use NTP to synchronize their clocks. 

3.9. Summary 

This chapter explained the main aspects of the NTP protocol, and detailed its 

packet format describing all fields, showed the main algorithms and how they guarantee a 

good functioning, described some metrics for the quality of synchronization and some 

possible problems when using NTP. 
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Chapter 4 - The Differentiated Services 

Architecture 

DiffServ was designed to have the smoothest possible implementation in today’s 

Internet by being able to work with legacy applications and network topologies [21]. Only 

router update is actually required, and it can even be done domain by domain, without 

impact to legacy applications. 

 The IPv4 header has a byte-long field named Type of Service (TOS), which was 

designed to help giving different treatment to packets marked by applications, specially for 

network controlling functions. The IP Precedence [22] used 3 of the 8 bits so that 

applications could signalize the need for low delay, high throughput and/or low loss. The 

other bits were ignored. In IPv6, a similar field, called Traffic Class [31], is defined in the 

header. The main idea in DiffServ is to map each configuration (a DiffServ Code Point – 

DSCP) of the new DS Field (which uses the first 6 bits of the TOS/Traffic Class and 

leaves the other two bits unused) to a different packet forwarding treatment, named Per 

Hop Behavior (PHB) [23]. Since the number of PHBs is limited by the size of the field, 

DiffServ routers treat only aggregated traffic flows, formed by a group of individual flows 

that will receive the same treatment. 

4.1. Per Hop Behaviors 

Some PHBs have been standardized, as explained below. 

 The Best Effort (BE) PHB, sometimes referred to as the default PHB, represents 

the treatment already used on the Internet. It supports fairness (among packets this same 

class) without service guarantees. Some minimum bandwidth can be reserved, but no 

guarantees are made, except the guarantee of fairness among packets. It was not formally 

standardized within DiffServ. The old definition from [22] is still current. 

 Assured Forwarding (AF) [24] is a PHB Group that offers some priority discard 

guarantees, especially among flows of the same AF class. There are 4 AF classes defined, 

each with 3 different drop precedence values, making a total of 12 different DSCPs. AF 

classes may be used by an application that uses different traffic flows, where some flows 

are more important than others (for example, layered video transmission) or by some 

single-flow applications with differentiated importance. Twelve codepoints are 

recommended for use within the AF PHB. 
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 Expedited Forwarding (EF) [25] guarantees that the delay and the jitter of the 

packets will be very close to the minimum possible. EF traffic rate should be independent 

of other traffic passing on the same router. From the application’s perspective, it should 

work as a virtual leased line (VLL). The recommended codepoint for EF is 101110 (in 

binary). 

4.2. DiffServ Network Topology 

The DiffServ network topology has many elements, as follows. 

 A DS Domain is any network structure that can treat DiffServ traffic. It can also 

interact with other non-DS Domains, but then no guarantees can be made. 

The Core Router (CR) is a DiffServ-aware router that can treat packets within 

PHBs according to the DSCP marking of the packet. They are supposed to be used within 

DS Domains, but not on their borders (without connections to routers in different DS 

Domains). 

 The Edge Router (ER) is a router that performs the same function of the CR as 

well as packet classification, marking, policy enforcement and traffic shaping. It can 

be located at the border of a DiffServ Domain or inside the Domain, connecting end-users 

or customer networks. The packet classification can be based on many fields of the headers 

of the Network and Transport layers (of the IP Reference Model [12]) and should define a 

PHB to treat each incoming traffic flow. The policy enforcement checks if user traffic is 

according to the Service Level Agreements (SLAs – see section 4.3 below). The traffic 

shaping can be used to turn misbehaved traffic into well-behaved one (e.g., buffering 

bursty traffic and sending it at a constant rate). It does all this work according to the SLAs 

it is subject to. Since there are often many things to do, ERs are bottleneck potentials [32] 

of a DiffServ domain and must be very well provisioned. Therefore, they could be a lot 

more expensive. If packet marking is trusted to the applications that create them, there’s no 

need for packet marking at the ER connected to customer networks. But since any network 

can use their own private markings (besides the standard PHBs), some translation (i.e., 

remarking) must be done at the ERs to accept traffic from other DS Domains. 

The Bandwidth Broker (BB) [21] makes SLAs with network entities automatically 

to request services on-demand according to specified requirements (bandwidth, maximum 

delay/jitter, maximum drop probability, etc.) and after an agreement it informs the affected 

routers of its domain of the necessary changes. There should be one BB per domain and it 

should be accessed by other DS Domains (BBs calling each other) or by customer 
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applications. Though proposed as part of the DiffServ architecture, BBs have no full 

specification whatsoever and are not used in DiffServ networks to this date. A suggestion 

for the restricted use of BBs can be found in [26]. 

4.3. Service Level Agreements 

The DiffServ architecture doesn’t define a protocol for the applications to reserve 

any resource in DiffServ routers. The customer must have a Service Level Agreement 

(SLA) with its provider to specify what services are required, what guarantees will be 

offered by both participants, how the service will be billed and what will be the 

contingencies and penalties for not following the agreement - which can range from 

dropping more packets than was agreed (provider fault) to putting more EF traffic on the 

network than was agreed (customer fault). SLAs are also made between providers, or DS 

domains, as shown in Figure 4-1. 
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Figure 4-1: DiffServ logical architecture 

Due to the aggregated treatment of traffic, DiffServ routers cannot make 

guarantees on microflows (e.g., a drop guarantee of less than 1% for EF traffic doesn’t 

mean that every application that makes use of EF will experience less than 1% packet 

drops). It just guarantees that the average will be respected. 

SLAs can be static (described by a document signed between a provider and a 

customer or between two providers) or dynamic, through the use of BBs (digitally signed), 

as shown in Figure 4-2 [32]. 

 24 



SLA SLA SLA

Sender Receiver
Data traffic

BB1 BB2 BB3 BB4

SLA SLA SLA

Sender Receiver
Data traffic

BB1 BB2 BB3 BB4

 

Figure 4-2: DiffServ delivery process with bandwidth brokerage 

4.4. Bandwidth Brokerage 

The use of Bandwidth Brokers is a tendency as well as a requirement for the 

acceptable deployment of a DiffServ network. When analyzing the time-scale for network 

provisioning (Figure 4-3) [33], one realizes that waiting for people to sign a document (even 

if a digital document) is not a reliable way of doing provisioning and not the best way for 

capacity planning. The costs of installing a better communication infrastructure than what 

is needed at the moment will be surpassed in the long term by the costs of updating that 

infrastructure many times. 
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Figure 4-3: Network provisioning time-scale 

Despite this tendency, there is only a specification of a few parts of a BB [26], with 

restricted application. 

4.5. Summary 

This chapter presented the Differentiated Services architecture and how it treats 

aggregated traffic flows, making it scale well for higher usage necessities. It also detailed the 

elements of the DiffServ network topology and the necessity and use of Bandwidth 

Brokers to dynamically implement alterations in Service Level Agreements. 
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Chapter 5 - Proposed Alterations for Clock 

Synchronization Infrastructure 

This chapter presents a novel networked clock synchronization stochastic process 

modeling for understanding the behavior of the NTP, proposes some alterations in the 

network infrastructure for applications that have low-delay and low-jitter requirements and 

provides some recommended configurations for a proper functioning of NTP with respect 

to the network infrastructure alterations. The novel stochastic process modeling is 

described in section 5.1. The detailed proposals are presented in sections 5.2 and 5.3. These 

proposals result in better and trustable clock synchronization for networked computers, as 

will be seen in section 6.3. 

Though NTP is a connectionless protocol using UDP, we will use the term 

connection to refer to NTP flows (i.e., a conversation between a single client and a single 

server). 

5.1. Stochastic Process Model 

A stochastic process modeling of NTP is proposed to help understanding the clock 

synchronization process. This stochastic process is simpler (less detailed) than the one 

presented in [1], though more expressive for the intended approach and applications. 

This new description aims to explain only the relationship of NTP between a client 

and a server, not trying to explain the relationship between two NTP machines in 

symmetric mode neither trying to describe the computations inside the NTP client. 

Security issues involving keyed authentication have not been considered either. No 

analytical considerations are made on this model. 

A graphical explanation of the model will be used to enhance the description (as 

shown in Figure 5-1). 

The client machine has a local time  and tries to make this time be as near as 

possible to a reference time . Local time does not evolve in a linear way in relation to 

reference time. Local clocks generally have a bad precision and their time varies (skews) 

from reference time in a non-linear way, causing drift. This characteristic makes it very 

important for a machine to periodically poll a reference machine for a trustable time, in 

order to adjust (diminish offset from server) and discipline (diminish frequency error) the 

local clock. Below are described the order of events for one iteration. 

lt

rt
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At time t , a time-order o  leaves the client towards the server. The server receives 

this order at time  and, after a little computation (mainly packet processing and 

client information sanity checks), it sends back an answer at time . This answer 

arrives at the client at time cr . The times o  and  are measured with respect to the 

local time, and the times  and  are set according to the time of the reference machine 

(in the following “reference time” for short). The next time-order o  is sent a certain 

period after the order , according to characteristics of the local clock and the network 

service received. This period is limited by minpoll and maxpoll configurations of the   NTP 

client. The most common and accepted configuration of period  is the default: 
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Therefore, the minimum value of  is 64, and its maximum value is 1024. The 

transition between different polling periods is always by changing between adjacent values 

of . Whenever a frequency change is to occur, NTP analyses if this change is caused 

mostly due to local clock instability or due to network instability (jitter). This can be done 

analyzing the recent samples of packet delays (round trip time) to calculate jitter. In case of 

local clock instability, the polling period is increased (i.e., the polling rate diminishes). 

Otherwise, it is decreased. 
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Figure 5-1: Clock synchronization stochastic process illustration 

Figure 5-1 shows in solid line the relationship between time marked by the local 

clock (abscissas) and the “real time” provided by the reference machine (ordinates). The 
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ideal synchronization, i.e., an identity relationship, is shown as reference in dashes. The 

relevant events are highlighted with arrows: o , ,  and  along the local time axis, 

and  and  along the reference time axis. Pointing upwards ( o  and o ) and to the 

right ( ) arrows denote outgoing events, while downwards ( ) and to the left ( ) 

arrows denote incoming events. The period of time between time orders  is also shown 

in the figure. The goal of a clock synchronization system is to decrease as much as possible 

the area between the lines and to define hard limits for the maximum possible difference 

between the curves at a given moment. The vertical distance between the lines represents 

the offset between the clocks, and diminishing this distance at all time is a way to diminish 

the area between the lines. 
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5.1.1. Association State Machine 

The complete specification of the assumed stochastic model consists of providing 

laws for the time between the relevant events, along with their correlation structure (or lack 

of correlation structure). This will be done in the following. 

The probability of events on an NTP association is explained in the state machine 

shown in Figure 5-2. 
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Figure 5-2: NTP association state machine 

Each transition has a probability of occurrence. Assume the initial state is “Waiting 

to Send” (WS). The first transition, from state Waiting-to-Send (WS) to Receiving (R), 

represents the request packets leaving the client, and  is the probability that this request 

reaches the server. If it doesn’t, it means the network has discarded the packet, event that 

occurs with probability 1 . The second transition, from R to Answering (A), represents 

the acceptance and the processing of the request and occurs with probability , i.e., with 

1P

1P−

2P
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probability  the server does not accept the connection (e.g., an unauthorized user 

tries to contact a server that used authentication). The third transition, from A to Receiving-

and-Processing (RP), represents the event that the packet sent by the server reaches the client, 

and it has probability . With probability 1 , therefore, the returning packet will be 

discarded by the network. The fourth transition, from RP to WS, will always happen if RP 

is reached. 

21 P−

3P 3P−

1 t

The times taken by the three latter states, by the fourth transition and by the error 

transitions is ignored. The times taken by the first, the second, the third transition and by 

the WS state, are represented, respectively, by t , ,  and , where , 

which is the period between requests. Whenever a packet is lost the respective poll will 

have no effect on the clock discipline, i.e., a packet loss doesn’t incur in wrong data being 

processed by the client. 

2 3t 4t Ptttt =+++ 4321

5.2. DiffServ Configuration 

The Differentiated Services architecture was chosen for this work because its been 

used on many research networks and also because of its good scalability, as explained in 

section 2.5. 

In a network that will serve NTP traffic, this work recommends the use of one of 

two possibilities: the Expedited Forwarding PHB or the Hot-Potato Forwarding PHB. 

5.2.1. The Expedited Forwarding PHB 

The EF PHB can be used to deliver NTP packets. Due to its efforts for providing 

minimum delay and no loss NTP would have a good stability with such a treatment. But 

NTP doesn’t need the loss guarantees of EF and the delay guarantees could be a little 

improved. Even though the guaranteed bandwidth of outgoing EF connections should be 

big enough to accommodate all the incoming EF traffic [25], due to simultaneous arrivals 

and small bursts it is common to have a little queuing of EF traffic. This queuing can hurt 

synchronization quality. 

In order to configure EF traffic on the routers of a DiffServ network that will 

transport NTP traffic, there should be a good estimation of how much NTP traffic will be 

served by this network (or the exact number of connections, if the network uses a 

Bandwidth Broker). There should also be an estimation of the maximum number of 

simultaneous packets, so that routers won’t have to discard packets, which could hurt EF 

traffic other than NTP. 
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The EF configuration proposed must be done by a system administrator (either a 

person or a software, e.g., a BB) by adding to the reserved EF bandwidth of a link the 

bandwidth that will be used by NTP. As seen in section 5.1, this necessary bandwidth will 

depend on the configurations of NTP, where the standard behavior is to send and receive a 

76-byte packet (or a 96-byte packet with authentication) every 1024 seconds, giving 

approximately 0.6 bps (or 0.75 bps with authentication) per NTP connection. Though the 

average bandwidth for NTP can be obtained by adding the bandwidth of each connection, 

it will not be equal to the peak bandwidth used by NTP traffic, since the requests will not 

arrive uniformly sparse. However, practice shows that on considerably loaded NTP servers 

traffic peaks are rarely more than twice the average. Therefore, system administrators must 

reserve twice the average bandwidth for NTP Traffic and, as specified in [25], if the way 

the EF PHB is implemented at a router can starve other traffic, the router must also use a 

token bucket (or a functionally equivalent mechanism) to limit the rate of EF at the 

reserved bandwidth. 

In case the DS Domain uses a Bandwidth Broker and applications and foreign 

brokers can make requests to the broker, the reserved NTP traffic matrix will be known for 

each interface at each router of the domain. If the DS Domain does not have a broker, 

periodic measurements on Edge Routers (connected to other DS Domains or to customer 

networks) can show the necessity of NTP traffic and may be used to estimate future traffic 

necessities. With this information, the appropriate configurations for EF traffic must be 

done on Core routers and on Edge routers (here, with policing) of the DS Domain. 

As stated in [25], EF packets carrying NTP traffic can have their DSCP remarked 

when entering another domain to a different codepoint, as long as the marking is treated in 

that domain by a PHB that satisfies the EF PHB specification. In case of tunneling of EF 

packets with NTP traffic, the encapsulating packet must also be marked as EF. 

5.2.2. The Hot-Potato Forwarding PHB 

This work introduces the Hot-Potato Forwarding (HPF) PHB, which is intended to 

be the ideal PHB to treat packets with strong low delay requirements and without delivery 

or bandwidth requirements. 

The Hot-Potato Forwarding PHB can be used to construct a lossy, very low 

latency, very low jitter service through DS Domains. It’s like a person receiving a hot 

potato on his or her hands: in order not to get the hands burned, he or she cannot keep 

holding it and should immediately send it to the next person. If one can’t send the hot 

potato to the next person immediately, he or she should simply drop it. 
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Some services require very low delay and minimum jitter, but don’t require delivery 

guarantees. Applications that need to send time-sensitive information, like the exchange of 

high-resolution timestamps (NTP) or the monitoring/metering of physical links delay (with 

the SNMP [34] philosophy that monitoring should not hurt operation and losses are 

acceptable) can make good use of such a service. HPF suits these applications better than 

EF due to the limited predictability of the delays in the latter. And with the loose 

bandwidth requirements of HPF, it will not disturb EF traffic. 

HPF can be achieved by configuring a mechanism that will not delay traffic (e.g., a 

queue that only accepts one packet) and that will discard any packet that cannot be 

immediately sent (otherwise it would affect other traffic). DS Domain Edge routers should 

also police incoming HPF traffic to prevent it from flooding a network. HPF PHB will not 

use any traffic shaping that increases the delay of packets. 

It is not recommended that a DiffServ router to serve a significant amount of HPF 

traffic. The general idea is that HPF traffic should not utilize more than 0.1% of a link, 

except on very special cases (e.g., a link to a public time server or an administrator-driven 

metering of a possibly problematic link). And since EF traffic has very restricted rules for 

accomplishing its guarantees, the implementation of HPF must always be done with care, 

so that it won’t break the guarantees of EF. 

The HPF PHB is not an obligatory requirement of any DiffServ network and is 

intended for private use within a DS Domain or between DS Domains that agree on its 

usage. If HPF is ever specified as a standard PHB, its implementation will never be 

mandatory to any network in order for it to be considered DiffServ compliant, as stated in 

[21][23]. 

5.2.2.1. Definition of the HPF PHB 

The HPF PHB provides forwarding treatment for a particular DiffServ aggregate 

called HPF traffic. HPF packets arriving at any Diffserv router should be immediately 

forwarded or dropped. No HPF packet should wait longer than a packet time (the time to 

send a packet in the outgoing network interface) to be sent. This assures a limited 

minimum jitter, based on the number of nodes and the packet serialization delays at each 

node. 

No minimum bandwidth reservations are necessary or even desired. But a 

maximum bandwidth is important so that misuse of HPF will not affect other PHBs, 

notably the EF PHB. The HPF traffic should not break guarantees of other PHBs. The 

decision of discarding or scheduling an HPF packet must be done based on the guarantees 
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of other traffic. In the event where the scheduling of an HPF packet results in the breaking 

of the guarantees of other traffic this HPF packet should be discarded. A DiffServ router 

that implements the HPF PHB should not use traffic shaping on HPF traffic other than 

the discard of nonconforming packets. 

5.2.2.2. Implementation of the HPF PHB 

Some types of scheduling mechanisms can be used to deliver a forwarding behavior 

similar to the one described in the previous section. But only two mechanisms have shown 

to be capable of providing the necessary means to accomplish all the required guarantees 

within a proper DS Domain: priority queue (PQ) and class based queuing (CBQ). 

With PQ, the HPF traffic can be served by a separate queue (for HPF traffic) with 

the highest priority among all queues. If the queue size is measured in packets (it may differ 

among different router), this queue should have the size of one packet. If the queue size is 

measured in bytes, it should have the size of the biggest packet that it is supposed to 

accept. In order to prevent HPF to starve EF traffic, a token bucket must be used to limit 

HPF rate and two consecutive HPF packets should never be sent if there’s an EF packet 

waiting. 

Using CBQ, there are many possibilities of configuration. A recommended one is 

to use a queue for HPF (with a rate limiting mechanism to discard out-of-profile traffic, 

e.g., a token bucket) and a queue for EF, where the HPF queue will have a higher priority 

and be sized to a packet (if the queue is measured in packets) or to the size of the biggest 

packet expected (if the queue is measured in bytes). Again, if an HPF packet arrives when 

another one is being sent and there’s an EF packet waiting, the HPF should be discarded. 

Other recommended possible implementation is to use a high priority class (no other class 

should have a higher priority) with two subclasses controlled using weighted round robin 

(WRR): one for HPF (single-packet queue) and another for EF, where both HPF and EF 

have the same weight and a maximum transmission of one packet per turn (to avoid any 

queue to wait longer than a packet to transmit). This WRR must be non-work conserving, 

i.e., if a queue has no packets on its slot, the other queue can transmit. 

In the event where the HPF PHB is used on a DS Domain, the recommended 

codepoint for HPF is 010011 (binary), which is in a local use DSCP range (as defined in 

[23]). Here, as suggested in [23], no efforts are made towards compatibility with legacy 

(now mostly unused) low-delay TOS field markings [22], except the recommended [23] 

compatibility to the IP Precedence sub-field [22], where 010xxx represents immediate 

service. 
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5.2.2.3. HPF PHB Cautions 

If two DS Domains exchange HPF traffic, they should agree on the DSCP for HPF 

or should do packet remarking (as long as the new marking are mapped into an equivalent 

PHB, according to the HPF definition above). If HPF packets are tunneled, the 

encapsulating packet must be also marked with the same DSCP. 

HPF can be employed on any DiffServ router that implements any other PHBs, as 

long as the HPF specification is respected. 

Even though no guarantees on the reliability of HPF traffic are made, a router 

should only discard an HPF packet if it really has to, in order to avoid starvation of HPF 

traffic. Though no bandwidth is reserved for HPF, the fact that no other priority should be 

higher than the one of HPF may make it interfere with the jitter observed by other traffic, 

especially BE. 

5.3. Network Time Protocol Configuration 

Some configurations are recommended for NTP in order to achieve a good and 

stable synchronization with distant servers on the Internet, according to the infrastructure 

presented in the previous section. 

Some relevant issues must be discussed to gain insight into the aspects that 

influence clock synchronization. Applications like banking and geographically distributed 

databases (which includes simple logging of activities on many machines far away from 

each other) have very high time precision requirements and the configuration of their 

synchronization infrastructure must attain to each detail. 

Any serious time-keeping purposes will require local-network dedicated time 

servers (running NTP) that will synchronize from remote computers and serve time to 

local computers. Using a computer for other tasks besides time keeping affect significantly 

the quality of the time served. Since NTP was designed for multitasking processors, giving 

it a higher priority can improve the efficiency of the clock discipline algorithms and even 

lower the jitter of network traffic (since the arrival and treatment of packets will preempt 

other tasks). Here, equipment that introduces considerable network jitter (e.g., an Ethernet 

Hub or a radio antenna with frequent collisions and retransmissions) should be avoided 

where possible, especially between the local time servers and the remote ones (where the 

presence of many intermediary nodes raises the values of the delay and the jitter). 

Special care should be taken to use servers whose path to the client shares as little 

as possible Internet links, e.g., it is not recommended to use three servers located far away 
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and all three on the same network, because if one of the intermediary communicating links 

fails then all servers will be unreachable. 

5.3.1. Using the Expedited Forwarding PHB 

Using too many servers to synchronize to is not a good option. NTP will always 

synchronize to only a few of the configured servers and will only switch servers if the 

quality of the data coming from the selected server gets worse than the others (which is not 

common). Furthermore, even though a few servers will be used, only up to 10 servers will 

be polled (including the chosen ones) to compare their times and switch among them when 

necessary. This way, each NTP machine will spend much more bandwidth then it was 

supposed to. When using EF PHB for NTP traffic, twice the average bandwidth will be 

reserved and packets will never be discarded, decreasing the available bandwidth for other 

applications. 

Therefore, this work recommends the configuration of up to 3 servers for an NTP 

local server using the EF PHB. Only one good server is necessary on normal operation, but 

this redundancy is necessary for safety reasons. If the network has more than one 

connection to the Internet or to the local network (two or more network interfaces on the 

machine), at least one of the three NTP connections should use it. 

The use of three servers will reserve about 6 times the bandwidth of a connection 

on each link (since links will differ for each remote server, it will actually be twice the 

bandwidth of a connection for the path to each remote server). It will make a bandwidth 

reservation of 3.6 bps for EF traffic, being 1.2 bps for each remote server. 

This reservation on all the routers along the way must be done by the network 

administrator (estimation) or by a BB (exact). Either case, the packets should be marked by 

the application or by an Edge Router outside the customer network (which should be the 

first router connected to the customer network). 

5.3.2. Using the Hot-Potato Forwarding PHB 

Though no bandwidth is reserved with the use of the HPF PHB, the same 

restrictions on the number of servers apply here. Using more than three servers is 

unnecessary. This work recommends the configuration of 3 servers for an NTP local 

server using the HPF PHB, but no less than 3 servers. Even though NTP behaves nicely in 

the face of high packet loss rates and the fact that HPF packets will improve the quality of 

the synchronization to its best (due to the assured low jitter), the remote possibility that the 

machine will stay hours without hearing from any server should be avoided. Here, it is also 
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recommended that servers be chosen carefully, preferably from different nearby (i.e., with 

low delay to reach) networks. 

An estimate of the maximum use of bandwidth is necessary in case a network 

manager configures the routers along the paths of HPF traffic. If a BB is used, this 

information will be accurate enough and supplied by the application to the BB. Packet 

markings to the correct value corresponding to the HPF PHB must be done by the 

application itself or by the Edge Router connected to the customer network. 

5.4. Summary 

This chapter explained how the NTP machines interact, showing a novel model of 

stochastic process for clock synchronization and a state machine for an NTP client/server 

association, detailing the events and their relation. 

This chapter also proposed changes in the network infrastructure based on the 

DiffServ architecture to allow for a good quality of synchronization for clocks on 

networked computers. It recommended the use of the Expedited Forwarding PHB or the 

newly proposed Hot-Potato Forwarding PHB, which assures low and limited jitter. The 

theory and implementation of the HPF PHB were also specified. 

Some NTP configuration recommendations for proper quality of synchronization 

were explained both for use with both the EF and the HPF PHBs. 
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Chapter 6 - Case Study with Network Emulation 

This chapter presents a case study of the alterations introduced for the clock 

synchronization infrastructure presented in the previous chapter. The paradigm of network 

emulation was chosen for its evaluation, as opposed to network simulation and live 

network measurements, for reasons further explained. This allowed us to have more 

control over the experiments and helped bring results much closer to reality. 

6.1. Introduction To Network Emulation 

There were three possible ways to perform the case study of the proposed 

alterations for clock synchronization infrastructure: simulation, emulation and live network 

tests. 

Using simulation would be cheap and runs faster than real traffic. The tests would 

be controlled and reproducible (which is necessary for making statistical analysis). The time 

a simulation runs can be faster than a live test by several orders of magnitude. Given the 

abstraction in a simulation, implementing simulation code would be much faster than 

implementing a complete code for a live test. 

The measurement of live traffic in real networks would yield far more trustable 

results and reuse of the already deployed code (with very simple changes), but the results 

would not be reproducible (because of the environment not being controlled) and their 

analysis would be much more difficult (without statistical confidence). Live tests need to 

run in real-time. In other words, it can take very long time to make a full test. The 

necessary infrastructure to such tests would have prohibitive costs. 

Using network emulation allows one to run “real” code (i.e., code used on 

production environments or intended for it) on a controllable and reproducible 

environment [35], hence the tests can interact with live environments as much as possible, 

cheap or good to analyze. Network devices and applications see the emulated network as a 

regular network and cannot tell the difference. A good point in favor of the emulation is 

this selective abstraction. One can choose which parts of a test could be emulated and 

which ones should be implemented, based on the test requirements, the present (or 

possible) infrastructure and the time available to implement more parts of the 

infrastructure. If the code that has to be implemented from scratch, emulation has the 

same problem of live tests: it will take longer to start the tests because of the code 
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implementation. Using network emulation there’s also the problem of running the tests in 

real-time. 

A simulator for NTP is available [1] and is distributed along the source code of the 

standard implementation of NTP (publicly available). This implementation has no network 

standards implemented whatsoever and simulates only the core algorithms of NTP fed 

with real data traces. This code does not interact with any present network simulator. Re-

implementing it in a network simulator (or even re-implementing all the necessary network 

standards to work with it) would consume too much time and would also run the risk of 

becoming a poor representation of the real environment (as any simulation effort that is 

not compared to a real implementation). The studied applications and almost all the 

necessary traffic controlling mechanisms had already been implemented. The chosen 

method for this work was network emulation. 

6.2. Testing Environment and Experiment Configurations 

Many elements were needed to build the necessary mechanisms to run the tests. It 

was important to duplicate the real Internet conditions as much as possible, and the 

following software tools were used for this purpose: 

• A recent and stable implementation of NTP (as detailed in Chapter 3). This 

work used version 4.1.1b (from October 2002) of the main implementation of 

NTP (which can be found in [36]) with most of the configurations set as the 

default. 

• An operating system that would support DiffServ, network emulation, traffic 

generation, NTP and that would allow configuring all of it. Due to past 

experience, Linux with kernel 2.4.18 was chosen and used on all machines 

except the stratum 2 time server (which used FreeBSD) and the stratum 1 

time server1 (Linux with kernel 2.4.2). The kernel was recompiled to allow for a 

network emulation tool and advanced router capabilities. 

• A tool to configure the advanced router capabilities required by DiffServ [37]. 

Traffic Control, a utility of the iproute2 package [38], was used for this. The 

“ping” tool, available in nearly any Internet host, was also used to measure 

jitter. 

                                                 
1 This machine is located in the Brazilian National Observatory, which is responsible for the Brazilian legal 

time (HLB – Hora Legal Brasileira). 
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• A network emulation tool. After evaluating DummyNet [39], NSE [40] and 

NIST.Net [41], the latter was chosen due to its simplicity, robustness and 

great number of configurable parameters. More details on network emulation 

and the possible configurations of NIST.Net can be found in [41]. 

• A traffic generator to create synthetic traffic into the emulated network. 

Packet Generator, which comes along the Linux kernel, was tested but didn’t 

fit our stability and robustness tests. It also didn’t permit the use of any 

statistical distribution other than a “constant” one. The Traffic Generator 2 

[42] (TG2) was used instead, and was modified to include provisions for the 

use of a pareto distribution, necessary for easily generating self-similar traffic. 

Self-similar traffic is explained in section 6.2.4 and more details on the use of 

TG2 can be found in [42] and [43]. 

• A good pseudo-random number generator for use with stochastic processes 

that needed it (namely, for the packet generation). This work used an 

implementation of the Mersenne-Twister uniform pseudo-random number 

generator [44]. Given that there are no truly random number generators 

presently, this work chose a generator with a period of  samples, only 

after which the samples become predictable and lose randomness. 

1219937 −

• A monitoring tool to gather all the data and organize it. RRDTool [45] was 

chosen due to its ability to use fixed-size databases (also called round robin 

databases - RRD) and its ease of configuration, update and graphic generation 

(for monitoring). 

• A robust statistical tool for analyzing all the collected data. The R [46] tool was 

used to analyze the data and to build some of the graphics shown in this work. 

A testbed was also needed to run all this. The Next Generation Networks 

Testbed (NGN Testbed) from the QoSWARE project [47] was kindly conceded for these 

experiments. The infrastructure is explained in more detail in the following section. 

6.2.1. Testing Infrastructure 

All Measurements have taken place in the laboratory of the Grupo de Pesquisa 

em Redes e Telecomunicações (GPRT – Networks and Telecommunications Research 

Group), at the Federal University of Pernambuco (UFPE). This work used the Next 

Generation Networks Testbed (shown in Figure 6-1), available for network tests and 

measurements of the QoSWARE project in GPRT. The testbed is composed of 8 
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computers and two Fast Ethernet switches. All machines had the following hardware 

configuration: 

• Athlon 1.333 Ghz Processor 

• 256 MB Random Access Memory 

• 20 GB Hard Disk 

• 4 Network Interfaces 

 

Figure 6-1: Next Generation Networks Testbed in GPRT 

The machines have two network connections with each switch, which are 

connected with each other. This allows for the configuration of many different network 

topologies. Although the connection between the two switches is in high speed (multiple 

interfaces with load sharing), special care has been taken not to allow a connection between 

two network interfaces (of the computers) passing through both switches, to avoid the 

extra delay. 

The Mersenne-Twister random number generator was installed on all machines of 

the testbed, instead of the standard random number generator function available in Linux. 

It was installed prior to the compilation of the programs. No machine on this test needed 

to generate more than 4 billion random numbers for all the tests, which is several orders of 

magnitude smaller then the period of the generator used. 
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6.2.2. Network Topology 

This work needed a network topology with certain characteristics to properly 

analyze the proposed alterations for clock synchronization infrastructure. Two NTP 

machines (a client and a server) were needed. The server had to be synchronized to 

international standards and could be connected to an atomic physical clock. 

A simple Diffserv network should separate the client and the server, with two 

routers used to connect them. The routers should be connected to each other through a 

single link with a 40ms delay. NTP traffic between client and server should share network 

resources with other Internet flows (from many other networks connected to each router), 

which would bring common Internet conditions (packet loss and jitter). Grouping each 

NTP machine with the networks connected to their respective router forms a network 

topology known as dumbbell, as shown in Figure 6-2. Here, the applications mark their 

packets with the correct DSCP, without the need of an Edge Router to remark packets or 

police/shape the traffic. No bandwidth brokers are studied as well. 

 

NTP Server

Diffserv Router 2Diffserv Router 1

NTP Client

5 Mbps
40 ms

Internet Internet

Atomic Physical Clock

 

Figure 6-2: Studied Network Topology 

This was the intended network topology and needed a few odd things: regular users 

exchanging traffic (thus making the tests uncontrolled and irreproducible), a link that 

would delay packets by 40ms connecting the routers and an atomic physical clock (which 

costs a few thousand dollars) or a GPS physical clock (which costs around US$ 700 but 

requires carefully planned building installation facilities) to make the NTP server furnish 

quality time. No radio time transmitters were available for usage in Brazil, therefore radio 

clocks could not be used. 

This case study used a different network topology to emulate the intended 

topology. On the implemented topology, a few items were added or used to replace others 

(see Figure 6-3). In replacement to the external networks, each router had one machine 

connected to it to act as a traffic generator and as a traffic receiver. A dedicated link 
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between NTP client and server was added to accurately measure the offset between their 

clocks (this wouldn’t be possible on a regular network with geographically distant 

machines). A network emulation machine was used in replacement to the link between the 

routers. The emulator delayed all packets passing in any direction by exactly 40ms, with no 

artificial jitter introduction. The observed jitter resulted only from queuing (as verified with 

and without the traffic generators running). 
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Network
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Figure 6-3: Implemented Network Topology 

Server synchronization was also different. Without our own physical clock, an 

external time reference was used, through the Internet. Since our network was protected 

(using network addresses for local IP networks), we needed a machine to function as a 

bridge for NTP (between the local network and the Internet). The laboratory router was 

used for that. It used a remote stratum 1 NTP server and the server of the experiment 

(now stratum 3) used the router to synchronize its clock. In order to make sure the stratum 

3 server furnished a good, trustable time, the stratum 2 and 3 NTP servers were configured 

with a short polling interval ( ) to the stratum 1 and 2 servers, respectively, 

and begun running several days before the start of the experiment (in order to let local 

clock corrections stabilize). The marking of the DS Field (as detailed in Chapter 4) by the 

application required a code recompilation of NTP between sets of test with different 

configurations of the experiment. 

seconds 32=P
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6.2.3. Advanced Routing and Traffic Control 

Iproute2 is a set of tools for providing advanced routing capabilities in Linux. They 

are user-level tools that interact directly with kernel-level modules. It can be used for 

incoming and outgoing traffic policing, multipath routing, load balancing, tunneling, 

Virtual Private Networks (VPNs), multicasting, queuing disciplines, bandwidth 

management (e.g., traffic shaping) or router redundancy (with more machines). Some of 

these features also require other complementary tools, but none were needed in our 

experiment. 

Queuing disciplines are forwarding schemes that provide means (an abstraction and 

a mechanism) to organize outgoing traffic on an interface. They can be divided in two main 

groups: classless queuing disciplines and classful ones (with classes that correspond to 

queues or other queuing disciplines). Since queues can be used alone or without queuing 

disciplines, queuing disciplines can in turn use other queuing disciplines and the difference 

between queues and queuing disciplines is very subtle, this work will not differentiate 

between them. Here are some commonly available queues and queuing disciplines in Linux: 

• Byte First-In First-Out and Packet First-In First Out (BFIFO/PFIFO) – 

This is a simple queue (generally referred to simply as FIFO or drop-tail) 

where all traffic is treated equally. The size of a BFIFO is set in bytes and the 

size of a PFIFO is set in packets. 

• Random Early Detection (RED) – it is a queue that will drop packets before 

the queue is full. RED can be viewed as a physical queue with three virtual 

queues. It uses two thresholds, and calculates an estimation of the queue size 

to decide upon the dropping or queuing of an incoming packet. This 

estimation of the queue size is calculated using a weighted average of the last 

estimate and the last real size of the queue, with a very small weight for the last 

real size of the queue. If the estimated queue size goes above the first 

threshold, each packet has a small probability of being discarded. If it goes 

above the second threshold, a big percentage of packets will be discarded. This 

will decrease the average delay of packets and will drop packets from random 

flows a little before congestion occurs, thereby preventing high congestion 

levels and preventing global synchronization of TCP congestion control (which 

is very bad for throughput and causes delay and jitter). 

• Generic Random Early Detection (GRED) – it is a modified version of 

RED that can be configured with any number of virtual queues (up to 16), any 
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drop probability for each virtual queue and a different weight for calculating 

the average queue size. 

• Weighted Round Robin (WRR) – it is a queuing discipline that distributes 

bandwidth among classes. Each class will have an associated bandwidth and 

WRR will distribute the total bandwidth in a round robin scheme. This 

provides fairness, but may increase average delay of traffic. 

• Priority First-In First-Out (Priority FIFO) – it has three queues, with 

growing preemptive priority. Each queue starves the lower priority queues until 

it is empty. The classification of packet into queues uses the TOS Byte from 

the IP header and has a pre-defined configuration that cannot be changed. 

This queuing discipline will not be use alone in a DiffServ network. 

• Token Bucket Filter (TBF) – it is a simple queuing discipline that provides a 

mechanism to limit traffic according to a rate, also allowing limited bursts that 

exceed the rate. Is consists of a bucket of tokens, where tokens are inserted at a 

rate that specifies the allowed traffic rate and each forwarded packet consumes 

tokens from the bucket (or are discarded if there are not enough tokens for the 

packet). The tokens can fill the bucket up to a limit, which allows momentary 

bursts limited by the bucket size. The bucket size and token rate are 

configurable and TBF is used for traffic shaping. 

• Stochastic Fair Queuing (SFQ) – it is a queuing discipline that uses a great 

number of FIFO queues. Each traffic flow will be sent in a specific FIFO 

queue, but by using a hash to make this mapping to the number of queues is 

not specified by the number of flows and many flows can be treated by the 

same queue. Traffic is sent like round robin, giving each queue its turn to 

transmit. This should prohibit queues with very high traffic to drown other 

queues, thus providing fairness among them. To prevent unfairness among 

flows that share a queue, the hash is changed frequently. SFQ is only 

recommended for overloaded links and brings no QoS, only fairness. Since it 

keeps state information from flows (for the hashing), it doesn’t scale well and 

should be used on customer networks only. 

• PRIO or PQ (Priority Queuing) – it is a simple queuing discipline that 

subdivides traffic into subclasses and any treatment can be configured for each 

subclass. It can be seen as a PFIFO queuing discipline that can be thoroughly 
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configured. Each subclass has a priority level. The method of classification on 

each subclass can use any field (or combination of fields) from the IP header. 

• Class Based Queuing (CBQ) – it is a classful queuing discipline that can be 

thoroughly configured. It uses a truly hierarchical set of subclasses, and each 

subclass may correspond to a flow or a flow aggregate, based on any field (or 

combination of fields in the IP header). CBQ can also be used for traffic 

shaping. Each subclass needs a configured rate, which can be isolated (it won’t 

lend traffic to other classes if it is idle) or shared (it will lend if its traffic is not 

being used) and bounded (it cannot borrow bandwidth from other classes even 

if they are not fully used) or unbounded (it can borrow bandwidth from other 

classes if they allow it). Parameters set for a class will be shared by its 

subclasses. Each subclass has a priority level and may have a maximum allowed 

burst. Internally, CBQ functions as a round robin process looking for a packet 

to be sent that goes through all the classes in a decreasing priority order and 

checking if each class has a packet to transmit and if its rate configurations are 

being respected. After one packet is selected and transmitted, the search begins 

again from the higher priority class. The shaping is done with idle time 

calculations for each class. On the packet classification, CBQ always tries to 

match first the inner classes from a hierarchical set of subclasses. 

• Hierarchical Token Bucket (HTB) – it is a classful queuing discipline that 

also uses hierarchical queues. It was based on CBQ, but uses token buckets to 

shape traffic instead of idle time calculations. It cannot make some of the 

guarantees of CBQ, but is simpler to use. 

• Ingress – it is a classful queuing discipline for incoming traffic on an interface. 

It can be used to police incoming traffic (including traffic destined to the local 

machine) before it reaches the IP stack. It uses token buckets to shape traffic 

and classes cannot borrow traffic from one another. 

There’s also a mechanism to be used with a traffic classifier that can help using 

DiffServ. DSMARK is a mechanism that allows an Edge router to mark or re-mark 

incoming packets with a specific DSCP. This experiment did not use any Edge Router, and 

therefore DSMARK was not needed. 

For more details on the use of advanced routing in Linux, see [38]. For other 

references on DiffServ for Linux, see [37]. 
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6.2.4. Self-Similar Traffic Generation 

A traffic generator was used to deliver synthetic traffic in the network to share the 

main link with NTP traffic (i.e., server as background traffic). Many stochastic processes 

were studied to describe different types on Internet traffic, but it was proved that it could 

be best described as having a fractal (or self-similar) nature [48]. Even when observed in 

very different timescales (e.g., from 1ms interval samples to 100s interval samples [48]), 

Internet traffic graphics look nearly the same. The fact that it looks different on extreme 

timescales (e.g., interval samples below 1ms), which is called multifractal behavior, was 

not considered relevant to this work. 

A metric was established to measure the level of self-similarity on network traffic, 

called the Hurst parameter (H). This parameter ranges from 0.5 (no self-similarity) to 1.0 

(complete self-similarity). It is important to notice that the more fractal the traffic is, the 

burstier it is, which is bad (greater queuing, greater average delay, smaller average 

throughput) for efficient network utilization. Some proposals have been made to reduce 

the self-similarity of Internet traffic, but significant changes could only be achieved by 

changing TCP behavior significantly (as the proposal in [49]). 

It has been shown [50] that any level of self-similarity can be achieved through the 

aggregation of on-off sources (2-state Markovian sources, where on means transmitting a 

burst at a constant rate and off means not transmitting) using a pareto distribution to 

regulate the on or the off durations. 

 

Figure 6-4: Typical day of traffic generation 

The traffic generator used, TG2, was changed to allow the use of pareto 

distributions. Our synthetic traffic generation was done to make use of the emulated link in 

both ways. This work used the aggregated generation of 20 UDP sources (on each traffic 

generator, with packets always destined to the other generator) for a maximum possible 

rate of 7.2Mbps (in each way, in case all sources from one side transmit at the same time) 

and an average generation of 3.6Mbps. It was configured to result in a significant, but 

common (i.e., normally observed in internet traffic studies) level of self-similarity, measured 

as a Hurst parameter of . In the EF scenario, one of the sources transmits EF 5.8=H
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traffic (in each generator). A typical period of 24h of the generated traffic is presented in 

Figure 6-4. 

6.2.5. Data Gathering 

Data gathering was done using the RRDTool [45]. Each hour was considered one 

replication of the experiment. Data was sampled every 60 seconds and its absolute value 

was averaged over an hour. The main variables monitored were the estimated offset 

between the NTP client and the stratum 3 server (estimated by NTP itself, which runs 

using the emulated network link) and the real offset (measured with a specific tool in the 

NTP package using a direct dedicated link) between the NTP client and its server. 

The stratum of the NTP client (to monitor synchronization losses), and the traffic 

passing through the interfaces of the routers (to monitor traffic generation activity) were 

also monitored for checking the integrity of the experiment. 

All the data was analyzed using the R statistical tool [46]. It was also used for 

plotting the graphics needed by the analysis. Some graphics didn’t need any analysis and 

were plotted using RRDTool. 

6.3. Results 

Though we gathered the real and the estimated offset, the latter is only relevant on 

the light of the real offset. Therefore, this work analyzed a new variable, the offset 

estimation error, calculated as the difference between the estimated and the real offsets. 

A preliminary test was run to decide how many replications were necessary to 

achieve statistical guarantees on the tests [51]. The decision was based on the maximum 

error acceptable for each test, calculated as a percentage of the average. The confidence 

level used for this analysis was 90%. Table 6-1 compares the results for each analyzed 

variable in each scenario. 
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Table 6-1: Determining Number of Replications 

Analyzed Variable Type of Traffic 
(scenario) 

Sampled 
Average 

Maximum 
Error  

Number of 
Replications 

Real Offset Best Effort 0.009817 15% 117.8108 
Real Offset Expedited Forwarding 0.004889 15% 49.98287 
Real Offset Hot-Potato Forwarding 0.003376 15% 32.98568 

Offset Estimation Error Best Effort 0.002501 15% 110.1464 
Offset Estimation Error Expedited Forwarding 0.002707 15% 42.46485 
Offset Estimation Error Hot-Potato Forwarding 0.002421 15% 33.31118 

 

 



As a result of the comparison, the test was made with 120 replications for each 

scenario, which resulted in 5 days (120 hours) running each of the three scenarios. 

During the test, on the scenario that treated NTP traffic as best effort traffic, the 

client lost synchrony with the server 12 times during the whole experiment. As NTP 

continues disciplining the local clock on these cases, the local clock did not wander without 

control. Since this is a common event on production networks, it was considered normal 

operation and the samples were normally accepted for the experiment. No synchronization 

loss occurred on the other scenarios. 

The maximum jitter was measured in each scenario for the type of traffic NTP was 

using with simple “ping” (with an option to change the DSField). After the run of each 

experiment, 1000 ping packets were sent and the difference between the maximum and 

minimum observed RTT (round-trip time) delay was taken and divided by two to represent 

the one-way delay. This difference is an estimate of the maximum possible jitter that can be 

observed by a traffic flow, though the jitter itself is the difference observed between two 

adjacent packets of a flow. The results are shown on Table 6-2. 

Table 6-2: Maximum Possible Jitter Estimate 

Type of Traffic Observed Jitter 
Best Effort 1.5 ms 

Expedited Forwarding 0.275 ms 
Hot-Potato Forwarding 0.095 ms 

 

The jitter observed on HPF traffic is still a little higher than what it should be, but it 

is believed that this was due to the use of general-purpose computers (where network 

activities are treated by software) to act as routers. In all types of traffic, the jitter is limited 

to the fact that only two routers were used, and on a given network topology the number 

of routers and the configuration of the queues (especially BE queue, with very varying 

configuration) affect the observed jitter. The three scenarios did not show any significant 

change in the loss rate of the background traffic, and the number of total lost packet did 

not differ significantly (approximately 0.499% for all tests). This was due to the use of 

UDP traffic, which doesn’t use any congestion control mechanism. The goal of the 

background traffic was to simply imitate general Internet behavior for NTP, and not to 

analyze how NTP would affect other types of traffic. 

On Figure 6-5 we can see a comparison between the resulting offsets between 

client and server of each type of traffic, computed as absolute values. The vertical bars 

represent the standard deviation of the data weighted by the trust interval coefficient [51], 
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computed based on the confidence level of 90%. Undoubtedly, NTP performs 

systematically better as EF or HPF traffic than it does as BE traffic. As expected, HPF 

traffic represents a little improvement over EF traffic. 
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Figure 6-5: Offset Comparison 

On the same figure, we see the mean estimate of the offset. As this only looks 

meaningful relatively to the real offset, we must show another graphic that presents the 

average of the difference between the real offset and its estimate. Figure 6-6 shows this 

difference, computed as absolute values. 
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Figure 6-6: Comparison between offset estimations 
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Here, it is clear that the change in the type of traffic used by NTP did not 

significantly affect its offset estimate. Though the average has a little increased in EF 

traffic, its variation is smaller, resulting in a very small aggravation of this estimate. Even 

though the jitter caused by EF traffic is small, and therefore the variation of the estimate 

represented by the vertical bars on EF traffic is smaller, this jitter is more unpredictable, 

since some packets receive a minimum delay and some others receive a higher one. HPF 

traffic, however, showed a little improvement on the mean and on the variation of the 

estimation. 

This case study clearly shows that NTP very much benefits from the use of the EF 

PHB and the HPF PHB. The latter showed itself reasonably better than the first. 
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Chapter 7 - Conclusions and Future Work 

This chapter concludes this work by commenting its main benefits, detailing the 

contributions it made and exposing some of the future work. 

7.1. Conclusions 

This work shed light on some issues that may improve clock synchronization 

systems for networked computers and draws some interesting results. It has focused the 

distribution of time for synchronization of clocks in networked computers and proposed 

some network configurations based on the use of Quality of Service for dealing with it, 

including a novel treatment of packet forwarding. This proposal has been evaluated by 

performing an extensive case study based on network emulation and the proposal was 

statistically validated. 

It was shown that the use of the Expedited Forwarding PHB or the proposed Hot-

Potato Forwarding PHB can help ensure a permanent synchronization of a computer using 

NTP and that it can also improve the quality of such synchronization. There was no need 

to alter the behavior of NTP, with the exception of the usual markings of the packets 

required to introduce QoS. 

Many networks can benefit from the use of this proposal, which can decrease the 

overall use of NTP traffic on the Internet (it is well known that in order to recover from its 

synchronization losses NTP raises its bandwidth) and improve its accuracy. 

7.2. Contributions 

The main contributions of this work can be resumed as follows: 

• Alterations made on the Traffic Generator 2 for allowing the generation of 

self-similar traffic. The synthetic generation of fractal traffic required the use of 

a pareto distribution to regulate the time between traffic bursts. This 

distribution has not been previously implemented in the original TG2 code and 

this work implemented it in order to allow the performing of the case study. 

• The proposal of the Hot-Potato Forwarding PHB. This forwarding scheme 

was proposed and explained in this work. Its implementations mechanisms and 

configurations were explained as well. The HPF was proposed for use with 

time synchronization applications and can also be used for network link 

characteristics monitoring. 
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• The proposal of a framework for dealing with time synchronization 

applications and improving the confidence of synchronization systems over the 

Internet. This framework suggests the use of the Expedited Forwarding PHB 

or the Hot-Potato Forwarding PHB for all time messages exchange, thus 

giving the synchronization application (namely, NTP) some guarantees over 

the jitter. This work also suggests some configurations in NTP to help it yield a 

better accuracy in synchronization. 

7.3. Future Work 

Some future work have been identified an evolution of this work. They are 

explained below: 

• A broader study of the peak-to-mean relation for NTP traffic. It is common 

knowledge among system administrators that busy NTP servers only receive more 

than twice the average bandwidth in terms of requests when some of the clients are 

badly configured. While this remains true for busy servers, it has not been evaluated 

for less used servers and our infrastructure did not allow us to make such an 

evaluation. Intuitively, one would assume that the lower the number of clients, the 

higher the peak-to-mean ration of the traffic going to a single server. The literature 

shows that no effort have been done to analyze the rate on routers that treat many 

flows destined to many different servers. Self-similar traffic studies on the Internet 

show that the statistical multiplexing does not provide much gain from superposing 

many flows into a single one, and that traffic statistics present with many 

advantages and limitations, but none of these studies focused on NTP traffic in 

backbone routers. This future work is only relevant for the use of NTP with the EF 

PHB and has no relation with the use of the HPF PHB for NTP traffic. 

• A study of the effect of this proposal on TCP traffic. While the objective of the use 

of synthetic traffic generation was to provide an Internet-like environment for how 

routers treat NTP traffic, the use of TCP for generating synthetic traffic is 

interesting for analyzing how NTP will affect other traffic flows (especially loss) 

when using the EF PHB or the HPF PHB. Given that NTP uses very little 

bandwidth, it is expected that the change in NTP traffic treatment will not change 

TCP behavior significantly, i.e., the number of TCP sources that will enter a “slow 

start” due to losses caused by the use of very small extra amounts of EF or HPF 
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traffic will be insignificant. It is however important to verify such a statement as 

TCP remains a major Internet traffic user (with more than 80% of its share). 
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Appendix 

 

Abbreviations and Acronyms 

ABNT Associação Brasileira de Normas Técnicas 

ABR Available Bit Rate 

ACTS Automated Computer Time Service 

AD anno Domini 

AF Assured Forwarding 

BB Bandwidth Broker 

BE Best Effort 

BIH Bureau International D’Heure (International Time Bureau) 

CBR Constant Bit Rate 

CN Core Network 

DiffServ Differentiated Services 

DSCP Differentiated Services Codepoint 

DTS Distributed Time Service 

EF Expedited Forwarding 

GMT Greenwich Mean Time 

GPS Global Positioning System 

IETF Internet Engineering Task Force 

IntServ Integrated Services 

IP Internet Protocol 

LSR Label Switched Router 

MAC Medium Access Control 

NTP Network Time Protocol 

PER Path Error Rate 

PHB Per Hop Behavior 

PPM Parts Per Million 

PPS Pulse Per Second 

RSVP Resource Reservation Protocol 

QoS Quality of Service 
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SLA Service Level Agreement 

SNMP Simple Network Management Protocol 

TAI International Atomic Time 

TCP Transmission Control Protocol 

UBR Unspecified Bit Rate 

UDP User Datagram Protocol 

UTC Coordinated Universal Time 

VBR Variable Bit Rate 
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Glossary 

anno Domini The Common Era. All the years since year 1. 

Common Era All the years since the year 1. 

Core Network The communication sub-network, i.e., the whole path from source to 

destination of a transmission, excluding the end nodes. 

Differentiated 

Services 

See Chapter 4. 

Drift The variation of skew with time (second derivative of offset with time) 

Integrated 

Services 

See section 2.5.1. 

Leap second A second inserted or deleted from UTC in the end of a month to 

correct it. See section 2.2. 

Multiplexing Consists on the passage of two or more connections on a channel or 

link, permitting a gain on bandwidth utilization if the connections have 

variable bit rates, since not all connection will transmit at maximum rate 

simultaneously. 

Multiprotocol 

Label Switching 

See section 2.5.3. 

Network Time 

Protocol 

See Chapter 3. 

Offset The difference between the times marked by two clocks. 

Simple Network 

Management 

Protocol 

A protocol for managing IP networks, first defined in [34]. 

Skew The variation of the offset with time (first derivative). 
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