

Universidade Federal de Pernambuco

Centro de Informática
Pós-Graduação em Ciências da Computação

Managing the Evolution of
XML-based Mediation Queries

by

Bernadette Farias Lóscio

Tese de Doutorado

Recife, April 2003

 ii

Universidade Federal de Pernambuco

Centro de Informática
Pós-Graduação em Ciências da Computação

Managing the Evolution of
XML-based Mediation Queries

Bernadette Farias Lóscio

Submitted in partial fullfilment of the requirements
for the degree of Doctor of Philosophy.

Supervisor: Profa. Dra. Ana Carolina Salgado

Recife, April 2003

 iii

To my mother Roceli, my father Roberto and
 to my husband Luciano

 iv

Ackowledgments

This dissertation would not have become reality if it were not for the various people that

directly and indirectly contributed to it. First of all, I would like to thank my advisor, Profa.

Carol for an endless supply of suggestions and criticisms. I learned a lot from her not only how

to do research, but also how to interact effectively with students. The example set by Profa.

Carol had an important part in my decision to continue in academia.

I am deeply grateful to Professor Bouzeghoub who advised me on many technical topics

related to my research during my PhD sandwich. I would also thank Professor Bouzeghoub for

his warm hospitality. A special thanks for Zoubida Kedad for all interesting discussions we had

during my stay in Laboratoire PRiSM. The ambiance between us was a great platform for

churning out new ideas. I was lucky to meet some great people during my stay in Laboratoire

PRiSM! Also, thanks to Assia for all the good times that we spent together.

Besides, I would also like to express my gratitude to Ceça, Guilherme, Luciano and Haroldo.

They made substantial contributions to my work, especially in the implementation of some of

the components of the prototype.

I would like to thanks to my family and my friends, who have given me support and

encouragement over the past several years, for their patience during the times when I should

have been paying attention to them, but instead I was absorbed in my studies. A special thanks

to my parents Roberto and Roceli. I could not have come this far without their constant love,

support and sacrifices. You are really special! Also, thanks to my sisters, Paula and Cláudia, and

my brother Roberto, for their love and encouragement. Special thanks also to tia Fátima and tio

Amaro for their love.

Most of all, I thank my husband, Luciano, for his constant love, patience and encouragement

which made my PhD candidate life far less stressful. He helped me a lot throughout my

graduate studies. He was always ready to say the magic words: “Don’t worry! Everything is

going to be all right!”.

Thanks God!

 v

Abstract

In recent years, the problem of integrating data from heterogeneous and autonomous data
sources has received a great deal of attention from the database community research. This
problem consists in providing a uniform view of these data sources (called mediation schema or
global schema) and defining a set of queries which compute each object in the mediation
schema (called mediation queries, mediation mappings or operational mappings).

Previous work in data integration can be classified according to the approach used to define
the mediation mappings between the data sources and the global schema. The first approach is
called global-as-view (GAV) and requires that each object of the global schema be expressed as a
view (i.e. a query) on the data sources. In the other approach, called local-as-view (LAV),
mediation mappings are defined in an opposite way; each object in a given source is defined as
a view on the global schema.

In this work, we propose a mediator-based data integration system, which adopts the GAV
approach. A distinguishing feature of this system is that besides integrating data it also deals
with the problems concerning generation and maintenance of mediation queries. The proposed
system uses XML as a common data model for data exchange and integration, and XML
Schema language to represent the mediation schema and the source schemas. To provide a high-
level abstraction for information described in an XML schema we propose a conceptual data
model, called X-Entity model. We also present the process of converting an XML Schema to an
X-Entity schema. This process is based on a set of rules that considers element declarations and
type definitions of an XML Schema and generates the corresponding conceptual elements.

One of the main problems in the context of the GAV approach is the maintenance of the
mappings between the mediation schema and the source schemas. In a dynamic environment,
the mediation queries must be flexible enough in order to accommodate new data sources and
new users’ requirements. In this context, we address a novel and complex problem that consists
in propagating a change event occurring at the source level or at the user level into the
mediation level. To manage the evolution of the mediation level we have defined: i) a set of X-
Entity schema change operations, ii) a set of propagation primitives reflecting the changes in the
mediation level and iii) a set of propagation rules. We also propose a back-end process to
execute the propagation of schema changes to the mediation queries.

We propose an incremental approach to develop the mediation schema and the mediation
queries based on the evolution of the data source schemas and the evolution of the users’
requirements. More precisely, if a new data source is added, for example, the mediation queries
do not need to be recomputed from scratch. Instead, we can add the new data source to the
existing queries. When an existing data source is removed, we check the queries, and the ones
in which the deleted source appears may be removed or rewritten. In the same way, changes in
the users’ requirements can be reflected in the mediation schema and in the mediation queries
for the cases where it is possible to do so. The proposed approach allows the mediation level to
evolve incrementally and modifications can be handled easier increasing the system flexibility
and scalability.

 vi

Resumo

Diversos sistemas de integração de dados têm sido propostos na literatura com o objetivo de
prover acesso integrado a diferentes fontes de dados, que podem ser autônomas e heterogêneas.
O problema de integração de dados consiste em oferecer uma visão uniforme das fontes de
dados (chamada esquema de mediação ou esquema global) e definir um conjunto de consultas
(chamadas consultas de mediação) as quais determinam como obter cada elemento do esquema
de mediação em função dos dados armazenados nas fontes locais.

Sistemas de integração de dados podem ser classificados de acordo com a abordagem
adotada para definição dos mapeamentos entre as fontes de dados e o esquema de mediação.
Duas abordagens principais são apresentadas na literatura: Visão Global e Visão Local. Na
abordagem Visão Global cada elemento do esquema de mediação é representado como uma
visão sobre as fontes de dados. Na abordagem Visão Local cada elemento em uma dada fonte de
dados é definido como uma visão sobre o esquema de mediação.

Uma das contribuições deste trabalho é a proposta de um sistema de integração de dados que
adota a abordagem Visão Global. Um importante diferencial deste sistema é que além de prover
acesso integrado a dados distribuídos e heterogêneos, o sistema também oferece soluções para
os problemas relacionados à geração e à manutenção das consultas de mediação. Além disso, o
sistema proposto usa XML como modelo de dados comum para troca e representação de dados.
Para representar os esquemas das fontes de dados locais é adotada a linguagem XML Schema,
proposta pelo W3C como linguagem padrão para definição de esquemas para classes de
documentos XML. Para prover uma representação de mais alto nível para as informações
descritas nos esquemas XML é proposto um modelo conceitual, chamado X-Entity. Além do
modelo conceitual, também é apresentado o processo de conversão de um esquema XML
(definido na linguagem XML Schema) para um esquema definido no modelo X-Entity.

 O principal problema com o uso da abordagem Visão Global diz respeito à manutenção das
consultas de mediação em conseqüência das atualizações nos esquemas das fontes de dados
locais. Em ambientes dinâmicos, as consultas de mediação devem ser flexíveis a fim de permitir
modificações nos esquemas locais, adição e remoção de fontes de dados e alterações nos
requisitos de usuários. Para gerenciar a evolução do nível de mediação (esquema e consultas de
mediação) foram desenvolvidos: i) um conjunto de operações que descrevem os diferentes tipos
de evolução nas fontes locais e nos requisitos dos usuários, ii) um conjunto de primitivas de
propagação que descrevem as modificações a serem realizadas no esquema e nas consultas de
mediação e iii) um conjunto de regras de propagação. Este trabalho também propõe um
processo de propagação que define como difundir os diferentes tipos de atualizações.

 Este trabalho propõe uma abordagem incremental para o desenvolvimento do nível de
mediação baseado na evolução dos esquemas das fontes locais e evolução dos requisitos dos
usuários. Mais precisamente, a adição de uma nova fonte de dados ao sistema não implica que
as consultas de mediação sejam completamente refeitas. Ao invés disso, é possível adicionar a
nova fonte de dados às consultas existentes. Quando uma fonte de dados é removida, as
consultas de mediação afetadas por esta remoção devem ser reescritas ou removidas. Da mesma
forma, mudanças nos requisitos dos usuários também podem ser refletidas no nível de
mediação. Esta solução permite a evolução incremental do nível de mediação aumentando tanto
a flexibilidade quanto a escalabilidade do sistema de integração proposto.

 vii

Contents

Chapter 1 - Introduction 1

1.1 Motivation .. 1

1.2 Thesis focus ... 3

1.2.1 A conceptual model for XML schemas ... 3

1.2.2 Mediation queries generation ... 4

1.2.3 Mediation queries evolution... 5

1.3 Research issues .. 6

1.4 Plan of thesis ... 7

Chapter 2 - Data Integration 9

2.1 Introduction .. 9

2.2 Approaches to data sources modeling .. 9

2.3 Approaches for data integration ... 10

2.4 Main problems with data integration.. 13

2.5 The XML model.. 14

2.5.1 XML schema languages .. 15

2.5.2 XML query languages... 16

2.5.3 The XML data models.. 17

2.5.4 Algebras for XML .. 17

2.6 Related work ... 19

2.6.1 Data integration systems... 19

2.6.2 Schema evolution in data integration systems.. 22

2.6.3 Conceptual modeling of XML schemas... 24

2.7 Concluding remarks... 25

Chapter 3 - Architecture Overview 27

3.1 Introduction .. 27

3.2 Common core.. 29

 viii

3.3 Data integration space.. 30

3.4 Mediation queries generation and maintenance space ... 33

3.5 User space.. 35

3.6 Concluding remarks... 36

Chapter 4 - Conceptual Modeling of XML schemas 38

4.1 Introduction .. 38

4.2 A conceptual model for representing XML schemas.. 39

4.2.1 Basic concepts of the ER model .. 39

4.2.2 Basic concepts of the X-Entity model.. 40

4.2.3 XML Schema notation ... 43

4.3 Generating conceptual schemas from XML Schemas... 49

4.3.1 Step 1: Pre-processing .. 50

4.3.2 Step 2: Conversion... 55

4.3.3 Creating an X-Entity Schema.. 60

4.4 Concluding remarks... 63

Chapter 5 - Generating Mediation Queries for XML-based Mediators 65

5.1 Introduction .. 65

5.2 Terminology.. 66

5.3 Determination of relevant source entities.. 74

5.4 Computation paths associated with a mediation entity.. 76

5.4.1 The operators... 76

5.4.2 Operation graph... 78

5.4.3 Computation path .. 79

5.5 Computing mediation entities from mediation queries .. 81

5.6 Computing user queries from mediation entities ... 89

5.7 Concluding remarks... 93

Chapter 6 - Managing the Evolution of Mediation Queries 96

6.1 Introduction .. 96

6.2 Propagation of schema changes to the mediation queries .. 97

6.2.1 X-Entity schema change operations .. 99

6.2.2 Propagation primitives.. 103

6.2.3 Mapping entities evolution rules ... 104

6.3 Using mapping entities evolution rules to propagate data source schemas changes 105

 ix

6.3.1 Adding an attribute into a source entity... 107

6.3.2 Removing an attribute from a source entity... 109

6.3.3 Adding an entity into a source schema .. 110

6.3.4 Removing an entity from a source schema... 113

6.3.5 Adding a containment relationship into a source entity.. 114

6.3.6 Removing a containment relationship from a source entity.................................... 117

6.4 Using mapping entities evolution rules to propagate users’ requirements changes 119

6.4.1 Adding an attribute into a mediation entity ... 120

6.4.2 Removing an attribute from a mediation entity .. 121

6.4.3 Adding an entity into the mediation schema.. 122

6.4.4 Removing an entity from the mediation schema .. 123

6.4.5 Adding a containment relationship into a mediation entity 124

6.4.6 Removing a containment relationship from a mediation entity 124

6.5 The data source schemas changes propagation process.. 125

6.6 The users’ requirements changes propagation process .. 130

6.7 Prototype... 132

6.8 Concluding remarks .. 134

Chapter 7 – Conclusion 135

7.1 Research contributions... 135

7.2 Future work... 137

Bibliography .. 139

 x

List of Figures

Figure 1.1 - Mediation schema definition ... 5

Figure 2.1 - Mediator architecture.. 11

Figure 2.2 - Data warehouse architecture ... 12

Figure 3.1 - Architecture overview ... 28

Figure 4.1 - Example of an entity type.. 41

Figure 4.2 - Example of a containment relationship.. 41

Figure 4.3 - Example of a reference relationship... 42

Figure 4.4 - Example of an entity type with a disjunction constraint.................................... 42

Figure 4.5 - Example of an entity type with a disjunction constraint between an

attribute and a relationship .. 43

Figure 4.6 - Computer Science Department schema.. 44

Figure 4.7(a) - Identity group definition ... 50

Figure 4.7(b) - Schema obtained after the substitution of the identity group reference 50

Figure 4.8(a) - Example of an anonymous type definition ... 51

Figure 4.8(b) - Schema obtained after the creation of the complex type professorTy............ 51

Figure 4.9(a) - Example of irrelevant element declaration ... 52

Figure 4.9(b) - Schema obtained after the elimination of the complex type coursesTy.......... 52

Figure 4.10(a) - Second example of irrelevant element declaration...................................... 53

Figure 4.10(b) - Schema obtained after the elimination of the element identification 53

Figure 4.11(a) - Example of two elements with the same name and different types.............. 54

Figure 4.11(b) - Schema obtained after the renaming of one of the elements section............ 54

Figure 4.12 - Pre-processed Computer Science Department schema 55

Figure 4.13(a) - Library XML Schema.. 58

Figure 4.13(b) - Conceptual schema for the Library XML Schema 59

Figure 4.14 Computer Science Department X-Entity schema .. 61

Figure 4.15 - XML specification for Computer Science Department X-Entity schema 62

Figure 5.1 - Movie schema of data source S1... 68

Figure 5.2 - Movie schema of data source S2... 68

 xi

Figure 5.3 - Movie schema of data source S3... 73

Figure 5.4 - Mediation schema of data source Smed .. 75

Figure 5.5 - Example of an operation graph ... 79

Figure 5.6 - Example of computation paths and computing expressions 80

Figure 5.7 - Description of mediation queries and mapping queries..................................... 82

Figure 5.8 - Mediation schema Smed .. 82

Figure 5.9 - Schema of data source S1 ... 82

Figure 5.10 - Schema of data source S2 ... 83

Figure 5.11 - Operation graph Gmoviem... 83

Figure 5.12 - Collection of movie1 elements.. 84

Figure 5.13 - Collection of movie2 elements.. 85

Figure 5.14 - Collection of moviem elements ... 86

Figure 5.15 - Operation graph Gtheaterm.. 87

Figure 5.16 - Collection of XML elements theater1... 87

Figure 5.17 - Collection of XML elements theater2... 87

Figure 5.18 - Collection of XML elements theaterm(em1) ... 87

Figure 5.19(a) - Element em1 before the integration of the theater1 and theater2 elements 88

Figure 5.19(b) - Element em1 after the integration of the theater1 and theater2 elements........ 88

Figure 5.20 - Mediation query Q(moviem) and operation graph Gmoviem............................... 90

Figure 5.21 - Mediation query Q(actorm) and operation graph Gactorm................................. 90

Figure 5.22 - XML view of the data source S1... 91

Figure 5.23 - XML view of the data source S2... 91

Figure 5.24 - XML view of the data source S3... 92

Figure 6.1 - Propagation of data source schemas changes and users’ requirements changes .. 98

Figure 6.2(a) - Schema S1 ... 99

Figure 6.2(b) - New version of schema S1 ... 99

Figure 6.3(a) - Schema S2 ... 100

Figure 6.3(b) - New version of S2 ... 100

Figure 6.4(a) - Schema S3 ... 101

Figure 6.4(b) - New version of schema S3 ... 101

Figure 6.5(a) - Schema S4 ... 101

Figure 6.5(b) - New version of schema S4 ... 101

Figure 6.6(a) - Schema S5 ... 102

Figure 6.6(b) - New version of schema S5 ... 102

 xii

Figure 6.7(a) - Schema S6 ... 102

Figure 6.7(b) - New version of schema S6 ... 102

Figure 6.8 - Mediation query Q(moviem) and operation graph Gmoviem 106

Figure 6.9 - Mediation query Q(actorm) and operation graph Gactorm................................... 106

Figure 6.10 - Operation graph Gmoviem after the propagation of the
add_attribute(movie2, year2(string, (1,1))) operation ... 108

Figure 6.11 - Operation graph Gmoviem after the propagation of the
remove_attribute(movie3, year3) operation.. 110

Figure 6.12 - Operation graph Gactorm after the propagation of the
operation add_entity(actor3({name3,biography3},{actor3_movie3})) 113

Figure 6.13 - Operation graph Gmovie after the propagation of the
operation remove_entity(movie2, S2) .. 114

Figure 6.14 - Operation graph Gmovie after the propagation of the
operation add_contains_relationship(actor3,actor3_movie3) ... 117

Figure 6.15 - Operation graph Gmovie after the propagation of the
operation remove_contains_relationship(director3, director_movie3)................................... 119

Figure 6.16 - Operation graph Gmovie after the propagation of the operation
add_attribute(moviem, durationm(string, (0,1)))) .. 121

Figure 6.17 - Operation graph Gmovie after the propagation of the operation
remove_attribute(moviem, genrem) .. 122

Figure 6.18 - Operation graph Gmovie after the propagation of the operation
remove_contains_rel(moviem, moviem_actorm)... 125

Figure 6.19 - Data source schemas changes propagation process ... 126

Figure 6.20 - Users’ requirements changes propagation process... 130

 xiii

List of Tables

Table 2.1 - Comparison of data integration systems.. 22
Table 5.1- Correspondence assertions between the source schemas S1 and S3....................... 73
Table 5.2- Correspondence assertions between the source schemas S1 and S2 73
Table 5.3 - Mapping operators... 78
Table 5.4 - Correspondence assertions between the local data sources schemas S1 and S2..... 83
Table 6.1 - X-Entity schema change operations .. 103
Table 6.2 - Mediation queries propagation primitives ... 104

 1

Chapter 1

Introduction

1.1 Motivation

In recent years, the problem of integrating data from heterogeneous and autonomous data

sources has received a great deal of attention from the database research community. This

problem consists in providing a uniform view of these data sources (called mediation schema or

global schema) and defining a set of queries which compute each object in the mediation

schema (called mediation queries, mediation mappings or operational mappings). Various

systems [Ambite et al. 1998, Baru et al. 1999, Bergamaschi et al. 1998, Chawathe et al. 1994,

Cluet et al. 1998, Draper et al. 2001, Gardarin et al. 2002, Ives et al. 1999] have been

proposed with the goal of integrating data from distributed data sources.

Previous work on data integration can be classified according to the approach used to define

the mediation mappings between the data sources and the global schema [Halevy 2000, Levy

2000, Ullman 1997]. The first approach is called global-as-view (GAV) and requires that each

object of the global schema should be expressed as a view (i.e. a query) on the data sources.

Several projects, like Tsimmis [Chawathe et al. 1994], YAT [Cluet et al. 1998] and Disco

[Tomasic 1998] adopt the GAV approach. In the other approach, called local-as-view (LAV),

mediation mappings are defined in an opposite way; each object in a given source is defined as

a view on the global schema. The LAV approach is used in the Information Manifold system

[Kirk 1995], the OBSERVER system [Mena et al. 1996], the Infomaster system [Genesereth et

al. 1997] and the PICSEL project [Goasdoué et al. 2000].

This work proposes a mediator-based data integration system [Lóscio et al. 2001], which

uses the GAV approach. We adopted the GAV approach because it is more natural to

implement and the user queries decomposition is a very simple task while in the LAV approach

this process is very complicated and time-consuming. A distinguishing feature of this system is

 2

that besides integrating data it also deals with the problems concerning generation and

maintenance of mediation queries.

The definition of mediation queries is a difficult task in the context of large scalable systems,

regarding the amount of metadata necessary to determine the queries. In our work, to help the

designer during the process of mediation queries definition we use an adaptation of the

approach for view expressions discovery proposed in [Kedad et al. 1999].

Another problem in the context of the GAV approach is the maintenance of the mappings

between the mediation and the source schemas. In GAV approach, mediation queries are very

sensitive to changings in the data sources and their adaptation may be a very complex task. In a

dynamic environment, the mediation queries must be flexible enough in order to accommodate

new data sources and new users’ requirements. In this context, we address a novel and complex

problem that consists in propagating a change event occurring at the source level or at the user

level into the mediation level.

We propose an incremental approach to develop the mediation schema and the mediation

queries [Lóscio et al. 2002b, Bouzeghoub et al. 2002] based on the evolution of the data source

schemas and the evolution of the users’ requirements. More precisely, if a new data source is

added, for example, the mediation queries do not need to be recomputed from scratch. Instead,

we can add the new data source to the existing queries. When an existing data source is

removed, we check the queries, and the ones in which the deleted source appears may either be

removed or rewritten. In the same way, changes in the users’ requirements can be reflected in

the mediation schema and in the mediation queries for the cases where it is possible to do so.

The proposed approach allows the mediation level to evolve incrementally and modifications

be handled easier, increasing the system flexibility and scalability.

As we know, one of the difficulties in integrating information from multiple data sources is

their heterogeneous structure. To overcome this limitation, integration systems use a common

data model for representing the sources’ content and structure. As the data integration systems

proposed in [Ambite et al. 1998, Baru et al. 1999, Draper et al. 2001, Gardarin et al. 2002, Ives

et al. 1999], we use XML [Bray et al. 2000] as a common data model for data exchange and

integration. We adopt XML due to its flexibility to represent both structured and semi-

structured information. Moreover, to build a system with XML as its core, we have to provide a

means of defining the structure and semantics of XML documents. In this work, we use XML

Schema [Fallside 2001] to represent the mediation and the source schemas. We make a

distinction between the terms XML schema and XML Schema. The first one refers to a general

term designating a schema for a class of XML documents, while the second refers to the XML

 3

Schema language. In the remainder of this work, we will consider only XML schemas defined in

the XML Schema language, which will be denoted by XML Schema.

In this chapter, we present an overview of the focus of this thesis and some research issues

related to our approach. The chapter concludes with a summary of the remainder of the thesis.

1.2 Thesis focus

The main contribution of this work is a solution for the problem of managing mediation

queries evolution in the context of the proposed data integration system. However, to achieve

this goal other problems had to be solved, including: i) how to deal with the hierarchical

structure of the XML Schemas and ii) how to provide a high-level representation for mediation

queries definitions. In this section, we give an overview of these problems by describing the

research issues related to our work.

1.2.1 A conceptual model for XML schemas

We use the XML Schema language to represent the mediation and the exported schemas.

These schemas will be used to validate the local data returned by the data sources as well as the

integrated data returned by the mediator in response of a user query. Although being very

useful for these tasks, an XML Schema is not suitable for tasks requiring knowledge about the

semantics of the represented data. For example, during the mediation queries generation, it

may be difficult to identify the elements which represent real world concepts and, therefore,

should be associated with a mediation query.

To provide a high-level abstraction for information described in an XML schema we

propose a conceptual data model, called X-Entity model. The main purpose of this model is to

describe the component parts of an XML schema in a simple way by providing a means of

better understanding the semantics of the represented data. The main concept of the X-Entity

model is the entity type, which represents the structure of XML elements composed by other

elements and attributes. In the X-Entity model, relationship types represent element-subelement

relationships and references among elements.

The X-Entity model represents the hierarchical structure of XML schemas using a flat

representation that puts in evidence entities and the relationships among them. Such

representation provides a cleaner description for XML schemas by focusing only on

semantically relevant concepts.

Another advantage of using the X-Entity model is that each entity can be seen and

manipulated as an individual concept even if it belongs to a nested structured. Instead of having

 4

nested entities, each entity has a set of relationships that represents its association with other

entities.

Due to the hierarchical structure of XML schemas it would be hard to identify the scope in

which a schema change should be propagated. However, using the X-Entity model each change

will be defined with respect to a single entity of a data source schema and it will be propagated

into one or more entities in the mediation schema.

1.2.2 Mediation queries generation

Finding rewritings for mediation queries becomes a more complex task when we try to

directly perform the changes in the mediation query definition. Therefore, to facilitate the

evolution process it is crucial to have a high-level representation for mediation queries. Such

representation must be easy to maintain and it must be possible to develop an algorithm to

automatically generate mediation queries definitions from this high-level abstraction.

To represent mediation queries, we use the formalism proposed by Kedad & Bouzeghoub

[Kedad et al. 1999]. They propose an approach which provides a support to discover queries

over a set of heterogeneous sources in a GAV context. Since they use the relational model as the

common data model, their approach defines a solution space which identifies the set of

potential queries corresponding to a given relation. The queries are represented through

operation graphs, which describe the relevant relations and the operations to be applied among

them in order to compute the integrated view. The operation graph describes all information

that is relevant to compute a given integrated view. Another important issue to be considered is

that an operation graph can be incrementally created and it can be easily modified.

We adapted that approach to our context, in such a way that, at the end of the mediation

queries generation process, each mediation entity will be associated with a mediation query,

which will be represented by an operation graph composed by a set of mapping entities and

operations among them. Each mapping entity is derived from a source entity and it describes

the attributes and relationships of the source entity that are relevant to compute the

corresponding mediation entity.

This high-level representation facilitates the identification of the mediation entities that are

affected by a data source schema change and that, consequently, must be rewritten. A mediation

entity will be affected by an entity source change if one of its mapping entities will be affected

by the data source change.

Moreover, it becomes easier to propagate data source changes into mediation queries.

Considering that a mediation query consists of a set of operations applied to the mapping

 5

entities, then the problem of mediation queries evolution consists, first in propagating these

changes into the mapping entities, and secondly by rewriting the affected mediation queries in

order to take into account the modifications in their set of mapping entities.

1.2.3 Mediation queries evolution

In this work, we address the problem of how to maintain the consistency of the mediation

schema and the mediation queries when users’ requirements or data sources’ schemas change.

We deal with this problem by considering a specific context of data integration, where a

mediation schema (Figure 1.1) represents the reconciliation between users' requirements and

the data sources’ capabilities. The mediation schema describes an integrated view of data

distributed in multiple data sources. Thus, users pose queries in terms of the mediation schema,

rather than directly in terms of the source schemas. Each entity in the mediation schema is

virtual, i.e. it is not actually stored anywhere, and it is computed from the integration of the

distributed data.

Figure 1.1 – Mediation schema definition

The mediation schema contains all the entities needed to answer the user queries, which can

be computed from the data sources. Each entity Ei in the mediation schema is associated with a

mediation query Qi that computes the entity Ei over the set of data sources. Based on the

mediation queries, previously defined, the system computes at run-time the answer for a user

query by simply executing the necessary mediation queries and combining their results. In this

approach, the sources that are relevant to compute a given entity in the mediation schema are

determined in advance. This approach is less flexible in terms of dynamically selecting sources

for answering queries. On the other hand, it scales well to a large number of sources since the

search space for relevant data may become quite large as the number of sources increases.

Q1 Q2 Qk

Mediation Schema

Mediation Queries

Mediation Entities

Data Source 1 Data Source 2 Data Source n

User View 1 User View 2 User View n

E1 E2 … Ek

 6

One of the main challenges in data integration systems is to maintain the mediation schema

consistent with the users' requirements evolution and to maintain the mediation queries

consistent both with the mediation schema evolution and with source evolution, especially in

the GAV approach where mediation queries are very sensitive to changes in source descriptions.

To the best of our knowledge, only few aspects of this problem have been addressed so far.

In this context, two kinds of evolution have to be mainly dealt with: the evolution of the

users’ needs, and the evolution of the data sources:

i) the evolution of the user needs: it may consist of adding, removing or modifying an user

requirement. These changes impact the mediation schema by adding, modifying or deleting

an element from the mediation schema. Each change raised in the mediation schema may

lead to the redefinition of some mediation queries. If this change can be reflected in these

queries, the modification on the mediation schema is committed; otherwise the user is

informed that the new requirement cannot be satisfied.

ii) the evolution of the source schemas: if a change occurs in a source schema, it has to be

propagated to the mediation queries. The mediation queries are modified if the source

elements on which they were defined are modified or when a source element is added or

deleted. Some of the entities in the mediation schema may become no longer computable

with respect to the changes raised at the source level.

1.3 Research issues

In the following, we summarize the main research issues concerning to our work.

� We propose a data integration system architecture that adopts the GAV approach and

provides support for generation and maintenance of mediation queries. The system uses

XML as the common data model to data exchange and integration. Moreover, the XML

Schema language is used to represent both source schemas and the mediation schema. XML

Schemas are used to validate the data exported by the data sources and the integrated data

returned by the mediator.

� We also propose a conceptual model, called X-Entity, to describe the component parts of

XML Schemas in a simpler way. X-Entity is devised to provide an effective support for the

tasks of mediation queries generation and maintenance, by giving a conceptual

representation of an XML Schema that puts in evidence classes of concepts and their

relationships. We describe the process of converting an XML Schema to a conceptual

schema defined in the X-Entity model. This process is based on a set of extraction rules that

 7

considers element and type declarations of an XML Schema and generates the corresponding

conceptual elements.

� We present an adaptation to the process of mediation queries generation proposed in [Kedad

et al. 1999]. Such approach discovers view expressions in the context of the relational

model. As we consider XML as our common data model we had to adapt it to the context of

XML data. This approach provides a formalism, based on the concept of operation graphs,

to represent mediation queries. One of the problems faced at the beginning of our work,

concerning to the evolution of mediation queries, was the absence of a formalism to their

representation. Using this approach, the problem of mediation queries evolution becomes

the problem of maintaining the associated operation graphs.

� We propose a back-end process to manage the evolution of mediation queries according to

the data source schemas changes and users’ requirements changes. As the number of data

sources increases we have to find the best way of synchronizing the propagation of events

notified by different data sources and users in order to minimize the effort of generating new

mediation queries. We present a set of X-Entity schema change operations representing the

possible modifications in the data source schemas and in the users’ requirements. We

propose a set of propagation primitives describing the modifications at the mediation level

and a set of propagation rules to determine the relevant propagation primitives to be applied

after a schema change.

� We implemented a prototype of the proposed data integration system in collaboration with

the Database Systems Research Group of Federal University of Pernambuco.

1.4 Plan of thesis

The remainder of this thesis is organized as follows:

� Chapter 2 gives an overview of the data integration research, describing the main approaches

for data sources modeling and architectures for data integration. This chapter also discusses

the main problems faced in data integration systems, including: heterogeneity of data

sources, query reformulation, query optimization and view synchronization. As we propose

an XML-based data integration system, we also discuss some aspects of the XML language.

Finally, some related works are discussed.

� Chapter 3 provides an architectural overview of the proposed data integration system. This

chapter describes the main components of the proposed system. It also introduces some of

our key design decisions.

 8

� Chapter 4 presents our approach to XML Schemas conceptual modeling. First, the X-Entity

conceptual model is introduced and some basic features of the XML Schema language are

discussed. Next, the process of converting an XML Schema to its corresponding X-Entity

schema is described.

� Chapter 5 discusses our approach to mediation queries generation with a detailed

description of the process of generating mediation queries for XML-based mediators.

� Chapter 6 presents the propagation of data source schema evolution and the propagation of

users’ requirements evolution to the mediation level. The schema changing operations, the

propagation primitives, reflecting the schema changes at the mediation level, and a set of

event-condition-action (ECA) rules specifying the propagation of schema changes are

described. This chapter also introduces the propagation processes used in our approach to

propagate data source schemas and users’ requirements changes to the mediation level.

� Chapter 7 concludes the thesis with our research contributions and some future work.

 9

Chapter 2

Data Integration

2.1 Introduction

The goal of a data integration system consists in offering a uniform interface to provide

access to a collection of distributed data sources, which can be heterogeneous, autonomous and

dynamic. The most important advantage of a data integration system is that it enables users to

specify what they want, rather thinking about how to obtain the answers [Levy 1999].

In this chapter, we give an overview of the data integration research, describing the main

approaches to data sources modeling and architectures for data integration. We also discuss the

main problems faced in data integration systems, including: heterogeneity of data sources,

query reformulation, query optimization and view synchronization. As we propose an XML-

based data integration system, we also discuss few aspects of the XML language, which has been

used in several data integration systems as the commom model for data exchange and

integration. We conclude with some related work.

2.2 Approaches to data sources modeling

An important decision in building a data integration system concerns the specification of the

mappings between the mediation schema and the data sources. Several researches have been

developed in this area and two basic approaches have been used to specify the mappings

between the sources and the global schema: Global as View (GAV) and Local as View (LAV)

[Halevy 2000, Levy 2000, Ullman 1997].

Global as View. The GAV approach requires that the global schema should be expressed in

terms of the data sources, i.e., every element in the mediation schema is associated with a view

over the data sources. This view specifies how to get the data of the mediation schema by

queries over the data sources. This approach is more natural to implement and the query

 10

processing is very simple. As the elements in the mediation schema are defined in terms of the

sources, to answer a query submitted to the system it is just necessary to unfold the definitions

of mediation schema elements in order to obtain the corresponding data.

The main disadvantage of this approach concerns to the maintenance of the mapping views.

This task can be very complex and time-consuming. For example, the addition of a new data

source may require changing the views that define the concepts in the mediation schema. If the

new data source contains relevant information to some elements of the mediation schema, then

their corresponding definitions must be modified. The modification or the removal of an

existing data source may also require a change in the mediation schema.

Local as View. The LAV approach requires that the mediation schema should be specified

independently from the sources. In this approach the information content of each data source is

specified in terms of a view over the mediation schema. Data integration systems that use the

LAV approach are more extensible and the addition of new data sources can be easier handled.

Adding a new data source to the system requires only providing the definition of the source,

and does not, necessarily, involve changes in the mediation schema. Existing data sources can

also be modified without changing the mediation schema. The main disadvantage of the LAV

approach is that the query reformulation is a very complex and time-consuming task. Different

from the GAV approach, query answering in LAV is not based on a simple unfolding strategy.

Since the data sources are defined as views over the global schema, the problem of query

reformulation consists in how to answer queries defined over the global schema using only the

views describing the data sources. The problem of query reformulation is similar to the problem

of answering queries using views [Levy et al. 1995].

2.3 Approaches for data integration

Another important decision in building a data integration system is whether to take a

materialized or a virtual approach to data integration. In the following, we describe both

approaches in more details.

Virtual approach. In this approach, the data remains in the data sources and the user queries

posed to the system are decomposed at run time into sub-queries on the data sources. The

results of these sub-queries must be integrated in order to obtain the answer for the

corresponding user query. One of the main advantages of this approach is that the data is

guaranteed to be fresh at query time. However, this approach is disadvantageous with respect to

the possibility of existing unavailable data sources and the query response time is often very

high mainly, because a large number of data sources may be accessed to answer most queries.

 11

The mediator architecture [Wiederhold 1992, Abiteboul et al. 2000], presented in Figure

2.1, adopts the virtual approach to data integration. The wrappers, in this architecture, provide

access to heterogeneous data sources by converting application queries into source specific

queries and it converts the data returned by the source into the common model. A mediator is

a facility that supports an integrated view over multiple data sources. A schema for the

integrated view is available from the mediator, and user queries can be made against that

schema. The mediator receives queries posed to the system and decomposes them into queries

to be executed in the remote data sources. When the mediator receives the results from the

corresponding data sources then it integrates the data and it returns the integrated data to the

user.

Figure 2.1 – Mediator architecture

Materialized approach. In this approach data are previously accessed, cleaned, integrated and

stored in a data repository and the queries submitted to the integration system are evaluated in

this repository without direct access to the data sources. This approach is better suited to cope

with applications where the users need high performance at query time and they do not require

fresh data. Figure 2.2 presents the data warehouse architecture, which adopts the materialized

approach to data integration.

User User User

Mediator
query

answer

query
answer

Wrapper WrapperWrapper

Data
source 1

query answer

Data
source 2

Data
source n

 12

Figure 2.2 – Data warehouse architecture

One of the main problems to be considered in this architecture is the maintenance of the

materialized data, which is the process of updating the data repository in response to changes to

the underlying data [Gupta et al. 1995a, Widom 1995]. The problem of keeping the integrated

data synchronized with the remote data sources is the same as the problem of maintaining

materialized views in a distributed environment.

Basically, there are two strategies for view maintenance. The first one consists in

recomputing all the integrated data from scratch. The second, called incremental maintenance,

consists in modifying the integrated data only in response to changes on the underlying data

[Abiteboul et al. 1998, Zhou et al. 1996]. The incremental maintenance is more efficient than

re-computation, but it can be very expensive, since it may require querying the remote data

sources. The system may have to issue queries to some of the data sources in order to obtain

some additional data to correctly update the integrated views. A view is called self-maintainable

when no additional queries over remote data sources are required to maintain the view [Tompa

et al. 1988, Huyn 1997].

Among the other traditional architectures for data integration, we can mention the federated

database architecture [Sheth et al. 1990] and the multidatabase [Elmagarmid et al. 1999].

− Federated database: a federated database system [Kim 1995, Sheth 1990] is a collection of

autonomous database systems which participate in a federation to share data. A key issue

in a federation is the cooperation among independent systems. Besides of a global schema,

the federation offers multiple federated schemas in function of the application

requirements using the federation. In general, federated schemas are defined manually.

User User User

Data
warehouse

query

answer

data

Data
source 1

Data
source 2

Data
source n

Data integrator

WrapperWrapper Wrapper

data

 13

There are two classical categories of federated systems: strongly coupled and loosely

coupled. In the first, there is an admnistrator who is responsible for creating the federated

schemas and controling the access to the database components. A federated system is

considered loosely coupled when the user is responsible for creating and controling the

federation.

− Multidatabase: in the multidatabase architecture [Elmagarmid 1999], there is no global

schema. It offers a multidatabase language which supports queries defined over multiple

databases. In this architecture, the participating databases have more autonomy.

However, there is no notion of integrated schema and users must know the schemas of

the component databases and have to solve the heterogeneity conflicts that may arise

during query execution.

2.4 Main problems with data integration

In this section, we discuss some basic problems that are faced in building a data integration

system. Some of these problems as heterogeneity and data sources modeling have received a

great attention from the database research community. On the other hand, the view

synchronization problem has not been broadly discussed. In this work, we focus on the view

synchronization problem.

Heterogeneity. A basic problem in data integration systems is the heterogeneity, which arises in

many forms, ranging from the hardware and software platform that a data source is based on,

to the data model and schema used to provide logical structure for the stored data, to the very

kinds of data that are being stored. The semantic heterogeneity, for example, is the result of

representing the same information or overlapping data in different ways [Hull 1997]. In

general, the data sources already exist and they are planned using different data models and

schemas. A data integration system must overcome this heterogeneity to offer an integrated

view of the data distributed in distinct data sources.

Data sources modeling and query reformulation. One of the problems in a data integration

system, which adopts the virtual approach, is the query reformulation. As mentioned earlier,

user queries posed to the system must be decomposed into queries to be evaluated on the

remote data sources. Defining queries over tens or hundreds of heterogeneous data sources can

be a very complex task. To reformulate a user query on the mediation schema into a query that

refers directly to the source schemas, the system requires a complete and perfect understanding

of the semantics of these sources. A description of an information source must specify these

contents, constraints on the contents of the source, completeness and reliability, and finally the

 14

query processing capabilities of the source [Florescu et al. 1998]. Besides of guaranteeing that

the reformulation is semantically correct (i.e. the answers obtained from the sources will

actually be correct answers to the query), it is also important to guarantee that irrelevant data

sources have not been accessed, in order to have a better performance in the user query

execution. As mentioned earlier, the complexity of the process of query reformulation depends

on the approach adopted to define the mappings between the mediation schema and the source

schemas.

View synchronization. In a data integration system, the data sources are autonomous and

dynamic, updating not only their contents but also their schemas, and joining or leaving the

system frequently. Therefore, the data integration system must evolve in order to become

consistent with the local data sources. Most of the approaches used in data integration systems

are based on previously defined static views which gather information from a fixed set of

heterogeneous data sources and a fixed set of user requirements, and provide the user with a

uniform view of the distributed information. In this context, a new problem, called view

synchronization, must be considered. The view synchronization corresponds to the process of

view definition adaptation triggered by changes of remote data sources. The problem of view

synchronization was defined in [Nica et al. 1999] and until now has received little attention in

the literature. The work proposed in [Nica 1999] presents a taxonomy of view adaptation

problems in evolving environments based upon types of changes that either a view or a data

source can undergo. Any process that changes the view definition or the view extent is referred

as a view adaptation problem.

2.5 The XML model

XML (Extensible Markup Language) is the new standard format for data representation and

exchange over the Web, currently being standardized by the World Wide Web Consortium

[Bray et al. 2000]. XML is very flexible and provides a mean of representing both structured

and semi-structured data [Buneman 1997]. Elements are the main building blocks of XML

documents. An element may contain other elements, called child elements, or may contain

character data, optionally mixed with child elements. An element is bounded by matching

starting and ending tags such as <author> and </author>. Besides, an element may have a set

of attribute specifications.

Because of the flexibility of XML to represent both structured and semi-structured data and

the trend of using XML as the standard format for data representation and exchange over the

Web, several data integration systems use XML as their common data model [Baru et al. 1999,

 15

Draper et al. 2001, Gardarin et al. 2002, Ives et al. 1999]. These systems also adopt XML

related standards, such as XML schema languages and XML query languages. In the following

sections, we present some of the XML related standards proposed in the literature.

2.5.1 XML schema languages

An XML schema is a common vocabulary for applications exchanging data, which describes

types of elements that can participate in a given class of XML documents. Using an XML

schema it is possible to specify several constraints on an XML document, for example whether

the elements and attributes are either required or optional and which element and attribute

types are allowed. In the following, we briefly review some XML schema languages found in

the literature. [Lee et al. 2000] provides a comparative analysis of these languages.

− DTD (Document Type Definition): it was the first XML schema language proposed in

the literature. It has very limited capabilities compared to other XML schema

languages. Despite its limitations, it has currently been the most used XML schema

language.

− XML Schema [Fallside 2001, Biron et al. 2001, Thompson et al. 2000]: it is the

standard XML schema language proposed by the World Wide Web Consortium

(W3C). It is more expressive than DTD and has many additional resources for XML

schemas definition, including: a great variety of primitive data types, user-defined data

types and inheritance for attributes and elements.

− SOX (Schema for Object-Oriented XML)[Davidson et al. 1999]: it was initially proposed

to support the development of large-scale, distributed electronic commerce applications

but it is also applicable across the whole range of markup applications. SOX is an

alternative schema language and can be used to define the basic class of document types

(with the exception of external parsed entities). However, SOX extends the language of

DTDs definitions by supporting: an extensive (and extensible) set of datatypes,

inheritance among element types, namespaces, polymorphic content, embedded

documentation and features to enable robust distributed schema management.

− Schematron [Jellife et al. 2000]: it differs from the other XML schema languages

because it is not based on the definition of grammars but allows the validation of

schemas by using patterns. It is based on a simple action: first, find some context nodes

in the document (typically an element) based on the XPath path criteria and then, check

to see if some other XPath expressions are true for each of these nodes.

 16

− DSD (Document Structure Description) [Klarlund et al. 2000]: it was produced as a

result of collaborative research between AT&T and BRICS University in Denmark.

DSD provides a context-dependent description of elements and attributes, flexible

default insertion mechanisms and expressive power close to XSLT [Clark 1999b].

− Relax (Regular Language description for XML) [Makoto 2000]: it is both simple and

built on a solid mathematical foundation. It was first published in March 2000 as a

Japanese ISO Standard Technical Report written by Murata Makoto and it was later

approved as an ISO/IEC Technical Report. RELAX NG (RELAX New Generation) is

the result of a merger of RELAX and TREX [Clark 2000]. RELAX NG is now an

official specification of the OASIS RELAX NG Technical Committee and will probably

progress to become an ISO/IEC TR.

 In this work, we adopt XML Schema to represent both the mediation schema and exported

schemas. As XML Schema is the standard XML schema language recommended by the W3C, it

will probably become the standard format to publish schemas for XML data.

2.5.2 XML query languages

Since XML data is very different from conventional data, traditional query languages can not

be used to query XML data. Therefore, several XML query languages have been proposed in

the literature [Ceri et al. 1999, Chamberlin et al. 2001, Clark 1999b, Deutsch 1999, Robie98a,

Robie 1998b]. In [Bonifati et al. 2000], is presented a comparison of some query languages for

XML, focusing on their common features and differences. In the following, we briefly review

some of these languages.

− XML-QL [Deutsch 1999]: it was proposed by AT&T Labs in the context of the Strudel

project. This language extends the SQL language with an implicit clause CONSTRUCT

which permits the construction of XML documents as the result of a query. This language

proposes the use of patterns to find specific data in a given XML document. It also provides

means to transform XML data in order to facilitate the integration of XML data from

different data sources.

− XML-GL [Ceri et al. 1999]: it was developed in the Politecnico di Milano to be a graphical

query language. It is suitable for supporting a user-friendly interface because all elements are

visually displayed. XML documents and DTDs are represented as labelled graphs.

− XSL (Extensible Stylesheet Language) [Clark 1999b, Schach et al. 1998]: it was designed by

the W3C XSL working group. A XSL document consists of a collection of template rules;

 17

each rule is composed by two components: a pattern and a template. The pattern is matched

against nodes in the source document and the template is instantiated to compose the result

tree.

− XQL [Robie98a, Robie 1998b] it can be considered a natural extension of the XSL

language. It was designed to be sintatically simpler and compact, but with reduced expressive

power. It was designed by J. Robie (Texcel Inc.), J. Lapp (webMethods, Inc.) and D. Schach

(Microsoft Corporation).

− XQuery [Chamberlin et al. 2001]: it is the standard XML query language proposed by the

W3C. The origin of XQuery is another XML query language called Quilt [Chamberlin00],

which inherited diverse characteristics of other languages, such as: XPath [Clark 1999a],

XQL [Robie 1998a], XML-QL [Deutsch et al. 1999], Lorel [Abiteboul et al. 1997] and

YATL [Cluet et al. 1998].

2.5.3 The XML data models

Because XML documents are tree-structured, the XML data models are defined using

conventional terminology for trees. To illustrate the concepts of an XML data model, we

briefly describe the XQuery 1.0 and XPath 2.0 Data Model [Fernandez et al. 2001], which is

the data model for XQuery 1.0. Such XML data model is a node-labeled, tree-shaped graph,

where the nodes represent information about the document, element, attribute, text,

namespace, processing instruction, and comment. A tree contains a root plus all nodes that are

directly or indirectly reachable from the root. Every node belongs to exactly one tree, and every

tree has exactly one root node. The data model associates type information with element nodes,

attribute nodes and atomic values. Every value handled by the data model is a sequence of zero

or more items: an item is either a node or an atomic value and a sequence is an ordered

collection of nodes, atomic values, or any mixture of nodes and atomic values.

2.5.4 Algebras for XML

 As XML data is semi-structured, the algebras developed for relational or object-oriented data

cannot be directly used for XML queries. Most XML Algebras have operators which operate on

a model which is similar to the XML Query data model [Fernandez et al. 2001]. However, the

algebras are quite different from each other. In [Chinwala et al. 2001] a comparison of the

following XML algebras is presented: IBM Algebra [Beech et al. 1999], Niagara Algebra

[Galanis et al. 2001], YATL Algebra [Christophides et al. 2000], Lore [McHugh et al. 1999]

and AT&T Algebra [Fernandez et al. 2001]. In the following, we present some characteristics

 18

of these algebras along with the TAX algebra [Jagadish et al. 2001] and the XAT algebra

[Zhang et al. 2002] that were not considered in that comparison.

− Lore [McHugh et al. 1999] and YATL algebra [Christophides et al. 2000]: while the IBM,

AT&T and Niagara algebras were proposed as stand alone XML query algebras, Lore and

YATL algebras were developed for the Lore database system and YAT data integration

system, respectively. Thus, the algebra operators proposed by Lore could be used to

generate query plans that could be efficiently executed using the physical index operators

of the Lore database system. Similarly, since YATL was developed for an XML based data

integration system, the optimization strategies are focused towards efficiently querying

distributed data.

− IBM [Beech et al. 1999] and Niagara algebra [Galanis et al. 2001]: the IBM algebra,

though not being a specific system like Lore, suffers from some drawbacks such as

complex query structures with a large number of variable bindings and a lack of

optimization rules. The Niagara algebra, which is the most recently proposed algebra, has

operators which are similar to the IBM algebra which in turn has similar operators to

object algebra operators. Niagara was developed to overcome the drawbacks of the IBM

algebra.

− AT&T algebra [Fernandez et al. 2001]: the AT&T algebra was selected by the W3C as the

proposed standard XML algebra [Fankhauser et al. 2001]. In a July 2001 revision

[Draper et al. 2002] to the original algebra document by W3C, there have been some

syntactical changes and now the document is titled as the proposed semantics of XQuery.

− TAX algebra (A Tree algebra for XML)[Jagadish et al. 2001]: the TAX algebra was defined

in the context of the TIMBER XML database system [Jagadish et al. 2002]. TAX is used

at its core for query evaluation and optmization. TAX extends the relational algebra by

considering collections of ordered labeled trees instead of relations as the basic unit of

manipulation. In spite of the potentially complex structure of trees involved, and the

heterogeneity in a collection, TAX has just a couple of operators in addition to the

relational algebra.

− XAT algebra (XML Algebra for the Rainbow System)[Zhang et al. 2002b]: this algebra was

defined in the context of the Rainbow system [Zhang et al. 2002a], which is used to

manage and query XML data stored in heterogeneous systems, in particular, in the

relational format. The core part of the Rainbow system is the XAT algebra, which is the

 19

foundation for the query engine to access both XML data and relational data. The XAT

data model is an order-sensitive table called XAT table, which is an extended relational

table with XML domains and supporting collections. The algebra supports operators: i)

XML operators, which are used to represent the XML document related operations, ii)

SQL operators, which correspond to the relational complete subset of the XAT algebra

and iii)special operators include the operators temporarily used in different phases of

optmization and the operators shared both by the class of XML operators and of SQL

operators.

2.6 Related work

In this work, we propose a mediator-based data integration system that offers an integrated

view of data distributed in several autonomous and heterogeneous data sources [Lóscio et al.

2001, Lóscio et al. 2002a]. One distinguishing feature of the proposed system is that it presents

solutions for the problems concerning mediation queries generation and maintenance in

dynamic environments. In this section, we present some data integration systems focusing their

approach for modeling data sources (Global as View or Local as View) and their key design

decisions concerning mediation queries generation. Next, we give an overview of some work

directly related to the problem of schema evolution, which is our main focus. We conclude by

discussing some conceptual models for XML schemas.

2.6.1 Data integration systems

Initially, data integration systems were developed to provide integrated access to distributed

databases with well-defined structures. Later, with the increase of information available in the

Web and the growth of its popularity, new data integration systems were developed with the

goal of integrating both structured and semi-structured data sources, including: TSIMMIS

[Chawathe et al. 1994], MOMIS [Bergamaschi et al. 1998], Ariadne [Ambite et al. 1998], MIX

[Baru et al. 1999], Tukwila [Ives et al. 1999], Nimble Integration Suite [Draper et al. 2001] and

e-XML Data Integration Suite [Gardarin et al. 2002].

In [Chawathe et al. 1994], the TSIMMIS (The Stanford-IBM Manager of Multiple

Information Sources) is proposed, a mediator-based system that besides supplying data

integration mechanisms also offers tools to facilitate the wrapper and mediator generation. A

rule-based language, called Mediator Specification Language (MSL), is adopted in TSIMMIS to

allow the declarative specification of mediation queries, which describe the elements of the

mediation schema in terms of the data sources. The mediation queries are defined manually and

 20

they are used to automatically or semi-automatically generate the mediator. TSIMMIS adopts a

self-describing object-oriented data model, called OEM, which allows the representation of

structured and semi-structured data. End users can access information either by writing

applications that request OEM objects or by using one of the developed browsing tools. The

end-user query language adopted in TSIMMIS is LOREL [Abiteboul et al. 1997], an OQL

(Object Query Language) based query language for the OEM model.

MOMIS (Mediator envirOnment for Multiple Information Sources) [Bergamaschi et al.

1998] is a framework for integration of structured and semi-structured data that offers an

integrated view of all the participating data sources, called Global Virtual View. MOMIS adopts

ODMI3 to represent integrated information and to describe the data sources it adopts the ODLI3

language. ODMI3 and ODLI3 are subsets of the corresponding ones in ODMG (Object Database

Management Group) [Cattell et. al 2000]. For each global class belonging to the Global Virtual

View it is generated a mapping-table storing all the intensional mappings between the global

class and the local classes. MOMIS offers a set of techniques to help the designer to face

problems that arise when integrating pre-existing information sources. One of the key issues in

the MOMIS system is a Common Thesaurus composed by intentional and extensional

relationships, describing the correspondences among classes and attributes of source schemas.

In [Arens et al. 1993], is presented a data integration system, called SIMS, which was

considered initially for integration of data stored in different databases, and later it was

customized for the Web. This adaptation originated a system for integration of semi-structured

web data sources, called ARIADNE [Ambite et al. 1998]. To build an application in SIMS, a

user creates a domain model using the Loom knowledge representation language and describes

the source contents in terms of this model. The domain model describes object classes, their

attributes, and the relationships among them. SIMS accepts queries in this domain-level

language, process these queries, and returns the requested data. To minimize the cost of query

processing SIMS, adopts an hybrid approach to data sources modeling. First the sources are

defined in terms of the global domain model and then compiled into axioms that define the

global model in terms of the sources. An integration axiom specifies a particular way in which

available sources can be combined to provide the data for a class belonging to the global model.

As presented in [Ambite et al. 2001], the integration axioms may be automatically generated.

[Baru et al. 1999] presents a wrapper-mediator system, named MIX (Mediation of

Information using XML), which employs XML for data modeling and interchange between

heterogeneous data sources. MIX adopts the GAV approach to define the mediator views,

which are provided by the mediation engineer and expressed in XMAS (XML Matching and

 21

Structuring Language), a declarative XML query language. Queries in MIX are also expressed

in XMAS and generated by a graphical user interface. To facilitate query formulation and for

optimization purposes, MIX employs XML DTDs as a structural description of the exchanged

data. Similar to the other data integration systems mentioned earlier, MIX adopts the virtual

approach to query evaluation.

The Tukwila [Ives et al. 1999] data integration system is designed to scale up to the amounts

of data transmissible across intranets and the Internet, with large numbers of data sources. The

key issue of the Tukwila is that it has an adaptive query execution system. When the system

receives a query then it intelligently processes the query, reading data across the network and

responding to data source sizes, network conditions, and other factors. A highly efficient query

reformulation algorithm, MiniCon, maps the input query from the mediation schema to the

data sources [Pottinger et al. 2000]. Tukwila adopts a mediation schema to represent a

particular application domain and data sources are mapped as views over the mediation schema.

It also provides integrated support for efficient processing of XML data, based on the x-scan

operator, which efficiently processes virtual XML data as it reaches the system. The latest

versions of Tukwila are built around an adaptive query processing architecture for XML, and

can perfectly combine XML and relational data into new XML content.

The Nimble Integration Suite [Draper et al. 2001] is an XML-based information integration

software platform. Users and applications interact with the Nimble system using a set of

mediation schemas, which are definitions of views over the data source schemas. It has a

metadata server containing the mappings between the mediation schema and the sources which

is used to decompose XML-QL queries into data source queries. One of the distinguishing

features of Nimble is that it behaves intelligently when some data sources are not available by

providing partial results and indicating to the users that results are not complete. It adopts an

hybrid approach where it is possible to specify which data sources should be materialized in a

local store and which should be refreshed on demand.

The e-XML Data Integration Suite [Gardarin et al. 2002] also adopts XML as the

integration model. Besides XML, it also uses some XML related standards as XQuery, XML

Schema, Dom, SAX, SOAP, Xforms and XSL. The e-XML suite is a collection of components

built to work and cooperate with relational existing DBMSs (Oracle, DB2, SQL Server,

TimesTen and Postgres).

Table 2.1 presents a comparison of the mentioned data integration systems. As we may

observe, among the presented systems, most of them use the GAV approach to data sources

modeling. As mentioned before, the GAV approach is easier to implement and the user query

 22

decomposition process is more efficient. Since most of them adopt the virtual approach to data

integration, we may conclude that the presented systems are more concerned in providing fresh

data than in providing high performance at query time. Due to the flexibility of XML to

represent both structured and semi-structured information, and to the ease with which one can

convert any data to XML, there is an increasing interest in using it as a common data model for

data integration. The use of XML as the common data model by the most recent proposals,

demonstrates that XML is becoming the standard format for data exchanging. As presented in

Table 2.1, one relevant point which is not discussed in details concerns the generation and

specification of the mappings between the mediation schema and the source schemas. Such tasks

are very costly and time consuming, therefore it is crucial to have algorithms to generate them.

Among the presented systems, just MOMIS and SIMS use algorithms to generate the mediation

queries. In TSIMMIS and MIX the mediation queries are executed manually. The data

integration systems which adopt XML as the common data model do not present details about

the mediation queries generation. As the structure of XML data is more flexible than the

structure of conventional data, then the process of generating mediation queries is more

complex. In the relational model, for example, a relation is composed by a set of tuples having

the same schema and consisting of attributes, which are atomics and monovalued. On the other

hand, XML elements may be composed by other elements and attributes, and elements with the

same type may have different structures.

Table 2.1 – Comparison of data integration systems

 GAV x LAV Virtual x
Materalized

Integration
model

Query
language

Mappings
specification

Mappings
Generation

TSIMMIS GAV Virtual OEM Lorel MSL Provided by the
mediation engineer

MOMIS GAV Virtual ODMI3/ODLI3 OQLI3 Mapping
tables

Generated by
algorithm

SIMS Hibrid Virtual LOOM -- LOOM Generated by
algorithm

MIX GAV Virtual XML XMAS XMAS Provided by the
mediation engineer

e-XML Hibrid XML XQuery -- --

NIMBLE LAV Hibrid XML XQuery -- --

TUKWILA LAV Virtual XML -- -- --

2.6.2 Schema evolution in data integration systems

One of the main problems faced when maintaining long-lived application systems is to

handle database schema changes. These changes may occur not only because it is difficult to

 23

completely determine the final database schema for many complex applications but also because

the users’ requirements change frequently. As suggested in some works [Marche 1993, Sjoberg

1993], handling schema changes is an inevitable task not only during the development of a

system but also once a system has become operational.

Traditionally, the goal of schema evolution approaches is to allow the evolution of database

schemas while changing the data to conform them to the modified schema. Schema evolution

has been broadly discussed in the context of object-oriented database systems. Studies on this

area have focused on (i) defining sets of schema evolution operations [Banerjee et al. 1987,

Lerner 1996, Claypool et al. 1998], (ii) providing mechanisms to make data and the system

itself more available during the schema evolution process [Ferrandina et al. 1994a, Ferrandina

et al. 1994b] and (iii) providing support for existing applications that depend on the old

schema, when other applications change the shared schema according to their own

requirements [Lautemann 1997, Ra et al. 1997, Rundensteiner et al. 1998].

Another important issue is providing support for schema evolution in the context of data

integration systems. As we know, local data sources are often autonomous and may change in

their both structures and concepts. New sources may be added to the system or some sources

may be removed from the system either because of their irrelevance or because of their

unavailability.

A lot of work have studied the problem of materialized view maintenance [Gupta et al.

1995a], which consists in updating a materialized view in response to changes to the underlying

data. It is important to observe that this is not the focus of our work. We are interested in

providing mechanisms to correctly update the mappings between the mediation schema and the

distributed sources after data source schemas changes and users’ requirements changes. Few

researches have discussed some aspects related to this problem [Ambite et al. 2001, McBrien et

al. 2002, Nica et al. 1999].

The algorithm to discover integration axioms presented in [Ambite et al. 2001] is

incremental, which means that when new sources are added, the system can efficiently update

the axioms, but no details on how this could be achieved nor examples are given. Besides, in

case of deleting a source the algorithm must start from scratch.

The problem of schema evolution is also discussed in [McBrien et al. 2002], which provides

an approach to handle both schema integration and schema evolution in heterogeneous

database architectures. The proposed approach is based on a framework for schema

transformation, which consists of a hypergraph-based common data model and a set of

primitive schema transformations defined for this model. Source schemas are integrated into a

 24

global schema by applying a sequence of primitive transformations to them. This set of

transformations can also be used to systematically adapt the global schema and the global query

translation pathways after changes to the source schemas.

The work presented in [Nica et al. 1999] also investigates the view evolution problem in

information integration systems. The authors propose the Evolvable View Environment (EVE)

framework as a generic approach to solve issues related to view evolution under schema

changes for both view definition adaptation and view extent maintenance after synchronization.

EVE uses materialized views for data integration. They propose some synchronization

algorithms to evolve a view definition by finding appropriate replacements for affected view

components based on available meta-knowledge, and by dropping non-essential view

components. Unlike the strategies proposed for query rewriting using views [Levy et al. 1996,

Srivastava et al. 1996], the proposed algorithms find view rewritings that are not necessarily

equivalent to the original definition. They use the relational data model as the common data

model and they also propose an extended view definition language (derived from SQL), which

allows users to explicitly define evolution preferences for changing the semantics of the view. In

this way, it is possible to accept view rewritings that preserve only indispensable attributes if

preserving all is not possible.

2.6.3 Conceptual modeling of XML schemas

Some recent works have discussed the conceptual data modeling of XML schemas using the

ER model. In [Psaila 2000] is proposed the ERX conceptual model, an evolution of the classical

ER model which provides specific features that are suitable to model large collections of XML

documents. More precisely, ERX extends the ER model to allow the representation of style

sheets and a collection of documents conforming to a DTD data. ERX is devised to be effective

for building advanced XML processors that have to manipulate complex XML documents or

multiple classes of documents at the same time.

The work presented in [Mani et al. 2001] proposes a new notation, called XGrammar, to

formalize the most important features from the proposed XML schema languages. Mani et. al.

also extends the ER model with additional features (order in a binary relationship and element-

subelement relationship) to support the XML model. A conversion between XGrammar and the

extended ER model is also discussed.

In [Passi et al. 2002], is proposed an object-oriented data model, called XSDM (XML

Schema Data Model), to represent XML Schemas. XSDM was proposed as a model for XML

Schema integration, i.e., during the first step of the schema integration XML Schemas are

 25

translated into the XSDM notation. A briefly discussion of the process of converting an XML

Schema to the XSDM notation is presented.

In [Mello et al. 2001], is described a semi-automatic process for converting a DTD to a

conceptual schema in a canonical conceptual model, which is a mix of the ORM/NIAM

[Halphin 1998] and EER models. As proposed in [Passi et al. 2002] the main focus of this work

is the schema integration. A broadly discussion of the conversion from a DTD to its

corresponding conceptual schema is presented.

Other related work include a mapping from XML Schema to an extended UML [Booch et al.

1999], a mapping from ORM to XML Schema and a mapping between UML class diagrams

and XML Schemas [Bird et al. 2000]. Also other work discuss the conversion of XML Schemas

(or DTDs) to relations for storage [Bohannon et al. 2002, Florescu et al. 1999].

2.7 Concluding remarks

In this chapter, we gave an overview of the data integration research area. First, we

introduced the main approaches for data sources modeling: GAV and LAV. In the GAV

approach query processing is easier than in the LAV, however the LAV approach ensures an

easier extensibility of the data integration system. We also reviewed the main architectures for

data integration, including: mediators and data warehouse. The main difference between them

is that the first one offers a virtual integrated view of the distributed data, while the second

offers a materialized integrated view.

We also discussed the main problems faced in data integration systems, including:

heterogeneity of data sources, query reformulation and view synchronization. Since we propose

an XML-based data integration system, we then discussed some XML schema languages, XML

query languages, XML algebras and XML data models.

We also reviewed some data integration systems focusing their approach for modeling data

sources and their key design decisions. These systems have as common goal offering an

integrated view of data distributed in heterogeneous data sources. However, to achieve this goal

they use different architectures and, generally, they use distinct data models and query

languages. Except for the most recent proposals, which adopt XML and XQuery as the basis for

the data integration process.

 We also presented some work, which more directly discuss the problem of mediation

queries evolution. One limitation of the majority of the data integration systems is related to the

capability of evolving according to dynamic information systems. The work presented in [Nica

 26

et al. 1999] is one of a few to study the view adaptation problem in dynamic information

integration systems proposing the Evolvable View Environment (EVE) framework as a generic

approach to solve issues related to view evolution under schema changes for both view

definition adaptation and view extent maintenance after synchronization. Such work adopts the

relational model as the common model. One limitation of EVE is that it considers only the

evolution of the mediation queries in function of the data sources evolution, i.e., it does not

discuss how mediation queries must evolve in response of user requirements evolution.

 It is well known that in the GAV approach it is hard to guarantee the extensibility of the

data integration system [Halevy 2000, Levy 2000, Ullman 1997]. Consequently, to have a

system that preserves the advantages of the query reformulation proposed by the GAV

approach is crucial to provide a solution for the maintenance of the mappings between the

mediation schema and the data source schemas. In this work, we propose a solution for

mediation queries evolution in response of user requirements and data source schemas update

in the context of XML-based data integration systems.

In the next chapter, we will present an overview of the data integration system proposed in

our work by describing its main components.

 27

Chapter 3

Architecture Overview

3.1 Introduction

This work proposes a mediator-based data integration system that offers an integrated view

of data distributed in several autonomous and heterogeneous data sources [Lóscio et al. 2001,

Lóscio et al. 2002a]. One distinguishing feature of the proposed system is that it presents

solutions for the problems concerning to mediation queries generation and maintenance in

dynamic environments.

The system also combines features of both approaches for data integration supporting the

execution of virtual and materialized queries. This is done to minimize the impacts of most

common problems presented by the mentioned approaches. Some portions of data more

intensively unavailable and static may be materialized in a data warehouse and the more

dynamic data are accessed by virtual queries. It also uses a cache system in order to answer the

most frequently asked queries. All these resources are put together with the goal of improving

the overall query response time.

As shown in Figure 3.1, the system architecture can be divided into four spaces:

� Common core: this space feeds the mediator generation and maintenance space with

information about data sources schemas while receiving data source queries from the data

integration space and answering them.

� Data integration space: the main component of this space is the mediator which is

responsible for restructuring and merging data from autonomous data sources and for providing

an XML integrated view of distributed data. Other components of this space are used to

improve the overall query response time of user queries.

� Mediation queries generation and maintenance space: this space executes the mediation

 28

queries generation and maintenance, i.e., it generates and maintains the consistency of the

mappings between the mediation elements and the source elements, which are used during the

user queries execution. The process of mediation queries generation is based on the approach

for discovering relational view expressions proposed by Kedad & Bouzeghoub [Kedad et al.

1999]. Since we adopted XML as the common data model, we had to adapt this approach in

order to generate XML-based mediation queries. The mediation queries maintenance is

executed by a global evolution process, which receives events about data source schemas

changes and users’ requirements changes, and propagates them into the mediation level.

Figure 3.1 – Architecture overview

� User space: this space is composed by the Users’ Requirements Manager, which offers an

interface for the users’ requirements definition. Besides, it is responsible for notifying the

Mediation Queries Maintainer about the users’ requirements changes.

In the following, we present an overview of our system based on these spaces.

D
at

a
In

te
gr

at
io

n
Sp

ac
e

Mediation Queries
Quality Analyzer

Schema
Matcher

Data Sources

Knowledge Base

M
ed

ia
to

r G
en

er
at

io
n

an
d

M
ai

nt
en

an
ce

 S
pa

ce

Mediator
Knowledge

Base

User/ Application
User View 1 User View 2 User View n

User Requirements Manager

Wrapper Wrapper Wrapper

Object Relational
Database

XML
 Files Relational

Database

C
om

m
on

 C
or

e

Lookup

Query
Manager

Query
log

Cache
Manager

Cache

Source
Manager

Mediator

Data
warehouse

Lookup Lookup

M
id

dl
ew

ar
e

Mediation
Queries

Generator

 Mediation
Queries

Maintainer

Conceptual Schema
Manager

U
se

r S
pa

ce

Data
Warehouse

Manager

 29

3.2 Common core

This space is related to the Mediator Generation and Maintenance Space and the Data

Integration Space, and is composed by the following components: the data sources, the

wrappers and the middleware.

� Data sources

The data sources are heterogeneous, autonomous and dynamic. This is due to the fact that

the data sources support local applications and update their data and schemas independently,

possibly without any concern of how this may affect the data integration system based upon

them. Data sources may also be added to the system, or become temporally or definitively

unavailable. A data source is included in the integration system via a wrapper and a lookup

process that serve as bridges between the data source and the other components of the system.

When a data source joins the system, it publishes its exported schema describing the

information available through this data source. It is important to note that when a data source

changes its exported schema it is necessary to publish it again. The exported schema must be

updated to reflect corresponding data source schemas changes or when some information needs

to be added or dropped from it. The data sources ideally publish the most recent version of

their exported schema in order to keep the consistency between the information available to the

user and the data actually stored in the data source.

� Middleware

The middleware offers two main services (translation of data and queries, and extraction of

exported schemas), which are executed by the following modules:

− Wrappers

Wrappers are necessary for each data source to translate application queries into specific

source queries and to translate the data returned by the local data sources into the common

data model [Hammer et al. 1998]. Due to the flexibility of XML to represent both

structured and semi-structured data there is an increasing interest in using XML as a

common data model for data exchange and integration [Baru et al. 1999, Draper et al. 2001,

Gardarin et al. 2002, Ives et al. 1999]. In this work, we adopt XML as the common data

model.

Several works have proposed solutions for the translation of conventional data, mainly

relational data, to XML [Baru 1999, Fernandez et al. 2000, Shanmugasundaram et al. 2001,

Vittori et al. 2001]. The work presented in [Braganholo 2002] proposes a language that

 30

allows the specification of updatable XML views over relational databases. In [Carey et al.

2000] it is discussed the problem of defining XML views in the context of object-relational

data.

Considering the increasing use of XML as the standard format for data exchange and

representation, in the future, data sources interested in sharing their data will naturally offer

XML views of them.

It is important to observe that wrappers are responsible for the translation of data and

queries, i.e., wrappers are not responsible for the translation of schemas to a common data

model nor for the extraction of metadata on local data sources.

− Lookup

This module is responsible for the extraction of the exported schemas from the local data

sources. To do this, each Lookup sends a request to its corresponding data source and as a

result it receives the corresponding exported schema defined in the data format of the

remote source.

When a data source joins the system, the Lookup requests its exported schema describing the

information available through this data source. Whenever a data source changes its exported

schema it is necessary to extract it again. However, as mentioned earlier the data sources are

autonomous and may update their schemas independently from the data integration system.

Hence, the Lookup must execute the extraction of the exported schemas periodically in

order to keep the consistency between the information available to the user and the data

actually available in the data source. To do this, the system maintains a log file associated

with each data source which includes, for example, an entry for each data source schema

update. The schema update frequency will be used to determine when the lookup must

extract the data source schema. When the Lookup extracts an exported schema defined in its

own data model (ex: relational or object-oriented) it also translates the schema to XML

Schema. After this, it sends the translated schema to the Conceptual Schema Manager.

3.3 Data integration space

The main component of this space is the mediator which is responsible for the activities of

decomposing user queries into subqueries over the underlying data sources and integrating the

corresponding results. Originally, our data integration system was proposed to adopt only the

virtual approach to data integration. However, in [Batista et al. 2003] we extended the system’s

architecture with other components with the goal of optimizing the performance of user queries

 31

execution. The extended architecture combines features of both data integration approaches

supporting the execution of virtual and materialized queries. This is done to minimize the

impacts of most common problems presented by the mentioned approaches. Some portions of

data more intensively unavailable and static may be materialized in a data repository and the

more dynamic data are accessed by virtual queries.

Another distinguishing feature of the extended architecture is the use of a local cache, i.e., a

repository to store prepared answers for the most frequently queries submitted to the data

integration system. More details about the specification and implementation of the modules

responsible for the optimization of query response time can be found in [Batista 2003]. In the

following, we describe the components of the data integration space in more details.

� Mediator

A Mediator is a software device supporting an integrated view of several data sources. A

schema for the integrated view is available from the Mediator, thus allowing queries to be made

against that schema. The mediation schema contains all the elements needed to answer the users

queries which can be computed from the data sources. Also, the elements in the mediation

schema are associated with mediation queries, which are responsible for their computation.

The Mediator is composed by two sub-modules:

− Query Manager

Whenever a query is submitted to the data integration system, the Query Manager first

analyzes the query to determine where the data which is relevant to its answer is stored. If

the query results are stored in cache, they will promptly be returned by the Query Manager.

On the contrary, if these results are not stored in cache, then it is necessary to identify where

the elements which compose the query results are stored. These elements can be virtual or

materialized. Virtual elements are accessed from the data sources and materialized elements

are obtained directly from the data warehouse. After retrieving the data, the Query Manager

composes the results and returns the answer to the user.

− Source Manager

One of the tasks of the Source Manager is to interact with the data sources, sending queries

addressed to the source wrappers and returning the corresponding results to the Query

Manager. The Source Manager also monitors the sources in order to determine if there are

portions of data that may be materialized in the data warehouse [Harinarayan et al. 1996,

Gupta et al. 1997, Theodoratos et al. 1997]. This procedure implies in analyzing the data

sources through their metadata and defining reference values for some materialization

 32

criteria, for example: availability and update frequency of the data source. More details

about the criteria adopted to select the portions of data to be materialized may be found in

[Batista 2003].

� Cache Manager

The Cache Manager is responsible for the maintenance of a locally stored cache with respect

to space availability, substitution policies and contents refreshment [Dar 1996]. Another task of

the Cache Manager is to periodically access the Query Log, to verify the frequencies of

submitted queries and to identify if there are new queries results to be stored in cache. In this

case, the Query Manager will recompute the new queries and store their results in the cache.

Periodically all the cached queries must be recomputed to proceed with the refreshment of

cache contents.

� Data Warehouse Manager

The main role of this module is the maintenance of the data warehouse with respect to the

materialization of the data suggested by the Source Manager and refreshment of the materialized

data. Data warehouse maintenance policies were investigated in previous works [Gupta et al.

1995, Widom 1995, Rundensteiner et al. 2000]. These policies addressed the problem of

keeping the consistence of the data warehouse with sources contents. As we already discussed,

this can be done either by overriding the existing contents or appending new data to existing

data in the data warehouse.

The Data Integration Space has two additional data repositories: the data warehouse, which

stores data more intensively unavailable and static, and the cache, which stores prepared

answers for the most frequently queries submitted to the integration system. It is important to

note that the construction of the cache and the data warehouse will be done in two different

phases:

− The data warehouse is built during the initial construction of the integrated view and

hereafter it will be maintained by the Data Warehouse Manager. The materialization of

data to be stored in the data warehouse is done through the execution of mediation

queries. During the refreshment of the data warehouse, the elements must be recomputed,

i.e., the corresponding mediation queries must be re-executed.

− Initially, at system startup, the cache is empty. The cache will be populated at runtime

when queries are submitted to the system. This will be done based on the value of the

queries frequency, i.e, the queries posed to the system more frequently will have their

answers stored in cache.

 33

3.4 Mediation queries generation and maintenance space

The main goals of this space are the generation and maintenance of the mediation queries.

As mentioned earlier, the mediation queries express how to obtain the data for the elements

that compose the mediation schema. Besides these tasks, the components of this space are also

responsible for managing the exported schemas and identifying the correspondences among

them, as described in the following.

� Conceptual Schema Manager

To provide a high-level abstraction for information described by an XML Schema we

propose the X-Entity data model. The X-Entity model is not a new formalism for conceptual

modeling, rather it is an extension of the Entity Relationship (ER) model [Chen 1976], i.e., we

use some basic features of the ER model and we extend it with some additional features to

better represent XML Schemas. The X-Entity model will be described in Chapter 4 along with

the conversion process of XML Schemas to X-Entity schemas.

 The Conceptual Schema Manager is the module responsible for translating XML Schemas,

received from the Lookup module, to X-Entity schemas. Besides, this module has another task

concerning the identification of source schema changes. When the system receives a new

version of a given exported schema, it compares the new version of the corresponding

conceptual model with the older one, currently stored in the Data Sources Knowledge Base, in

order to identify schema modifications. The result of this comparison is a set of events

specifying data source schema changes. These events are sent to the Mediation Queries

Maintainer, which propagates them into the mediation queries.

� Schema Matcher

This module is responsible for the matching [Rahm et al. 2001] of schemas in order to

identify the correspondences among their elements. The problem of schema matching has been

broadly investigated in the literature [Miller et al. 1994, Milo et al. 1998, Rahm et al. 2001].

[Rahm et al. 2001] defines the match operation as a function that takes two schemas S1 and S2

as input and returns a mapping between them as output, called match result. Each mapping

element of the match result specifies that certain elements of schema S1 logically correspond to,

i.e. match, certain elements of S2.

Recently, various work discussing the integration of XML schemas have been proposed

[Benevantano et al. 2001, Madhavan et al. 2001, Melo et al. 2001]. We do not adopt a specific

methodology to identify the correspondences between the X-Entity schemas. However, in

 34

Chapter 5, we present a formalism to define the correspondences between elements of two X-

Entity schemas.

� Mediation Queries Generator

The process of mediation queries generation is based on the approach proposed by Kedad &

Bouzeghoub [Kedad et al. 1999], which defines a solution space providing the set of potential

queries corresponding to a given entity in the mediation schema. Such queries specify how to

obtain the integrated instances of a given mediation entity from the source data. We adapted

this approach in order to generate XML-based mediation queries. The process of mediation

queries generation can be summarized in three main steps: i) selection of relevant sources which

potentially allow to compute a given mediation element, ii) identification of possible operators

to apply between different sources and iii) generation of all possible queries from the selected

sources and operators.

� Mediation Queries Maintainer

This module is responsible for the propagation of source schema changes and users’

requirements evolution. The evolution of the user needs consists in adding, removing or

modifying a user requirement. These changes impact the mediation schema by adding,

modifying or deleting an element from the mediation schema. If these changes can be reflected

in the mediation queries, the modifications on the mediation schema are committed; otherwise

the user is informed that his new requirements cannot be satisfied.

 The evolution of the data source schemas consists in adding or removing a data source or

modifying the schema of a data source participating in the data integration system. If one of

theses changes occurs, it has to be propagated to the mediation queries. The mediation queries

are modified if the source elements on which they were defined are modified or when a source

element is added or deleted.

To propagate a data source schema change or a user requirement change, the Mediation

Queries Maintainer uses a set of event-condition-action (ECA) rules where: the event is a

schema operation which represents the change, the condition is related either to the local

schemas or to the mediation schema metadata, and the action is a sequence of propagation

primitives which update the metadata describing the mediation queries. More details about the

propagation of schema changes into the mediation queries will be presented in Chapter 6.

� Mediation Queries Quality Analyzer

Besides the management of the mediation queries evolution, it is also important to evaluate

the impact of the changes (at the source level or at the user level) on the quality of the

 35

integrated data. Indeed, it is easy to understand that some changes may lead to a need for

modifying the mediation queries in such a way they select more or less data from the sources.

Consequently, it becomes important to qualify the impact of changes either with respect to the

users' requirements (the ratio of queries which remain computable after a given change) or with

respect to their expectation (to what extent a given change impacts the semantics of a given

query, i.e. the data delivered by a given query).

The Mediation Queries Quality Analyzer evaluates the impact of the schema changes

propagation on the general quality of the system. We propose to evaluate the variation of the

quality of the data integration system after the propagation of a source schema or a user

requirement change. We consider that the quality of a data integration system corresponds to

the overall quality of the mediation queries. A set of quality criteria [Wang et al. 1996,

Naumann et al. 1999] (reputation, reliability, availability and response time, for example) may

be used to calculate the quality score of a given mediation query.

The Mediator Generation and Maintenance Space has two additional knowledge bases: i) the

Data Sources Knowledge Base, which stores data source descriptions, including the exported

schemas defined in XML Schema and the correspondence assertions specifying the relationships

between their elements. The data sources descriptions are important for the mediation queries

generation and maintenance, and for translating application queries into precise query plans,

and ii) the Mediator Knowledge Base, which stores mediator descriptions, including the

mediation schema defined in XML Schema and the mediation queries.

3.5 User space

This space is composed by the User Requirements Manager which has an interface for the

user’s requirements specification. This interface offers information about the domain being

modeled in order to facilitate the user’s work. The users’ requirements are stored in an X-Entity

schema, which will be used as the basis for the mediation schema definition process. Whenever

a new data source joins the system or new information is added into an existing data source

schema, then the users’ requirements are analyzed to identify the user entities that become

computable. Such entities are inserted into the mediation schema and their corresponding

mediation queries are generated.

 Since the users’ requirements continue to evolve it is also important to propagate the users’

requirements changes into the mediation schema and the mediation queries. When the Users’

Requirements Manager receives a new requirement or a change requirement, it identifies the

change operations to be performed in the mediation schema in order to reproduce them. After,

 36

it sends these changes to the Mediation Queries Maintainer, which will propagate them to the

mediation queries. If the new requirement can be computed from the data available in the data

sources then the change operation in the mediation schema will be confirmed; otherwise it will

be cancelled.

3.6 Concluding remarks

In this chapter, we presented an architectural overview of the data integration system

proposed in our work. The system is composed by four main spaces: i) Common Core:

performs the interaction with the data sources, ii) User Space: is the interface with the users, iii)

Mediation Queries Generation and Maintenance space: performs all the activities concerning

both mediation queries generation and mediation queries maintenace and iv) Data Integration

Space: is responsible for the activities concerning the execution of queries submitted to the

system. The focus of this work is the Mediation Queries Generation and Maintenance space.

One distinguishing feature of the proposed system is that it presents solutions for the

problems concerning mediation queries generation and maintenance. Our approach for

mediation queries produces mediation queries which can be easily updated in response of

source schema and user requirements modifications. In some work [Chawathe et al. 1994, Baru

et al. 1999], the mediation queries are generated manually, which can be a very time-consuming

and error prone task. In other work [Arens et al. 1993, Bergamaschi et al. 1998], the mediation

queries are automatically generated through algorithms. The work proposed in [Ambite et al.

2001] presents a detailed description of the process of generating integration axioms, which are

very similar to the mediation queries proposed in our work. None of these work, use XML as

the common data model. As the structure of XML data is more flexible than the structure of

conventional data, then the process of computing mediation elements is more complex. In the

relational model, for example, a relation is composed by a set of tuples having the same schema

and consisting of attributes, which are atomics and monovalued. On the other hand, XML

elements may be composed by other elements and attributes, and elements with the same type

may have different structures. Other systems [Ives et al. 1999, Draper et al. 2001, Gardarin et

al. 2002, Cali et al. 2003] do not discuss how the mediation queries can be specified or

obtained.

 The problem of mediation queries evolution is discussed in some work [Nica et al. 1999,

Ambite et al. 2001, McBrien et al. 2002]. The work presented in [Ambite et al. 2001] adopts an

approach similar to ours for defining mediation queries. As proposed in our work, they also

produce mediation queries which can be easily updated in response of source schema

 37

modifications. In [McBrien et al. 2002] is presented an approach to handle both schema

integration and schema evolution in heterogeneous database architectures, but instead of

mediation queries they use primitive transformations to automatically translate queries posed to

the global schema to queries over the local schemas. The work presented in [Nica et al. 1999] is

one of a few to study the view adaptation problem in dynamic information integration systems

proposing the Evolvable View Environment (EVE) framework [Rundensteiner et al. 1997] as a

generic approach to solve issues related to view evolution under schema changes. They propose

several algorithms to find SQL queries rewritings for views that become invalid after a data

source schema change. In contrast to our approach, EVE uses materialized views for data

integration. None of the propose approaches consider the problem of evolving mediation

queries when users’ requirements are inserted, modified or removed. We propose an

incremental approach to develop the mediation schema and the mediation queries [Lóscio et al.

2002b, Bouzeghoub et al. 2002] based on the evolution of the data source schemas and the

evolution of the users’ requirements.

Similar to the data integration systems presented in [Baru et al. 1999, Ives et al. 1999,

Draper et al. 2001, Gardarin et al. 2002], we use XML as the common model for data

exchange and integration. Other key issue of our proposal is the use of XML Schema as the

language for representing the mediation schema and the exported schemas.

In the next chapters, we discuss in more details our research contributions. Chapter 4

presents the X-Entity model and the process of converting an XML Schema to its corresponding

X-Entity schema. Chapter 5 describes our approach for generating XML-based mediation

queries and Chapter 6 introduces our solution to manage the evolution of the mediation

queries.

 38

Chapter 4

Conceptual Modeling of
XML schemas

4.1 Introduction

XML documents [Bray et al. 2000] have been widely used for interchanging data between

heterogeneous systems. An XML document is composed by one or more nested elements,

which may contain other elements, called subelements, or may contain character data,

optionally mixed with subelements. Additionally, an element may have a set of attribute

specifications. To better describe the structure and content of XML data, several XML schema

languages have been proposed: DTD, XML Schema [Fallside 2001], XDR [Frankston et al.

1998], SOX [Davidson et al. 1999], Schematron [Jellife et al. 2000] and DSD [Klarlund et al.

2000]. Using an XML schema it is possible to specify several constraints on an XML document,

for example whether the elements and attributes are required or optional and which element

and attribute types are allowed.

This chapter presents X-Entity [Lóscio et al. 2003], a conceptual data model for

XML schemas. The X-Entity model is not a new formalism for conceptual modeling,

rather it is an extension of the Entity Relationship model [Chen 1976], i.e., it uses some

basic features of the ER model and extends it with to better represent XML schemas.

The main concept of the X-Entity model is the entity type, which represents the

structure of XML elements composed by other elements and attributes. In the X-Entity

model, relationship types represent element-subelement relationships and references

between elements. The X-Entity model also provides a graphical representation for

 39

XML schemas and it may be used either during the conceptual design of an XML

schema or to provide high-level representations for existing XML schemas.

We also present the process of converting an XML Schema to an X-Entity schema. This

process is based on a set of rules that considers element declarations and type definitions of an

XML Schema and generates the corresponding conceptual elements.

This chapter is organized as follows. Section 4.2 reviews the ER model and presents the X-

Entity model. Section 4.3 introduces basic concepts of the XML Schema language and presents

the notation proposed to describe XML Schemas. Section 4.4 describes the process of

converting an XML Schema to an X-Entity schema. Finally, section 4.5 discusses related works

and concluding remarks.

4.2 A conceptual model for representing XML schemas

In this section, initially, we discuss the ER model, which is the basis for the X-Entity model,

and next, we present the X-Entity model terminology.

4.2.1 Basic concepts of the ER model

The basic concepts of the ER model are entity types and relationship types [Chen 1976]. An

entity type describes a collection of entities that have the same properties, called attributes, and

it is identified by a name. In ER diagrams, entity types are represented as a rectangular box and

attributes are represented by ovals attached to their entity type. Entities of an entity type may

be associated with a key constraint. Attributes defined as key attributes have values that are

distinct for each individual entity in the collection. In ER diagrams, key attribute names are

underlined. Each attribute of an entity type is associated with a domain, which specifies the set

of values that may be assigned to that attribute for each individual entity. Attributes are

considered as single-valued when they have one value for a particular entity and they are

considered as multivalued when they can have a set of values for the same entity. In the latter

case, attributes are shown in double ovals. A relationship type Rj among the entity types E1,

E2,...,En defines a set of associations among entities from these types. In ER diagrams,

relationship types are displayed as diamond-shaped boxes, which connect by straight lines the

participating entity types. Relationship types usually have certain constraints that limit the

possible combinations of entities that participate in the corresponding relationship set. A pair of

integer number (min, max) may be associated with each participation of an entity type Ei in a

relationship Rj, where 0 ≤ min ≤ 1 and max ≥1, which means that each individual entity of

Ei must participate in at least min and at most max relationship instances of Rj.

 40

4.2.2 Basic concepts of the X-Entity model

In the following, we present the X-Entity model constructs used to create X-Entity schemas.

An X-Entity schema S is denoted by S = (E, R), where E is a set of entity types and R is a set of

relationship types.

� Entity type: an entity type Ei, denoted by Ei ({A1,…,An},{R1,…,Rm},{D1,…,Dk}),

is made up of an entity name Ei, a set of attributes A1,…,An, a set

of relationships R1,…,Rm, and a set of disjunction constraints

D1,…,Dk.

An entity type represents a set of elements with a complex

structure, composed by attributes and other elements (called

subelements). An instance of an entity type is a particular element in the source XML

document.

Each entity type has attributes {A1,…,An} that describe it. An

attribute Ak represents either an attribute or a subelement, which

is not composed by other elements or attributes. Each attribute Ak

is associated with a domain, denoted Dom(Ak), which specifies its value set.

Ak is also associated with a cardinality, denoted Card(Ak)=(min,max), which

specifies the minimum and the maximum number of instances of Ak that can be related

with an instance of Ei. As in the ER model, the X-Entity model also makes distinction

between key attributes and non-key attributes.

In X-Entity diagrams, different representations are used to connect attributes to its

corresponding entity: dotted lines are used to connect optional attributes

(Card(Ak)=(0,*)) and thick lines are used to connect required attributes

(Card(Ak)=(1,*)), where * denotes any number ≥ 1. When multiple occurrences

of the same attribute Ak are allowed in a given instance of Ei, then the attribute is

represented as a multivalued attribute. It is important to observe that, in the ER model

multivalued attributes are used to describe properties that may be associated to a set of

values. In the X-Entity model, a multivalued attribute is used to describe that a subelement

may occurs multiple times in a given element.

The professor entity type, presented in Figure 4.1, has three attributes: name, phone and

office. name and phone are required attributes while office is optional. Besides, the

phone attribute is multivalued, which means that an element professor may have

multiple occurrences of the subelement phone. The name attribute is a key of the

 41

professor entity type.

Figure 4.1 - Example of an entity type

� Relationship type: a relationship type specifies an association between entity types. In the X-

Entity model there are two kinds of relationship:

− Containment relationship: a containment relationship between two entity types E1 and

E2, specifies that each instance of E1 contains instances of E2. It is denoted by

Rj(E1,E2,(min,max)), where Rj is the relationship name and (min,max) defines

the minimum and the maximum number of instances of E2 that can be associated with an

instance of E1. In X-Entity diagrams, containment relationships are displayed as diamond-

shaped boxes labeled with contains. The straight lines connecting the relationship with

the participating entities are directed from the entity E1 to the entity E2.

Each entity type Ei may be associated with one or more containment relationships Rj

(Ei,Ek,(min,max)), which describes the element-subelement relationship between Ei

and other entity types {E1, ..., En}.

Figure 4.2 - Example of a containment relationship

In the X-Entity schema, presented in Figure 4.2, there are three entity types:

csDepartment, professor and course, and two containment relationships. Such

relationships specify that an instance of csDepartment has at least one professor

subelement and one course subelement, and may have unlimited occurrences of both

subelements.

− Reference relationship: a reference relationship, denoted by Rj(E1,E2), specifies that the

phone

office

name

professor : required attribute (0,*)

: optional attribute (1,*)

csDepartment

course

contains

name

number

name

phone

office

description

contains

professor

(1,N) (1,N)

 42

entity E1 references the entity E2. The cardinality of a reference relationship is irrelevant.

In X-Entity diagrams reference relationships are represented as a diamond-shaped box

labeled with refers. The straight lines connecting the relationship with the participating

entities are directed to the referenced entity.

The example presented in Figure 4.3 has a reference relationship between professor

and course, which means that an instance of professor may be associated with an

instance of course.

Figure 4.3 - Example of a reference relationship

� Disjunction constraint: a disjunction constraint Dk is denoted by Dk((d1,…,dn)), where

di is an attribute, a containment relationship, a set of attributes or a set of containment

relationships of a given entity type Ei. A disjunction Dk defines that an instance of Ei can be

associated to only one of the concepts specified in the disjunction constraint. In X-Entity,

diagrams for the disjunction constraints are displayed as arcs, which traverses the attributes

or relationships participating in the constraint definition. When di denotes a set of attributes

or a set of containment relationships then the attributes/relationships are attached to a single

line, which connects them to the entity.

Figure 4.4 - Example of an entity type with a disjunction constraint

The entity type, presented in Figure 4.4, has a disjunction constraint between the attributes

name and the group composed by the attributes firstName and lastName, which means

that a professor instance have either the attribute name or the attributes firstName and

lastName.

The csDepartment entity type, presented in Figure 4.5, has a disjunction constraint

between the course_name attribute and the containment relationship between

csDepartment and course, which means that a csDepartment instance have either a

course_name attribute or a course subelement.

 phone

office

name

professor course

number

name

description

refers

name

firstName

lastName
office

professor
phone

 43

Figure 4.5 – Example of an entity type with a disjunction constraint

 between an attribute and a relationship

Since XML may be used to represent both structured and semi-structured data, XML schemas

are more flexible than conventional database schemas. Therefore, instances of the same entity

type may have different structures. To represent this, in an X-Entity schema, both attributes and

containment relationships are associated with participation constraints, which represent the

occurrence constraints of elements and attributes in an XML document. Besides, disjunction

constraints specify restrictions on the participation of two or more subelements in a given

element.

4.2.3 XML Schema notation

 In this section, we present the notation proposed to describe XML Schemas. Initially, we

review some basic concepts of the XML Schema language. Consider as an example the

Computer Science Department schema presented in Figure 4.6.

� Datatypes

XML Schema offers two kinds of datatypes: complex types which allow elements in their

content and may carry attributes, and simple types which cannot have elements and cannot

carry attributes. To define new complex types we use the complexType element and to define

new simple types we use the simpleType element. The complexType element must be used

when we want to define child elements and/or attributes of an element and the simpleType

element must be used when we want to create a new type that is a refinement of a built-in type

(string, date, etc). For example, csDepartmentTy is defined as a complex type because it

is composed by other elements (courses and professors).

<?xml version="1.0" encoding="utf-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="csDepartment" type="csDepartmentTy"/>

 <xsd:complexType name="csDepartmentTy">

 <xsd:sequence>

name phone

csDepartment course

number

name

description

contains

course_name

 44

 <xsd:element name="courses" type="coursesTy"/>

 <xsd:element name="professors" type="professorsTy"/>

 </xsd:sequence>

 </xsd:complexType>
 <xsd:complexType name="coursesTy">

 <xsd:sequence>

 <xsd:element name="course" type= "courseTy" maxOccurs="unbounded">

 <xsd:key name= "courseNumKey">
 <xsd:selector xpath = "courses/course"/>

 <xsd:field xpath = "number"/>

 </xsd:key>

 </xsd:element>

 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="courseTy">

 <xsd:sequence>

 <xsd:element name="name" type=" xsd:string"/>
 <xsd:element name="number" type=" xsd:string"/>

 <xsd:element name="description" type=" xsd:string" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>
<xsd:complexType name="professorsTy">

 <xsd:sequence>

 <xsd:element name="professor" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name="identification" type="identificationTy"/>

 <xsd:element name="courseNumber" type="string" maxOccurs="unbounded">

 <xsd:keyref name="profCourse" refer="courseNumKey">
 <xsd:selector xpath="professors/professor"/>

 <xsd:field xpath="courseNumber"/>

 </xsd:keyref>

 </xsd:element>
 </xsd:sequence>

 <xsd:attribute name="level" type=" xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:sequence>

 </xsd:complexType>
<xsd:complexType name="identificationTy">

 <xsd:sequence>

 <xsd:choice>

 <xsd:group ref="identity">
 <xsd:element name="name" type=" xsd:string"/>

 </xsd:choice>

 <xsd:element name="phone" type=" xsd:string"/>

 <xsd:element name="office" type=" xsd:string" minOccurs="0"/>
 </xsd:sequence>

 </xsd:complexType>

 <xsd:group name= "identity"/>

 <xsd:sequence>
 <xsd:element name="firstName" type=" xsd:string"/>

 <xsd:element name="lastName" type=" xsd:string"/>

 </xsd:sequence> </xsd:group>

</xsd:schema>

Figure 4.6 - Computer Science Department schema

� Definitions vs. Declarations

 45

In XML Schema, there is also a distinction between definitions, which create new types, and

declarations, which enable elements and attributes with specific names and types (both simple

and complex) to appear in XML document instances. Typically, a complex type definition

contains a set of element declarations and attribute declarations. Elements and attributes are

declared using the element element and the attribute element respectively. For example,

courseTy is defined as a complex type, and within the definition of courseTy there are three

element declarations (name, number and description). Consequently, any element

appearing in an instance document whose type is declared to be courseTy must consist of

three elements, which must be called name, number and description as specified by the

values of the declarations’ name attribute, and the elements must contain a string as specified

by the values of the declarations’ type attribute.

� Basic forms of declaring elements/ attributes

In XML Schema there are basic forms of declaring elements/ attributes: i) an

element/attribute has a type definition inlined in its declaration or ii) an element/ attribute

references a type in its declaration. In other words, an element declaration can have a type

attribute, or a complexType/simpleType child element, but it cannot have both a type

attribute and a complexType/simpleType child element. In the same way, an attribute

declaration can have a type attribute or a simpleType child element, but it cannot have both

a type attribute and a simpleType child element. To illustrate this, consider the declaration

of the element named professor, which has a complex type definition inlined in its

declaration. In contrast, all other element declarations use the attribute type to identify the

type, regardless of whether the type is simple or complex. It is important to note that all

attribute declarations reference simple types, because, unlike element declarations, attributes

cannot contain other elements or other attributes.

� Global Elements and Attributes

Global elements and global attributes are created by declarations that appear as direct children

of the schema element. Once declared, a global element or a global attribute can be referenced

in one or more declarations using the ref attribute. A declaration that references a global

element enables the referenced element to appear in the instance document in the context of

the referencing declaration. The declaration of a global element also enables the element to

appear at the top-level of an instance document. In our example, there is just one global

element (csDepartment), which will be the root element of the instance documents of the

Computer Science Department schema.

 46

� Indicators of occurrences

In XML Schema, it is also possible to define the minimum and the maximum number of

times an element may appear in a document. This is done using the minOccurs attribute and

the maxOccurs attribute respectively. The value of the maxOccurs attribute may be a positive

integer or the term unbounded to indicate that there is no maximum number of

occurrences. The default value for both the minOccurs and the maxOccurs attributes is “1”.

If both attributes are omitted, the element must appear exactly once. For example, the

description element is optional within courseTy because the value of the minOccurs

attribute in its declaration is “0”. Besides this, it may not occur more than once because the

attribute maxOccurs was omitted. Unlike elements, attributes may appear once or not at all,

but no other number of times. Attributes can be declared with an use attribute to indicate

whether the attribute is required, optional, or even prohibited. For example, the

level attribute is required.

� Content Models

In XML Schema, the content model of a complex type definition is composed by groups of

elements. To define groups of elements, XML Schema supports the definition of compositors.

In fact, compositors define group of particles, which can also be groups of elements or other

compositors. For example, the sequence compositor defines ordered groups of elements. The

choice compositor describes a choice between several possible elements or groups of

elements. Another option for constraining elements in a group is to define a all compositor

which allows all the elements in the group to appear once or not at all, and they may appear in

any order. XML Schema also enables groups of elements and attributes to be defined and

named, so that they can be used to build up the content models of complex types. To define a

group of elements it is used the element group and to define a group of attributes it is used

the element attributeGroup. It is important to note that it is not possible to inline the group

definitions. Instead, you must define a reference to a group using the ref attribute.

In our example, the IdentificationTy has a sequence group, which has four children: a

choice group and three element declarations. The choice group element has two children: one

child is an inner group element that references the named group identity (consisting of the

element sequence firstName and lastName) and the second child is a name element

declaration. Therefore, in an instance document, the identification element must contain

either a firstName element followed by a lastName element or a single name element. The

choice group is followed by the phone, office and email element declarations. The

 47

consequence of these various groups is that: i) the name element must be followed by a phone,

office and email elements in that order or ii) the elements firstName and lastName (in

that order) must be followed by a phone, office and email elements in that order. It is

important to note that named and unnamed groups that appear in content models (represented

by group and choice, sequence, all respectively) may carry minOccurs and maxOccurs

attributes.

� Key and keyref definitions

XML Schema enables us to indicate that any attribute or element value must be unique

within a certain scope and cannot be set to nil. This is done using a key definition, which

selects a set of elements to be the scope of the key and specifies the attributes or elements that

have to be unique and cannot be set to nil. To define a key constraint it is used the key

element, which may have the following subelements: selector and field. The first specifies

the scope where the key definition must be valid and the second is used to specify the attributes

or elements that compose the key. The name, which is associated to a key definition, makes the

key referenceable from elsewhere. To reference a key it is used a keyref definition. In our

example, there is only one key definition named courseNumKey, which means that the value

of the element number must be unique, i.e., every course element must have a different

value for the number element. To ensure that the professor elements are associated with

valid course numbers, then the courseNumber of those elements must reference the

courseNumKey key. The declaration of courseNumber as a keyref does not mean

that its value must be unique, but it does mean that there must exist an element course with

the same value for the element number.

In the following, we present the notation to describe XML Schemas. Basically, an XML

Schema is a set of element declarations, complex type and named group definitions. We use the

notations: “|” for choice, “?” for zero or one occurrence, and “*” for one or more occurrences.

� XML Schema: an XML Schema S is denoted by S = ((Complex Type Definition |

Element Declaration| Group Definition | Attribute Group)*).

� Complex type definition: a complex type definition CT is a pair with CT = (name,

content), where name defines the name of the complex type and content =

((Element Group Reference | Compositor)?,(Attribute Declaration |

Attribute Group Reference)*).

� Element Group definition: an element group definition GE is a three tuple with GE =

(name,(minOccurs, maxOccurs), content), where name defines the name of the

 48

group, (minOccurs,maxOccurs) specify how many times the group can occur in

document instances and content is a compositor.

� Compositor: a compositor T is a three tuple with T = (constraint,(minOccurs,

maxOccurs),content), where constraint1 indicates the constraint applied to the

particles of the compositor, (minOccurs, maxOccurs) 2 specify how many times the

compositor can occur in document instances and content3 =((Element Declaration

| Element Group Reference | Compositor)*).

� Attribute group definition: an attribute group definition GA is a pair with GA = (name,

content), where name defines the name of the group, content = ((Attribute

Declaration | Attribute Group Reference)*).

� Element Group reference: an element group reference GEr is specified by the name of the

element group referenced, i.e., GEr = (name), where name defines the name of the

element group referenced.

� Attribute Group reference: an attribute group reference GAr is specified by the name of the

attribute group referenced, i.e., GAr = (name), where name defines the name of the

attribute group referenced.

� Element declaration: an element declaration LD is a three tuple with LD = (name,

type,(minOccurs, maxOccurs)), where name defines the name of the element, type

indicates the type of the element (it can be the name of a complex type or a complex type

definition) and (minOccurs,maxOccurs) specify how many times the element can occur

in document instances.

� Attribute declaration: an attribute declaration AD is a three tuple with AD = (name,

type, use), where name defines the name of the attribute, type indicates the type of the

attribute (it can be the name of a simple type, a simple type definition or the name of a base

type) and the attribute use specifies if an attribute is optional or required.

� Simple type definition: a simple type definition ST is a pair with ST = (name, ((type,

facet*))), where name defines the name of the simple type, type specifies the name of

1 The possible values of the constraint property are: sequence, choice and all. A compositor with a choice
constraint defines a group of mutually exclusive elements. A compositor with a sequence constraint
defines an ordered group of elements. A compositor with an all constraint describes an unordered group
of elements.
2 The number of occurrences cannot be defined when a compositor is used within a group.
3 The content of a compositor with an all constraint can be composed only by element declarations.

 49

the base type from which the simple type is derived and facet is an element that constraints

the range of possible values.

� Key definition: a key definition KD is a three tuple with KD = (name, selector,

field*), where name defines the name of the key, selector is the name of the element

that defines the scope of the key and field is the name of an element or attribute which is

restricted by the key definition.

� Keyref definition: a keyref definition FD is a four tuple with FD = (name, key,

selector, field*), where the attribute name defines the name of the keyref, key is

the name of referenced key, selector is the name of the element that defines the scope of

the keyref and field is the name of an element or attribute which is restricted by the keyref

definition.

We use the “.” notation to denote values of properties of the XML Schema components. For

example, we use the expression LD.name to obtain the value of the attribute name of an

element declaration LD.

4.3 Generating conceptual schemas from XML Schemas

In this section, we describe how to convert an XML Schema to an X-Entity schema. The

resulting X-Entity schema must hide irrelevant structures represented in the XML Schema while

describe semantically relevant structures and the relationships among them. Considering the

data integration context, understanding the semantic meaning of the represented data is a

crucial task.

The conversion process is based on a set of rules for generating conceptual elements (entity

types and relationship types) from element/attribute declarations and complex type definitions.

The two main tasks of the conversion process are: i) Pre-processing and ii) Conversion. In the

first, the XML Schema is redefined in order to eliminate some technical and useless

characteristics that make it difficult the conversion process. In the second, the pre-processed

schema is converted to its corresponding conceptual schema. In this section, consider as

example the Computer Science Department schema presented in Figure 4.6.

4.3.1 Task 1: Pre-processing

 50

During this task, an XML Schema is modified in order to eliminate group references,

anonymous type definitions and irrelevant element declarations. These tasks are executed to

facilitate the next task of conversion of an XML Schema to its corresponding X-Entity schema.

� Substitution of references

 XML Schema enables groups of elements/attributes to be defined and named, so that the

elements/attributes can be used to build up the content models of complex types. The

substitution of both named element groups and attribute groups references for their

corresponding definition is needed in order to obtain whole complex type definitions. Besides

group references, global element references must also be replaced by their corresponding

element declarations. Consider, for example, the identificationTy complex type

presented in Figure 4.7(a), which references a group named identity. To obtain a whole

description of identificationTy the group reference must be replaced by the content of

the identity group (Figure 4.7(b)).

…
<xsd:complexType name="identificationTy">
 <xsd:sequence>
 <xsd:choice>
 <xsd:group ref= "identity">
 <xsd:element name="name" type=" xsd:string"/>
 </xsd:choice>
 …
 </xsd:sequence>
 </xsd:complexType>
 <xsd:group name= "identity">
 <xsd:sequence>
 <xsd:element name="firstName" type=" xsd:string"/>
 <xsd:element name="lastName" type=" xsd:string"/>
 </xsd:sequence>
 </xsd:group> …

Figure 4.7 (a) - Identity group definition

…
<xsd:complexType name="identificationTy">
 <xsd:sequence>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 </xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 </xsd:choice>
 …
 </xsd:sequence>
</xsd:complexType>
…

Figure 4.7 (b) – Schema obtained after the substitution of the identity group reference

� Elimination of anonymous type definitions

 51

Schemas can be constructed by defining either sets of named types and then declaring

elements that reference these types or inlining type definitions in element declarations. In the

latter case, anonymous type are originated. In order to facilitate the next conversion task, all

anonymous type must be eliminated. Consider, for example, the professorsTy complex type

presented in Figure 4.8(a), which has a professor element declaration. The type of a

professor element is defined by a complex type whose definition is inlined in its declaration.

To eliminate this anonymous type definition a type attribute with value professorTy must

be inserted in the professor element declaration and a new complex type named

professorTy must be created (Figure 4.8(b)).

…<xsd:complexType name="professorsTy">
 <xsd:sequence>
 <xsd:element name="professor" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="identification" type="identificationTy"/>
 <xsd:element name="courseNumber" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="level" type="xsd:string" use="required" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>…

Figure 4.8(a) – Example of an anonymous type definition

…<xsd:complexType name="professorsTy">
 <xsd:sequence>
 <xsd:element name="professor" type="professorTy"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="professorTy">
 <xsd:sequence>
 <xsd:element name="identification" type="identificationTy"/>
 <xsd:element name="courseNumber" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="level" type="xsd:string" use="required" />
</complexType>…

Figure 4.8 (b) – Schema obtained after the creation of the complex type professorTy

� Elimination of irrelevant element declarations

 Elements just used to compose the structure content of another element must be removed.

These elements are semantically irrelevant and they do not need a representation in the

conceptual schema. Generally, elements whose type has just one element declaration are

semantically irrelevant.

 52

Consider, for example, the courses element presented in Figure 4.9(a), which only

encapsulates a list of course elements. Therefore, the courses element declaration must be

removed and replaced by the content model of the complex type coursesTy. Figure 4.9(b)

presents the same complex type definition after the replacement of the courses element

declaration by the definition of the coursesTy complex type.

…
<xsd:complexType name="csDepartmentTy">
 <xsd:sequence>
 <xsd:element name="courses" type="coursesTy"/>
 …
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="coursesTy">
 <xsd:sequence>
 <xsd:element name="course" type="courseTy"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 …
</xsd:complexType>
<xsd:complexType name="courseTy">
 <xsd:sequence>
 …
 </xsd:sequence>
</xsd:complexType>
…

Figure 4.9 (a) – Example of irrelevant element declaration

…
<xsd:complexType name="csDepartmentTy">
 <xsd:sequence>
 <xsd:sequence>
 <xsd:element name="course" type="courseTy"
 minOccurs="0" maxOccurs="unbounded"/>
 …
 <xsd:sequence>
</xsd:complexType>
<xsd:complexType name="courseTy">
 <xsd:sequence>
 <xsd:element name="name" type="string"/>
 <xsd:element name="number" type="string"/>
 <xsd:element name="description" type="string"
 minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>
…

Figure 4.9 (b) – Schema obtained after the elimination of the complex type coursesTy

 In our example, other irrelevant element declaration that must be eliminated is the

identification element declaration. Since this element stores information about the

element professor only, then it is not semantically relevant. Thus, its declaration must be

removed and its content (specified in the definition of the complex type identificationTy)

must be inserted in the content of the professor element. Figure 4.10(a) presents the

definition of the complex type professorTy before the removal of the declaration of the

element identification. Figure 4.10(b) presents the same complex type definition after the

 53

replacement of the element declaration identification by the definition of the complex

type identificationTy.

� Renaming of elements

 Another important task to be executed during the pre-processing module is the renaming of

conflicting element declarations. When two elements have the same name but different complex

types, then one of them must be renamed. This is done to avoid conflicts during the creation of

entity type definitions. Consider the XML Schema presented in Figure 4.11 (a), which has two

…
<xsd:complexType name="professorTy">
 <xsd:sequence>
 <xsd:element name="identification" type="identificationTy"/>
 <xsd:element name="courseNumber" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 …
</xsd:complexType>
<xsd:complexType name="identificationTy">
 <xsd:sequence>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 </xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 </xsd:choice>
 <xsd:element name="phone" type="xsd:string"/>
 <xsd:element name="office" type="officeTy"/>
 </sequence>
</complexType>
…

Figure 4.10(a) - Second example of irrelevant element declaration

…
<xsd:complexType name="professorTy">
 <xsd:sequence>
 <xsd:sequence>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="firstName"
 type="xsd:string"/>
 <xsd:element name="lastName"
 type="xsd:string"/>
 </xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 </xsd:choice>
 <xsd:element name="phone" type="xsd:string"/>
 <xsd:element name="office" type="officeTy"/>
 </xsd:sequence>
 <xsd:element name="courseNumber" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 …
</xsd:complexType>
…

Figure 4.10(b) - Schema obtained after the elimination of the element identification

 54

elements section with different complex types (sectionBookTy and

sectionMagazineTy). Thus, one of the section elements must be chosen to be renamed.

Figure 4.11 (b) shows the exported schema obtained after the renaming of the section

element in the content model of the complex type bookTy.

<xsd:schema>
 <xsd:element name="library" type="libraryTy">
 <xsd:complexType name="libraryTy">
 <xsd:sequence>
 <xsd:element name="book" type="bookTy"/>
 <xsd :element name="magazine" type="magazineTy"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="bookTy">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="section" type="bookSectionTy" maxOccurs="unbounded"/>
 </xsd:sequence>
<xsd:complexType name="magazineTy">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="section" type="magazineSectionTy" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>…

Figure 4.11 (a) – Example of two elements with the same name and different types

<xsd:schema>
<xsd:element name="library" type="libraryTy">
<xsd:complexType name="libraryTy">
 <xsd:sequence>
 <xsd:element name="book" type="bookTy"/>
 <xsd:element name="magazine"
 type="magazineTy"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="bookTy">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="chapter" type="bookSectionTy" maxOccurs="unbounded"/>
 </xsd:sequence>
<xsd:complexType name="magazineTy">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="section" type="magazineSectionTy" maxOccurs="unbounded"/>
 </xsd:sequence>
<xsd:/complexType>…

Figure 4.11 (b) - Schema obtained after the renaming of one of the elements section

All the information about the pre-processing of XML Schemas (ex: removal and creation of

element declarations and complex type definitions) must be documented. Figure 4.12 presents

the Computer Science Research schema after the pre-processing step.

<?xml version="1.0" encoding="utf-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="csDepartment" type="csDepartmentTy"/>

 55

 <xsd:complexType name="csDepartmentTy">
 <xsd:sequence>
 <xsd:element name="course" type= "courseTy" minOccurs="0" maxOccurs="unbounded">
 <xsd:key name="courseNumKey">
 <xsd:selector xpath="course"/>
 <xsd:field xpath="number"/>
 </xsd:key>
 </xsd:element>
 <xsd:element name="professor" type= "professorTy" minOccurs="0"
 maxOccurs="unbounded">
 <xsd:keyref name="profCourse" refer="courseNumKey">
 <xsd:selector xpath="professor"/>
 <xsd:field xpath="courseNumber"/>
 </xsd:keyref>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="courseTy">
 <xsd:sequence>
 <xsd:element name="name" type=" xsd:string"/>
 <xsd:element name="number" type=" xsd:string"/>
 <xsd:element name="description" type=" xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="professorTy">
 <xsd:sequence>
 <xsd:sequence>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="firstName" type=" xsd:string"/>
 <xsd:element name="lastName" type=" xsd:string"/>
 </xsd:sequence>
 <xsd:element name="name" type=" xsd:string"/>
 </xsd:choice>
 <xsd:element name="phone" type=" xsd:string"/>
 <xsd:element name="office" type=" xsd:officeTystring" minOccurs="0"/>
 <xsd:element name="email" type="string"/>
 <xsd:element name="courseNumber" type=" xsd:string" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="level" type=" xsd:string" use="required" />
 </xsd:complexType>
</xsd:schema>

Figure 4.12 – Pre-processed Computer Science Department schema

4.3.2 Task 2: Conversion

Assuming that the XML Schema has been already pre-processed, it is possible to map it into

an X-Entity schema. This is done using a set of rules that were defined to generate X-Entity

concepts (introduced in Section 4.2.2) from XML Schema concepts. In the following, consider

CT as a complex type definition, LD and LD’ as element declarations and:

Ei.A: the set of attributes of the entity Ei.

Ei.Rj: the set of relationships of the entity Ei.

Ei.D: the set of disjunction constraints of the entity Ei.

� Rule 1 - Conversion of elements having a complex type

 56

 An element declaration LD, where LD.type is the name of a complex type, originates an

entity type Ei, whose name is LD.name, if there is not an entity type Ei’ whose name is

LD.name.

 Rule 1 specifies that all element declarations whose type is a complex type, i.e., an element

that is composed by other elements and attributes, must be mapped to an entity type. Initially,

when the entity type Ei is created, its sets of attributes, relationships and disjunction constraints

are empty (Ei (∅,∅,∅)). Later, when the other conversion rules are applied, attributes,

relationships and constraints will be added in the definition of the entity type Ei. In the

Computer Science Department schema there are three elements with complex types:

CsDepartment, Course and Professor. These element declarations originate the

following entity type definitions:

- csDepartment(∅,∅,∅), course(∅,∅,∅) and professor(∅,∅,∅)

� Rule 2 - Conversion of elements having a base type

 An element declaration LD ∈ CT.content, where LD.type is a base type, originates an

attribute Ak, whose name is LD.name, in the set of attributes of the entity Ei (Ei.A = Ei.A ∪

{Ak}), such that Ei = LD’.name, LD’.type = CT.name. The domain of Ak is defined based on

the value of the type attribute of LD (Dom(Ak) = LD.type) and card(Ak) is determined

based on the values of the minOccurs and maxOccurs attributes of the element declaration

LD, as described below:

If LD.maxOccurs ≥ 1 then card(Ak) = (LD.minOccurs,LD.maxOccurs)

If LD.maxOccurs = "unbounded" then card(Ak)=(LD.minOccurs,n)

Rule 2 specifies that all element declarations, which have a base type and participate in the

content model of a complex type CT, must be mapped to an attribute in all entity types

originated from element declarations whose type is CT. A complex type definition CT describes

the attributes and relationships associated with all entity types originated from element

declarations whose type is CT.

 After the application of the Rule 2 in the Computer Science Department schema, the

entity types described below are obtained. For example, the element declaration LD

=(description,string,(0,1)) originates the attribute description. As LD participates

in the content model of courseTy, then the description attribute belongs to the course

entity type.

- course({name,number,description},∅,∅)

 57

- professor({firstName,lastName,name,phone,

 office,courseNumber},∅,∅)

� Rule 3 - Conversion of attributes

 An attribute declaration AD ∈ CT.content originates an attribute Ak, whose name is

AD.name, in the set of attributes of the entity Ei (Ei.A = Ei.A ∪ {Ak}), such that Ei =

LD’.name and LD’.type = CT.name. The domain of Ak is defined based on the value of the

type attribute of AD (Dom(Ak) = AD.type) and card(Ak) is determined based on the value

of the attribute use of the attribute declaration AD as follows: i) if AD.use = "optional"

then card(Ak)=(0,1) and ii) if AD.use = "required" then card(Ak)=(1,1).

 Rule 3 specifies that all attribute declarations must be defined as attributes. Similar to Rule 2,

an attribute originated from an attribute declaration AD ∈ CT.content must be inserted in the

set of attributes of all entities originated from elements with type CT. In the Computer

Science Department schema there is only one attribute declaration AD=(level,

string, required), which participates in the content model of the complex type

professorTy (AD ∈ professorTy.content). AD originates the level attribute, which

belongs to the set of attributes of the professor entity (the only entity originated from an

element whose type is professorTy).

- professor({firstName,lastName,name,phone,

 office,courseNumber,level},∅,∅)

� Rule 4 - Creation of containment relationships

An element declaration LD ∈ CT.content, where LD.type is a complex type, originates a

containment relationship Rj(Ei’,Ei,(min,max)), such that Ei is an entity type whose name

is LD.name and Ei’ is an entity type whose name is LD’.name and LD’.type =

CT.name. The value of the cardinality of the relationship is defined based on the values of the

minOccurs and maxOccurs attributes of the element declaration LD, as described below:

If LD.maxOccurs ≥ 1 then Rj(Ei’,Ei,(LD.minOccurs,LD.maxOccurs))

If LD.maxOccurs = "unbounded" then Rj(Ei’,Ei,(LD.minOccurs,n)) where n

denotes an unlimited number of occurrences of Ei.

 A containment relationship is defined between an entity type Ei originated from an element

declaration LD ∈ CT.content and all entity types {E1, …,En} originated from element

declarations whose type is CT.

 58

 In the Computer Science Department schema there are two containment

relationships:

- csDepartment_course(csDepartment,course,(0,N))

- csDepartment_professor (csDepartment,professor,(0,N))

 The csDepartment_course relationship, for example, specifies that an instance of

csDepartment contains one or more instances of course. The cardinality of the relationship

is determined by the values of the attributes minOccurs and maxOccurs of the course

entity type.

 When a containment relationship Ri is defined between the entity types E1 and E2, then the

set of relationships associated with the entity E1 must be updated in order to include the

relationship Rj (E1.R = E1.R ∪ {Rj}). In our example, the following definition for the

csDepartment entity is obtained:

- csDepartment=(∅,{csDepartment_course,csDepartment_professor},∅

)

 Consider, for example, the XML Schema presented in Figure 4.13(a). The complex type

bookTy has an element author with type authorTy. This results in a containment

relationship book_author(book,author,(0,N)). In the same way, the complex type

authorTy has an element book with type bookTy. This results in another containment

relationship author_book(author,book,(0,N)). In this case, as presented in Figure 4.13

(b), only one containment relationship is represented in the X-Entity diagram. In a similar way,

it is possible to represent recursive relationships.

<xsd:schema>
 <xsd:element name="library" type="libraryTy">
 <xsd:complexType name="libraryTy">
 <xsd:element name="book" type="bookTy"
 minOccurs="1" maxOccurs="unbounded">
 </xsd:complexType>
 <xsd:complexType name="bookTy">
 <xsd:element name="title" type="xsd:string">
 <xsd:element name="author" type="authorTy"
 minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType name="authorTy">
 <xsd:element name="name" type="xsd:string">
 <xsd:element name="book” type="bookTy"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:complexType>…

Figure 4.13(a) - Library XML Schema

 59

Figure 4.13(b) - Conceptual schema for the Library XML Schema

� Rule 5 - Conversion of choice groups

 A compositor definition T ∈ CT.content, where T.constraint = "choice" and

T.content = (t1,…,tn), originates a disjunction constraint Dk(d1,…,dn) among attributes

and containment relationships of the entity type Ei, whose name is LD.name and LD.type =

CT.name. Each ti ∈ T.content originates a component di of Dk. If ti is an element

declaration, for example, then the corresponding di is an attribute or a containment

relationship. If ti is a compositor, then the corresponding di is a group of attributes and

containment relationships. Additionally, when a disjunction constraint Di is defined for a given

entity Ei, then the set of disjunction constraints associated with the entity Ei must be updated in

order to include the constraint Di (Ei.D = Ei.D ∪ {DK}).

 In the Computer Science Department schema there is only one choice group, which

is defined in the content model of the professorTy complex type. To represent this choice

group a disjunction constraint Dk({firstName,lastName},name))is defined between the

name attribute and the group composed by firstName and lastName attributes of the

professor entity type. Such constraint specifies that a given element professor contains

either a name attribute or both firstName and lastName attributes.

� Rule 6 - Conversion of key constraints

 A key definition KD =(name,selector,field*)4 originates one or more key attributes,

which may belong either to the entity type Ei, whose name is KD.selector, or to an entity

type associated with Ei through a containment relationship (or a sequence of containment

relationships). Each KD.field specifies a key attribute. Since in the XML Schema language

4 selector is the name of the element that defines the scope of the key and field is the name of an element or attribute which is
restricted by the key definition.

library

book

contains

contains

author

(0, N)

(0, N)

(1, N)

 60

more than one key definition may be associated with a single entity type, a key attribute has a

property, called key, whose value is KD.name.

 Rule 6 defines how to map a key definition to its corresponding representation in the

conceptual schema. In the Computer Science Department schema, there is only one key

constraint which originates the definition of number as a key attribute of the course entity

type, which means that the value of the number attribute must be unique and cannot be set to

nil in the set of course elements.

� Rule 7 - Conversion of keyref constraints

 A keyref definition FD =(name,key,selector,field*)5, originates a reference

relationship Rj between the entity type Ei whose name is FD.selector and the entity type

Ei’ whose name is KD.selector, where KD.name = FD.key. To correctly represent a keyref

definition extra information must be added to Rj. Besides the two participating entity types,

information about the referencing and referenced attributes must be stored in Rj, i.e,

Rj(Ei,Ei’,keyrefAtt,keyAtt), where keyrefAtt is the list of referencing attributes and

keyAtt is the list of referenced attributes. keyAtt is defined by the key definition KD, where

KD.name = FD.key and keyrefAtt is defined by the values of FD.field. Additionally,

when a reference relationship Ri is defined between the entity types E1 and E2, then the set of

relationships associated with the entity E1 must be updated in order to include the relationship

Ri (E1.R = E1.R ∪ {Ri}).

 Rule 7 defines how to map keyref constraints to the conceptual schema. This is done

creating a new reference relationship between the entity type that defines the scope of the

keyref definition and the entity type that specifies the scope of the associated key constraint. In

our example, there is a keyref definition, called profCourse, which specifies that the

courseNumber attribute of the professor entity references the courseNumKey key. This

constraint originates the following reference relationship: professor_ref_course

(professor,course,(courseNumber),(number)).

4.3.3 Creating an X-Entity Schema

 In the following, we present the conversion algorithm, which receives as input a pre-

processed XML Schema and produces as output an X-Entity schema. The first task of the

algorithm is the creation of the entity type definitions. All global element declarations and

5key is the name of referenced key, selector is the name of the element that defines the scope of the keyref and field is the
name of an element or attribute which is restricted by the keyref definition.

 61

complex type definitions are analyzed in order to map elements composed by other elements or

attributes into entity types. The next task, consists of defining the attributes and relationships

for the entity types identified earlier. To do this, each complex type definition is evaluated

again and elements with base types and attribute declarations are mapped to attributes.

Additionally, a new containment relationship is created whenever an element declaration with a

complex type is found. The final tasks are the mapping of choice groups to disjunction

constraints and the conversion of key and keyref definitions. Figure 4.14 presents the X-Entity

schema for the Computer Science Department XML Schema presented in Figure 4.12.

Conversion(pre-processed XML Schema)
/* Creation of the entities */
For each global element declaration
 Apply Rule 1
For each complex type definition CT
 For each element declaration LD ∈ CT.content
 If LD.type is a complex type
 Then apply Rule 1
/* Creation of attributes, relationships and disjunction constraints*/
For each complex type definition CT
 For each element declaration LD ∈ CT.content
 If LD.type is a base type
 Then apply Rule 2
 Else apply Rule 4
 For each attribute declaration AD ∈ CT.content
 Apply Rule 3
 If there is a choice compositor C ∈ CT.content
 Then apply Rule 5
/* Creation of key and keyref constraints */
For each key definition KD
 Apply Rule 6
For each keyref definition FD
 Apply Rule 7

Figure 4.14 Computer Science Department X-Entity schema

We also propose the use of an XML document to specify X-Entity schemas. Figure 4.14

shows the XML specification for the Computer Science Department X-Entity schema.

The XML specification has one XENTITY_SCHEMA element (the root element), which is

composed by ENTITY, CONTAINMENT_RELATIONSHIP and REFERENCE_RELATIONSHIP

firstName
lastName

refers

csDepartment

course

contains

name

number

name

phone

office

description

contains

professor

(0,N) (0,N)

 62

elements. An ENTITY element describes the attributes, relationships and disjunction constraints

associated with an entity type through the ATTRIBUTE, RELATIONSHIP_NAME and CHOICE

elements, respectively. A CONTAINMENT_ RELATIONSHIP element is composed by two

elements: ELEMENT_ENTITY and SUBELEMENT_ENTITY, which represent the entity types

participating in the relationship. A REFERENCE_RELATIONSHIP is also composed by two

elements representing the participating entity types: REFERENCING_ENTITY and

REFERENCED_ENTITY elements. Additionally, a REFERENCE_RELATIONSHIP has a KEY and

a KEYREF elements, which specify the attributes involved in the reference relationship.

<XENTITY_SCHEMA name = "csDepartment Description">
 <ENTITY name="csDepartment">
 <RELATIONSHIP_NAME name="csDepartment_professor"/>
 <RELATIONSHIP_NAME name="csDepartment_course"/>
 </ENTITY>
 <ENTITY name="professor">
 <CHOICE>
 <ATTRIBUTE name="name" type="string" cardMin ="1" cardMax="1"/>
 <GROUP>
 <ATTRIBUTE name="firstName" cardMin ="1" cardMax="1"/>
 <ATTRIBUTE name="lastName" cardMin ="1" cardMax="1"/>
 </GROUP>
 </CHOICE>
 <ATTRIBUTE name="phone" type="string" cardMin ="1" cardMax="n"/>
 <ATTRIBUTE name="office" type="string" cardMin ="0" cardMax="1"/>
 <ATTRIBUTE name="level" type="string" cardMin ="1" cardMax="1"/>
 <ATTRIBUTE name="courseNumber" type="string" cardMin ="1" cardMax="n"/>
 <RELATIONSHIP_NAME name="professor_ref_course"/>
 </ENTITY>
 <ENTITY name="course">
 <ATTRIBUTE name="name" type="string" cardMin ="1" cardMax="1"/>
 <ATTRIBUTE name="number"type="string" cardMin ="1" cardMax="1" key="key1"/>
 <ATTRIBUTE name="description" type="string" cardMin ="0" cardMax="1"/>
 <KEY name="key1"/>
 </ENTITY>
 <CONTAINMENT_RELATIONSHIP name="csDepartment_professor" cardMin ="1" cardMax="n">
 <ELEMENT_ENTITY name="csDepartment"/>
 <SUBELEMENT_ENTITY name="professor"/>
 </CONTAINMENT_RELATIONSHIP>
 <CONTAINMENT_RELATIONSHIP name="csDepartment_course" cardMin ="1" cardMax="n">
 <ELEMENT_ENTITY name="csDepartment"/>
 <SUBELEMENT_ENTITY name="course"/>
 </CONTAINMENT_RELATIONSHIP>
 <REFERENCE_RELATIONSHIP name="professor_ref_course">
 <REFERENCING_ENTITY name="professor"/>
 <REFERENCED_ENTITY name="course"/>
 <KEY name="key1">
 <ATTRIBUTE_NAME name="number"/>
 </KEY>
 <KEYREF name="keyref1">
 <ATTRIBUTE_NAME name="courseNumber"/>
 </KEYREF>
 </REFERENCE_RELATIONSHIP>
</XENTITY_SCHEMA>

Figure 4.15 – XML specification for Computer Science Department X-Entity schema

 63

4.4 Concluding remarks

 This chapter presented X-Entity, a conceptual data model for XML schemas. The X-Entity

model describes the hierarchical structure of XML schemas using a flat representation that

highlights entities and the relationships among them. Such representation provides a cleaner

description for XML schemas hiding implementation details and focusing on semantically

relevant concepts. We also presented the process of converting an XML Schema to an X-Entity

schema. The conversion process is based on a set of rules that consider element declarations and

type definitions of an XML Schema and generates the corresponding conceptual elements.

 The X-Entity model extends the ER model so that one can explicitly represent important

features of XML schemas, including: element and subelement relationships, occurrence

constraints of elements and attributes, choice groups and references between elements. Other

issues were not considered in our work, including: hierarchy of elements and attributes,

cardinality of group of elements, elements with mixed content and order of elements imposed

by a sequence compositor. However, our model can be easily extended with additional features

and new rules can be developed for the conversion process.

One important advantage of using the X-Entity model is that each entity can be seen and

manipulated as an individual concept even if it belongs to a nested structured. Instead of nested

entities, each entity has a set of relationships that represents its association with other entities.

This kind of representation facilitates mediation queries generation and maintenance.

The X-Entity model represents an XML Schema as a set of entity types and relationship

types. This representation helps the identification of real world concepts, which will be used

during user queries definition and therefore must be associated with a mediation query.

Moreover, the X-Entity model makes distinction between entity types and attributes. During,

mediation queries generation entity types and attributes are manipulated in different ways. In

an XML schema there is no clear distinction when an information must be represented as an

element or an attribute.

Some recent work have discussed the conceptual data modeling of XML schemas using the

ER model. In [Psaila 2000] is proposed the ERX conceptual model, an evolution of the classical

ER model which provides specific features suitable to model large collections of XML

documents. More precisely, ERX extends the ER model to allow the representation of style

sheets and a collection of documents conforming to a DTD. In [Passi et al. 2002] is proposed an

object-oriented data model, called XSDM (XML Schema Data Model), to represent XML

Schemas. XSDM was proposed as a model for XML Schema integration, i.e., during the first

 64

step of the schema integration XML Schemas are translated into XSDM notation. [Psaila 2000]

and [Passi et al. 2002] present conceptual models but they do not discuss XML schema

conversion rules, which makes hard using the proposed conceptual models.

The work presented in [Mani et al. 2001] proposes a new notation, called XGrammar, to

formalize the most important features from the proposed XML schema languages. Mani et. al.

also extends the ER model with additional features (order in a binary relationship and element-

subelement relationship) to support the XML model. [Mani et al. 2001] presents conversion

rules from XGrammar to ER model extensions, but to use that approach it will be necessary to

define an additional mapping from an XML schema to XGrammar. In [Mello et al. 2001] it is

described a semi-automatic process for converting a DTD to a conceptual schema in a canonical

conceptual model. A broadly discussion of the conversion from a DTD to its corresponding

conceptual schema is presented, but they do not make distinction between entity types and

attributes.

 65

Chapter 5

Generating Mediation Queries for
XML-based Mediators

5.1 Introduction

In this chapter we describe the process of generating mediation queries for XML-based

mediators. As mentioned earlier, the process of mediation queries generation is based on the

approach proposed in [Kedad et al. 1999], which provides a support to discover queries over a

set of heterogeneous sources in a GAV context. Such approach defines a solution space which

provides the set of potential queries that corresponds to a given relational view. As we consider

XML as our common data model we had to adapt this approach to the context of XML data.

In the GAV approach, a mediation query describes how to compute an element of the

mediation schema over the data sources. In our work, the mediation schema is represented by

an X-Entity schema, which consists of entities and relationships among them. Therefore, the

process of mediation queries generation consists in discovering a computing expression for each

entity in the mediation schema.

More formally, we can say that defining a mediation query for a mediation entity Em consists

in decomposing Em into n entities Ep1,…,Epn such that Em = Ep1θ1Ep2θ2...θn-1Epn, where θi is a

binary operator and each entity Epi is derived using an expression Exp(Ei) over a single source

entity Ei. Entities Epi are called relevant source entities to compute Em. The process of

discovering queries, which defines a mediation entity, can be summarized in the following.

− Selection of relevant source entities which potentially allow to compute a given mediation

entity;

 66

− Identification of possible operators to apply between different and relevant source entities;

and

− Generation of all possible mediation queries from the selected source entities and
operators.

The process of mediation queries generation is widely based on the existence of metadata

describing individual sources and the mediation schema, and on correspondence assertions

[Spaccapietra et al. 1994] specifying relationships between concepts of different schemas. We

propose different types of correspondence assertions to formally describe the relationships

among concepts of X-Entity schemas.

The approach adopted for mediation queries generation provides a formalism to represent

such queries, which is based on the concept of operation graphs [Kedad et al. 1999]. Relevant

source entities are the nodes of the operation graph while the edges are labeled with the

operators to be applied among the source entities. One of the problems faced at the beginning

of our work, concerning the evolution of mediation queries, was the absence of formalism to be

used in their representation. Using this approach, the problem of mediation queries evolution

becomes the problem of maintaining the operation graphs representing the mediation queries.

This chapter is organized as follows. Section 5.2 describes in more details the notation and

the metadata used. The following sections introduce each task of the process of mediation

queries generation: section 5.3 describes how to select the relevant source entities to compute a

given mediation entity, section 5.4 discusses the identification of operators to apply between

source entities and the generation of the computing expressions. Section 5.5 describes how to

compute mediation entities from mediation queries. Section 5.6 shows some examples of how

to compute user queries from mediation entities. Finally, section 5.7 summarizes the chapter.

5.2 Terminology

We use the following notation to denote schemas, entities and attributes.

− E i.A: denotes the set of attributes of the entity type Ei.

− E i.R: denotes the set of relationship types of the entity type Ei.

− S.E: denotes the set of entity types of the schema S.

− S.R: denotes the set of relationship types of the schema S.

We use correspondence assertions to represent correspondences between entities and

attributes of distinct sources. Correspondence Assertions, as defined in [Spaccapietra et al.

1994, Vidal et al. 2001], are special types of integrity constraints used to assert that the

 67

semantics of some components in a schema is somehow related to the semantics of some

components in another schema. In our approach, correspondence assertions are used just to

solve problems concerning semantic heterogeneity between X-Entity elements, i.e., they are

used to represent correspondences between X-Entity elements representing the same real world

concept and having the same semantics. The correspondence assertions are defined between

elements having the same structure, i.e., we identify correspondences just between entity types

and correspondences between attributes. We identify the following types of correspondence

assertions to formally describe the relationships between the concepts of X-Entity schemas:

� Entity correspondence assertions: specify the relationship between entity types of

distinct schemas.

Definition 5.1 (Entity correspondence assertion): Let E1 and E2 be entity types (a source

entity type or a mediation entity type). The correspondence assertion E1 ≅6 E2 specifies that

E1 and E2 are semantically equivalent, i.e, they describe the same real world concept and

they have the same semantics.

Consider, for example, the X-Entity schemas7 presented in Figure 5.1 and Figure 5.2. After

the matching of these two schemas the following entity assertions are obtained:

− movie1 ≅ movie2: specifies that the movie1 and movie2 entity types are

semantically equivalent.

− director1 ≅ director2: specifies that the director1 and director2

entity types are semantically equivalent.

Besides the intensional correspondences, it is important to define the relationship between

the extensions (set of instances) of semantically equivalent entities. An instance of an entity is

a particular element in an XML document source. The correspondences between the

extensions of semantically equivalent enitites are determined through correspondence

assertions specifying which of the usual set relationships holds: equivalence (≡), inclusion(⊂)

and intersection(∩).

Schema of data source S1 =
({ movie1({title1,duration1,genre1},movie1_actor1, movie1_director1}),
 actor1({name1, nationality1},{})
 director1({name1, nationality1},{})},
 {movie1_actor1(movie1,actor1,(1,N)),

movie1_director1(movie1,director1, (1,N))})

6 In [Rahm et al. 2001] the symbol “≅” is used to represent that a certain element of a schema S1
corresponds to a certain element of a schema S2.

7 To facilitate the understanding of the correspondence assertions we omit the root element from the X-
Entity schemas used in this section.

 68

Figure 5.1 – Movie schema S1

Schema of data source S2 =
({movie2({title2, genre2, actor2},{movie2_director2}),
 director2({name3, nationality3},{})},
 {movie2_director2(movie2,director2,(1,N))})

Figure 5.2 – Movie schema S2

The expression C(Ei) denotes the collection of XML elements {e1,…,en}which are

instances of a given entity type Ei (Ei represents the element declaration that defines the

type of each element ej). For example, C(movie1) denotes the collection of movie1

instances. When an element ej is composed by subelements {ej1,…,ejm}, then the

expression C(E’(ej)) is used to denote the set of elements ejk that are instances of the

entity type E’.Consider for example, the element e1 represented below.
e1 = <movie1>
 <title1> Gangs of New York </title1>
 <director1> Martin Scorsese </director1>
 <theater1>
 <name1> Art Iguatemi </name1>
 <time1> 17h30 </time1>
 <time1> 20h40 </time1>
 </theater1>
 <theater1>
 <name1> North Shopping </name1>
 <time1> 17h10 </time1>
 <time1> 20h30 </time1>
 </theater1>
 <theater1>
 <name1> Del Paseo </name1>
 <time1> 17h30 </time1>
 <time1> 20h30 </time1>
 </theater1>
 </movie1>

 movie2

title2 genre2

actor2 director2

nationality2name2

contains
(1,N)

title1 duration1

genre1
director1

nationality1

contains
(1,N)

name1

actor1

nationality1

contains
(1,N)

name1

movie1

 69

C(theater(e1)):{e11,e12,e13}, where:

e11 = <theater>
 <name> Art Iguatemi </name>
 <time> 17h30 </time>
 <time> 20h40 </time>
 </theater>
e12 = <theater>
 <name> North Shopping </name>
 <time> 17h10 </time>
 <time> 20h30 </time>
 </theater>
e13 = <theater>
 <name> Del Paseo </name>
 <time> 17h30 </time>
 <time> 20h30 </time>
 </theater>

Considering the X-Entity schemas presented in Figure 5.1 and Figure 5.2, the extensional

correspondence between the entities movie1 and movie2 is represented by the following

assertion movie1 ∩ movie2 ≠ ∅, which specifies that there is an intersection between the

collection of movie1 instances of data source S1 and the collection of movie2 instances of

data source S2. The extensional correspondence between the entities director1 and

director2 is represented by the following assertion director1 ∩ director2 ≠ ∅,

which specifies that there is an intersection between the collection of director1 instances

of data source S1 and the collection of director2 instances of data source S2.

For each pair of semantically equivalent entity types we specify the correspondences between

their subentities and attributes using subentity correspondence assertions and attribute

correspondence assertions. A subentity of an entity type Ei is an entity type Ei’ which is

associated with Ei through a containment relationship Rj(Ei,Ei’,(min,max)).

� Subentity correspondence assertions: specify the correspondence among subentities of

semantically equivalent entity types.

Definition 5.2 (Subentity correspondence assertion): Let R1(E1,E’,(min,max)) and

R2(E2,E”,(min,max)) be two containment relationships, such that E1 ≅ E2 and E’ ≅

E”.The correspondence assertion E1.R1.E’ ≅ E2.R2.E” specifies that the subentity E’ of

the entity type E1 is semantically equivalent to the subentity E” of the entity type E2.

The following subentity assertion was obtained as a result of the matching of the schemas S1

and S2 presented in Figures 5.1 and 5.2.

− movie1.movie1_director1.director1 ≅

movie2.movie2_director2.director2

 70

� Attribute correspondence assertions: specify the correspondence among common

attributes of semantically equivalent entities.

Definition 5.3 (Attribute correspondence assertion): Let A1 be an attribute8 of the entity type

E1 and A2 an attribute of the entity type E2, such that E1 ≅ E2. The correspondence assertion

E1.A1 ≅ E2.A2 specifies that the attributes A1 and A2 are semantically equivalent (correspond

to the same concept in the real world).

The following attribute assertions were obtained as a result of the matching of the schemas

S1 and S2 presented in Figures 5.1 and 5.2 respectively.

− movie1.title1 ≅ movie2.title2

− movie1.genre1 ≅ movie2.genre2

− director1.name1 ≅ director2.name2

− director1.nationality1 ≅ director2.nationality2

To compute a given mediation entity it may be necessary to access a few properties

(attributes and containment relationships) of the entity in one data source, and other

properties in another data source. Therefore, the mediation system has to know how to find

in one data source the element corresponding to a given element in another data source. To

specify this kind of correspondence we use a special type of attribute assertion, which is

defined below.

Definition 5.4 (Mapping attribute correspondence assertion): Let (A11,…,A1n) be

monovalued attributes of the entity type E1 and (A21,…,A2n)monovalued attributes of the

entity type E2, such that E1 ≅ E2 and ∀A1i ∈ (A11,…,A1n) ∧ ∀A2i ∈ (A21,…,A2n), 1 ≤

i ≤ n, A1i ≅ A2i. The correspondence assertion E1.(A11,…,A1n) ≅ E2.(A21,…,A2n)

specifies the mapping between the corresponding instances of E1 and E2. If two instances e1

and e2 of the entities E1 and E2, respectively, have the same values for each pair of

semantically equivalent attributes A1i and A2i, 1 ≤ i ≤ n, then e1 and e2 are corresponding

instances, i.e., they represent the same object in the real world. The attributes (A11,…,A1n)

and (A21,…,A2n) are called mapping attributes between E1 and E2.

In our example, the mapping between instances of semantically equivalent entities is defined

by the following attribute assertions:

8 In this work, we consider just monovalued attributes. However, our approach may be extended to

consider multivalued attributes. If the attributes have different domains or different structures conversion

functions and mapping function must be used.

 71

− movie1.(title1) ≅ movie2.(title2): specifies that when an instance m1 of

movie1 has a value “t” for the attribute title1 and an instance m2 of movie2 has the

same value “t” for the attribute title2, then m1 and m2 are corresponding instances (m1

≡ m2).

− director1.(name1) ≅ director2.(name2): specifies that when an instance d1 of

director1 has a value “d” for the attribute name1and an instance d2 of director2 has

the same value “d” for the attribute name2, then d1 and d2 are corresponding instances

(d1 ≡ d2).

Mapping attributes are very useful during the extension correspondence assertions

identification. To identify the relationships between the entity types extensions the mapping

attributes values of semantically equivalent entity types must be compared. To help such

identification, heuristics must also be defined.

� Path correspondence assertions: specify special types of correspondences between attributes

and subentities of semantically equivalent entity types having different structures. To define

a path assertion, we first have to define the concepts: link and path.

Definition 5.5 (Link): Let X1 and X2 be elements of an X-Entity schema (an element can be

an entity type, a containment relationship type or an attribute), X1.X2 is a link if:

i) X2 is an attribute of the entity type X1, or

ii) X1 is an entity type participating in the relationship type X2 (or vice-versa).

Definition 5.6 (Path): If X1.....Xn are elements of a schema, such that ∀Xi, 1 ≤ i ≤ n,

Xi.Xi+1 is a link, then X1.X2.Xn is a path from X1.

Definition 5.7 (Inverse path): If there is a path from X1 denoted by X1.X2.Xn, such that

Xn is an entity type, then there is a path denoted by (X1.X2.Xn)-1, which is called the

inverse path of X1.X2.Xn.

Definition 5.8 (Path correspondence assertion): Let P1 and P2 be two paths:

Case 1: P1 = X1.X2.... .Xn and P2 = Y1.Y2.....Yn, where X1 ≅ Y1. The correspondence

assertion P1 ≅ P2 specifies that the entity types Xn and Yn are semantically equivalent.

Case 2: P1 = X1.X2.... .Xn.Ak and P2 = Y1.Y2.....Yn.Ak’, where X1 ≅ Y1. The

correspondence assertion P1 ≅ P2 specifies that the attribute Ak of the entity type Xn and the

attribute Ak’ of the entity type Yn are semantically equivalent.

Case 3: P1 = X1.X2.... .Xn and P2 = (Y1.Y2.....Yn)-1, where X1 ≅ Yn. The correspondence

 72

assertion P1 ≅ P2 specifies that the types Xn and Y1 are semantically equivalent.

Case 4: P1 = X1.X2.... .Xn.Ak and P2 = (Y1.Y2.....Yn)-1.Ak’, where X1 ≅ Yn. The

correspondence assertion P1 ≅ P2 specifies that the attribute Ak of the entity type Xn and the

attribute Ak’ of the entity type Y1 are semantically equivalent.

In our example, after the matching of the schemas S1 and S2 the following path assertion is

obtained:

− movie2.actor2 ≅ movie1.movie_actor1.actor1.name1: specifies that the

attribute actor2 of the entity movie2 and the attribute name1 of the entity actor1 are

semantically equivalent.

In the schema S2 information about actors of a movie is represented by the actor attribute

while in the schema S1 the same information is represented by the entity actor.

Definition 5.9 (Atributte derivation path): A path assertion Ei.Ak ≅ P.Ak’, where Ak and

Ak’ are attributes and P = Y1.Y2.....Yn or P = (Y1.Y2.....Yn)-1, specifies that P.Ak’ is a

derivation path of the attribute Ak.

In our example, the correspondence assertion movie2.actor2 ≅ movie1.actor1.name1,

specifies that movie1.actor1.name1 is a derivation path of the actor2 attribute.

Definition 5.10 (Entity derivation path): A path assertion Ei.Rj.Ei’ ≅ P, where Rj is a

relationship type, Ei and Ei’ are entity types and P = Y1.Y2.....Ei” or P =

(Ei”.Y2.....Yn)-1, specifies that P is a derivation path of the entity Ei’.

Suppose the X-Entity schema S3 presented in Figure 5.3, which represents the movie3 entity

as a subentity of the director3 entity. Matching the schema S1 with the schema S3 we

obtain the correspondence assertions presented in Table 5.1. Observe that, in this case, the

subentity director1 of movie1 corresponds to a derivation path, which is an inverse path

from director3:

- (movie1.movie1_director1.director1 ≅

(director3.director3_movie3.movie3)-1)

Schema S3 =
({director3({name3,nationality3},{director3_movie3}),
 movie3({title3,year3},{}),
 {director3_movie3(director3,movie3,(1,N))})

 73

Figure 5.3 – Movie schema S3

Table 5.1- Correspondence assertions between the schemas S1 and S3

Table 5.2 summarizes all correspondence assertions obtained as a result of the matching of

the two schemas S1 and S2.

Table 5.2- Correspondence assertions between the schemas S1 and S2

Correspondence assertions between schemas S1 and S3

Entity correspondence assertions:
movie1 ≅ movie3
movie1 ∩ movie3 ≠ ∅
director1 ≅ director3
director1 ∩ director3 ≠ ∅

Attribute correspondence assertions:
movie1.title1 ≅ movie3.title3
director1.name1 ≅ diector3.name3
director1.nationality1 ≅ diector3.nationality3

Mapping attribute correspondence assertions:
movie1.(title1) ≅ movie3.(title3)
director1.(name1) ≅ director3.(name3)

Path correspondence assertions:
movie1.movie1_director1.director1 ≅
(director3.director3_movie3.movie3)-1

Correspondence assertions between schemas S1 and S2

Entity correspondence assertions:
movie1 ≅ movie2
movie1 ∩ movie2 ≠ ∅
director1 ≅ director2
director1 ∩ director2 ≠ ∅

Subentity correspondence assertions:
 movie1.director1 ≅ movie2.director2
Attribute correspondence assertions:

movie1.genre1 ≅ movie2.genre2
movie1.title1 ≅ movie2.title2
director1.name1 ≅ diector2.name2
director1.nationality1 ≅ diector2.nationality2

Mapping attribute correspondence assertions:
movie1.(title1) ≅ movie2.(title2)
director1.(name1) ≅ director2.(name2)

Path correspondence assertions:
movie2.actor2 ≅
movie1.movie1_actor1.actor1.name1

movie3

title3 year3

director3

nationality3name3

contains
(1,N)

 74

5.3 Determination of relevant source entities

The first task for generating a mediation query for a given mediation entity Em is the

determination of the source entities which are relevant for its computation. Intuitively, a source

entity Ei is relevant to the computation of the mediation entity Em if Ei and Em are semantically

equivalent, i.e., Ei and Em represent the same real world concept. The links between Em and its

relevant source entities are represented by the following mapping views.

� Basic mapping views (m-views)

A mapping view specifies how to compute attributes and subentities of a mediation entity Em

from a source entity Ei. A mapping view V({X1,...,Xn},{Y1,...,Ym}) is a special type of

entity type where Xi is an attribute or an attribute derivation path and Yi is a relationship or an

entity derivation path.

Let Em({Am1,…,Amn},{Rm1,…,Rmk})9 be a mediation entity with n attributes and k

containment relationships, and S a set of data sources containing a particular entity

Ei({Ai1,…,Aip},{Ri1,…,Riq}), such that Em ≅ Ei. The mapping view V(X,Y) over Ei is

defined as described below:

∀Am ∈ E m.A:

if ∃ Ak ∈ E i.A | Em.Am ≅ Ei.Ak then X = X ∪ {Ak}

if ∃ Ei.....Ek.Ak | Em.Am ≅ Ei.....Ek.Ak then X = X ∪ {Ei.....Ek.Ak}

if ∃ Ek.....Eij | Em.Am ≅ (Ek.....Ei)-1.Ak then X = X ∪ {(Ek.....Ei)-1.Ak}

∀Rmed(Em,Em’)∈ S m.R

if ∃Rk(Ei, E’) ∈ S i.R | Em.Rm.Em’≅ Ei.Rk.E’ then Y = Y ∪ {Rk}

if ∃Ei.....E’ | Em.Rm.Em’≅ Ei.....E’ then Y = Y ∪ {Ei.....E’}

if ∃E’.....Ei | Em.Rm.Em’≅ (E’.....Ei)-1 then Y = Y ∪ {(E’.....Ei)-1}

The correspondence assertions between the mediation entity Em and the source entities are

identified during the determination of relevant source entities. This task is achieved by the

Schema Matcher (c.f. Chapter 3).

Consider, for example, the mediation schema presented in Figure 5.4, which integrates

information from the source schemas presented in Figures 5.1, 5.2 and 5.3.

9 We ommit the disjunction constraints and reference relationships because they are not been considered in the
process of determining the relevant source entities. We also ommit the cardinality of the containment
relationships when they are not seen as relevant.

 75

Mediation Schema Smed =
({moviem({titlem, genrem, yearm,directorm}, {moviem_actorm}),
 actorm({namem, nationalitym},{})},
 {moviem_actorm(moviem,actorm,(1,N))})

Figure 5.4 – Mediation schema of data source Smed

 The set of m-views VMovie1, VMovie2 and VMovie3 associated with the mediation entity moviem

as well as the set of m-views VActor1 and VActor3 associated with the mediation entity actorm are

presented below. The set of all m-views associated with Em over S is denoted MEm.

 A mapping view has only attributes, relationships and derivation paths which are relevant for

the computation of its associated mediation entity. For example, the source entity movie1 has a

duration1 attribute, which does not belong to the mapping view VMovie1 because it is not

relevant for the computation of moviem.

Mapping views of moviem:
VMovie1({title1, genre1, movie1.movie1_director1.director1.name1},
 {movie1_actor1})
VMovie2({title2, genre2, movie2.movie2_director2.director2.name2}, {})
VMovie3({title3,(director3.director3_movie3,movie3)-1.name3,year3}, {})

Mapping views of actorm:
VActor1 ({name1, nationality1},{})

 As we may observe, to compute a given mediation entity it may be necessary to access a few

properties (attributes and containment relationships) of the entity in one data source, and other

properties in another data source. To do this, we have to specify the mapping attributes

between the source entities. These attributes are used to determine how to find in one data

source the element corresponding to a given element in another data source.

� Extended mapping views (xm-views)

It may occur that the m-views are not sufficient to derive the query of a given mediation

entity. Consider the example of a mediation entity moviem({titlem, directorm,

genrem},{}) and the source entities movie1({title1, director1, year1},{}) and

movie2({title2, genre2, year2},{}), such that movie1.(title1,year1) ≅

movie2.(title2,year2). The m-views associated to moviem are VMovie1({title1,

director1},{}) and VMovie2({title2,genre2},{}). Because the attributes year1 and

 titlem
directorm

genrem

actorm

nationalitym

contains
(1,N)

namem

moviemyearm

 76

year2 do not belong to the mapping views VMovie1 and VMovie2, there is no way to identify

corresponding instances and, therefore, it is not possible to obtain instances having all attributes

required in the mediation entity moviem. In this case, to perform the merge between

corresponding instances, we have to add to these m-views additional attributes. The attributes

year1 and year2 are candidate attributes for such purpose; they allow detecting when two

instances e1 and e2 of the mapping views VMovie1 and VMovie2 are corresponding instances and

could be integrated. So, it will be possible to obtain integrated instances that have all the

attributes specified in the mediation entity moviem. The new m-views are: VMovie1({title1,

director1, year1},{}) and VMovie2({title2, genre2, year2}, {}).These are

called extended mapping views (xm-views).

An xm-view between a mediation entity Em and a source entity Ei is defined as a m-view

augmented with all attributes of Ei which appear as mapping attributes with other relevant

source entities of Em. In the remainder of this work, we use the term m-view to denote both

mapping views and extended mapping views.

5.4 Computation paths associated with a mediation entity

The second task in the process of generating a mediation query for a given mediation entity

Em is the determination of the computation paths of Em. The set of relevant source entities for a

mediation entity Em is composed by the set of m-views denoted MEm. Searching computation

paths associated with the mediation entity Em starts by finding the set of operators which can be

applied to each pair of m-views. These operators are represented by an operation graph, which

will enable to characterize the possible computation paths for the mediation entity Em.

In this section, we first introduce the operator definitions. Next, we present how to define

an operation graph and how to determine the computation paths associated with a mediation

entity.

5.4.1 The operators

The main purpose of the mapping operators is to combine mapping views in order to

provide a means of computing a given mediation entity. The primary function of these

operators is to perform the integration of corresponding instances. This task is called object

fusion [Papakonstantinou et al. 1996] and involves grouping information together about the

same real-world entity. When two instances e1 and e2 have the same values for their mapping

attributes (e1 and e2 are corresponding instances), only one instance representing the

 77

integration of e1 and e2 is inserted in the result collection. The structure of the integrated

instance is determined by the mediation entity structure.

We can define the three operations mapping union, mapping intersection, and mapping

difference on two entity types E1 and E2 as follows:

� ∪p (mapping union): the result of this operation, denoted by E1 ∪p E2 is a collection that

includes all instances that are either in C(E1) or C(E2) or in both C(E1) and C(E2).

� ∩p (mapping intersection): the result of this operation, denoted by E1 ∩p E2 is a collection

that includes all instances that are in both C(E1) and C(E2).

� −p (mapping difference): the result of this operation, denoted by E1 −p E2 is a collection that

includes all instances that are in C(E1) but not in C(E2).

When a mapping operator is applied over two entity types E1 and E2, the instances from

C(E1) and C(E2) are joined together on the values of the mapping attributes between E1 and

E2. We can merge the contents of two semantically equivalent instances, as described below:

− All attributes and subelements10 with atomic values of the source entities are merged

together in the result instance. Redundancies among them must be eliminated based on

their atomic values.

− Subelements with complex structures must be repeated in the result instance. Subelements

which are instances of semantically equivalent entity types must be grouped together in

order to be integrated later using the corresponding mediation query.

The only restriction on the usage of the set operators between mapping views is that a

mapping operator may be applied only when the mapping views have a common identifier

which is defined through the mapping attributes. The mapping operator to be applied between

two mapping views is determined based on the correspondence assertions that specify the

relationship between the extensions of the source entities, as defined in Table 5.3. We use

correspondence assertions in order to reduce the number of possible operators to be applied

between two mapping views. Using correspondence assertions we may identify if the application

of a given operator results in an empty collection, for example. When there is no intersection

between the extensions of two entity types, then the only operator to be applied to merge their

instances is the ∪p. If we use other mapping operator then the result is an empty collection.

10If the atomic values have different cardinalities, conversion functions and concatenation functions, for
example, may be used to make the conversion between them.

 78

Table 5.3 – Mapping operators

Correspondence assertion Operator
E1 ≡ E2 __

E1 ⊂ E2 E2 −p E1, E1 ∪p E2

E1 ∩ E2 ≠ ∅ E1 ∪p E2, E1 ∩p E2, E1 −p E2, E2 −p E1

E1 ∩ E2 = ∅ E1 ∪p E2

5.4.2 Operation graph

The set of candidate operations combining pairs of m-views is represented by an operation

graph. In this graph, a node is associated with each m-view, and an edge between two nodes

represents a mapping operator. Generally, these two entities belong to different data sources.

Formally, we define an operation graph noted G(MEm,OEm) as follows:

− MEm is the set of nodes of the graph G, representing the set of m-views associated with a

mediation entity Em.

− OEm is the set of edges of the graph, labeled with one of the following operators:

mapping union (∪p), mapping intersection (∩p) and mapping difference (-p).

The number of edges between two m-views in the operation graph will be equal to the

number of possible operations between them. The construction of an operation graph

G(MEm,OEm) associated with a mediation entity Em can be easily obtained by applying to each

pair of m-views the possible operators as defined in the earlier section. When the operation is a

non-commutative one, the edge is directed according to the operation.

Figure 5.5 presents an example of an operation graph that describes the possible operators to

combine the mapping views associated with the mediation entity moviem presented in the

example of section 5.3. The correspondence assertions used to determine the operators are

presented below.

Mediation Schema Smed =
{(moviem({titlem, genrem, directorm,yearm}, {moviem_actorm}),

actorm({namem, nationalitym},{})},
 {moviem_actorm(moviem,actorm)})
Mapping views of moviem:

VMovie1({title1, genre1, movie1.movie1_director1.director1.name1},
 {movie1_actor1})
VMovie2({title2, genre2, movie2.movie2_director2.director2.name2}, {})
VMovie3({title3,(director3.director3_movie3,movie3)-1.name3,year3}, {})

 79

Extensional Correspondence assertions:
movie1 ∩ movie2 = ∅
movie1 ∩ movie3 = ∅
movie3 ⊂ movie2

The nodes of the operation graph, presented in Figure 5.5, represent the mapping views
VMovie1, VMovie2 and VMovie3. The edges beween these mapping views represent the possible

operators (mapping union and mapping difference), which were determined based on the

extensional correspondence assertion presented above.

Figure 5.5 – Example of an operation graph

5.4.3 Computation path

The determination of the computation paths associated with a mediation entity consists of

searching the set of operations, which enables to compute this entity. This search is done using

the operation graph G(MEm,OEm). Formally, a computation path CEm is defined by one of the

following rules:

− An m-view, which involves all the attributes/subentities of the mediation entity Em, is a

computation path.

− Any connected subgraph of the operation graph G(MEm,OEm), which involves all the

attributes and subentities of Em is a computation path.

A computation path includes the set of operations which are necessary to compute all the

attributes and subentities of the mediation entity. The general form of a computation path is the

following:

C = {θ[V1, V2],θ[V2, V3],…,θ[Vk, Vk+1],…,θ[Vn-1,Vn]} with θ ∈ {∪p, ∩p, -p

} and ∀i = 1,…,n, Vi ∈ {MEm}.

From each computation path associated with a mediation entity, a set of possible computing

expressions can be derived. The enumeration of the set of expressions, which can be derived

from a path, consists in identifying all possible ordering combinations of operations

VMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
{movie1_actor1})

 VMovie2({title2,genre2,
 movie2.director2.name2},{})

-p

VMovie3({title3,
(director3.movie3)-1.name3,
 year3},{})

∪p

∪p
∪p

 80

corresponding to the edges of the path C. For example, consider C = {∪p [V1, V2], ∩p

[V2, V3]}. Two different interpretations of this path leads to two different expressions Exp1

= (V1 ∪p V2) ∩p V3 and Exp2 = V1 ∪p (V2 ∩p V3).

The example given in Figure 5.6 shows the computation paths associated with the operation

graph of Figure 5.5 and one of the possible computing expressions. The computation paths and

the computing expressions derived from them are described in the following.

− C1 = {∪p [VMovie1,VMovie2], ∪p [VMovie2, VMovie3]} originates

Exp11 = (VMovie1 ∪p VMovie2) ∪p VMovie3

Exp12 = VMovie1 ∪p (VMovie2 ∪p VMovie3)

− C2 = {-p [VMovie2, VMovie3], ∪p [VMovie3,VMovie1]} originates

Exp21 = (VMovie2 -p VMovie3) ∪p VMovie1

− C3 = {∪p [VMovie1,VMovie3], ∪p [VMovie2, VMovie3]} originates

Exp31 = (VMovie1 ∪p VMovie3) ∪p VMovie2

Exp32 = VMovie1 ∪p (VMovie2 ∪p VMovie2)

Figure 5.6 – Example of computation paths and computing expressions

A computation path includes only the set of operations which are necessary to compute a

mediation entity. The ordering which these operations will be executed is determined by the

computing expressions.

-p ∪p

∪p

∪p ∪p

∪p

 :computation path C1
 :computation path C2
 :computation path C3

VMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
{movie1_actor1})

 VMovie2({title2,genre2,
 movie2.director2.name2},{})

VMovie3({title3,
(director3.movie3)-1.name3,
 year3},{})

Exp31 = (VMovie1 ∪p VMovie3) ∪p VMovie2

∪p

∪p

VMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
{movie1_actor1})

 VMovie2({title2,genre2,
 movie2.director2.name2},{})

VMovie3({title3,
(director3.movie3)-1.name3,
 year3},{})

 81

The enumeration of the computing expressions associated to a computation path, although it

is always possible, can be a very complex task. Moreover, for each mediation entity, the set of

possible expressions may have different semantics. As proposed in [Kedad et al. 1999] we can

improve this approach by using some complementary knowledge such as heuristics, source

quality or more specific user requirements. The use of this knowledge may considerably reduce

the solution space. Example of source quality may be the preference given to one source among

several equivalent because of the highest confidence, accuracy or completeness put on this

source. Example of user requirement that can be considered may be an explicite indication to

take systematically all sources; in which case the set of solutions elaborated with several

equivalent sources is reduced by eliminated solution with single sources or subset of sources. A

more detailed explanation about the derivation of computing expressions from computation

paths as well as their definition is out of the scope of this work.

5.5 Computing mediation entities from mediation queries

As presented in Figure 5.7, each mediation entity is a view of data distributed in different

data sources and is derived from the mapping views associated with Em. The mapping views

{VE11,...,VE1n} associated with a mediation entity Em are presented in an operation graph,

which describes the possible operators that can be applied bewteen them. Each mapping view

VEij has a mapping query q(VEij) to compute its contents, which is derived from the contents

of the source entity Eij, such that VEij is derived from Eij. The contents of a source entity Eij

is an XML view (q(Eij)) of the data actually stored in a given data source Sj.

Both mediation queries and mapping queries return collections of XML elements. The result

of a mediation query Q(Em) is a collection of XML elements obtained through the integration

of XML elements stored in the data sources. The result of a given mapping query q(VEij) is a

subset of the collection of XML elements that are instances of the source entity Eij, such that

VEij is a mapping view derived from Eij.

As defined in the X-Entity model, a mediation entity consists of a set of attributes and it is

associated to a set of containment relationships. To compute a mediation entity Em we will first

compute the integrated instances that compose the mediation entity and, subsequently, for each

containment relationship Rm(Em,Em’)we compute the integrated instances of the entity Em’. In

the remaining of this section, we present an example to illustrate the process of computing

mediation entities from mediation queries.

 82

Figure 5.7 – Description of mediation queries and mapping queries

Example: Consider the source schemas and the mediation schema presented below.

Mediation Schema Smed =
({moviem({titlem, directorm},{moviem_theaterm}),
 theaterm({namem,phonem, timem},{})},
 {moviem_theaterm(moviem, theaterm, (1,N))})

Figure 5.8 – Mediation schema Smed

Schema of data source S1 =
({movie1({title1, director1, actor1},{movie1_theater1}),
 theater1({name1, time1},{})},
 {movie1_theater1(movie1, theater1, (1,N))})

Figure 5.9 – Schema of data source S1

moviem theaterm contains

titlem directorm namem phonem timem

(1,N)

movie1 theater1 containstitle1

director1 name1 time1

(1,N)

 actor1

Mediation queries

Mediation schema
Em1 Emn

VE33VE23TE31

Q (Em1)

VE11 VE21

∪p

Q(Emn)

...

E31E23 E33 E11 E21

Data Source 1 Data Source 2 Data Source 3

q(VE11)

q(E11)

 E22 E32

∩p

VE31

∪p

...

q(VE21)

q(VE31) q(VE23) q(VE33)

q(E11) q(E21) q(E23) q(E31) q(E33)

Em: mediation entity Q(Em): mediation query
V: mapping view q(EpEij): mapping query
Eij: source entity q(Eij): source query

 83

Schema of data source S2 =
({movie2({title2, genre2},{movie2_theater2}),
 theater2({name2, phone2, time2},{})},
 {movie2_theater2(movie2, theater2, (1,N))})

Figure 5.10 – Schema of data source S2

Table 5.4 presents the correspondence assertions between the data sources S1 and S2.

Table 5.4 – Correspondence assertions between the local data
 sources schemas S1 and S2

Correspondence assertions between S1 and S2

movie1 ≅ movie2
movie1 ∩ movie2 ≠ ∅
movie1.(title) ≅ movie2.(title)
theater1 ≅ theater2
theater1 ∩ theater2 ≠ ∅
theater1.(name1) ≅ theater2.(name2)
theater1.time1 ≅ theater2.time2

Figure 5.11 presents the operation graph which describes the mediation query of the

mediation entity moviem (Q(moviem)). This query specifies that the instances of the entity

moviem correspond to the union of movie1 instances stored in the data source S1 with movie2

instances stored in the data source S2.

Figure 5.11 – Operation graph Gmoviem

 The first step to compute the mediation entity moviem consists in computing the mapping

views VMovie1 and VMovie2, i.e., the subqueries q(VMovie1) and q(VMovie2) must be sent to the

data sources S1 and S2 respectively, such that VMovie1 and VMovie2 are mapping views derived

from the source entities movie1 and movie2. As a result, the collections of XML elements

presented in Figure 5.12 and Figure 5.13 are obtained. C(movie1)is the collection of movie1

VMovie1({title1, director1},
 {movie1_theater1})

VMovie2({title2, director2},
 {movie1_theater2})

∪p

moviem({titlem,directorm},{moviem_theaterm})
Q(moviem) = VMovie1 ∪p VMovie2

movie2 theater2 contains

genre2 name2 time2

(1,N)

title2

phone2

 84

elements that are instances of the mapping view VMovie1 and C(movie2)is the collection of

movie2 elements that are instances of the mapping view VMovie2.

The next step for computing the moviem entity consists of executing the mediation query

Q(moviem) over the collections obtained in the earlier step (C(movie1) and C(movie2)).

After this, it is obtained the collection C(moviem) (Figure 5.14) composed by moviem

instances, which represent the integration of movie1 instances and movie2 instances of the

mapping views VMovie1 and VMovie2. The element em1, for example, was obtained integrating the

elements e11 and e21. As defined earlier, when the union mapping operator is applied over two

corresponding instances only one instance is obtained as a result, which represents the

integration of the source instances. In our example, the element em1 has the following

subelements: titlem, derived from the title1 and title2 subelements of e11 and e21,

directorm, derived from the director2 subelement of e11 and, theater1 and theater2

subelements, which belong to e11 and e21, respectively.

C(movie1):
e11 = <movie1>

 <title1> Deus é brasileiro </title1>
 <director1> Cacá Diegues </director1>
 <theater1>
 <name1> Aldeota II </name1>
 <time1> 11h </time1>
 <time1> 13h40 </time1>
 <time1> 16h30 </time1>
 <time1> 19h </time1>
 </theater1>
 <theater1>
 <name1> Art Iguatemi I </name1>
 <time1> 15h40 </time1>
 <time1> 18h </time1>
 <time1> 20h20 </time1>
 </theater1>
</movie1>

e12 = <movie1>
 <title1> Gangs of New York </title1>
 <director1> Martin Scorsese </director1>
 <theater1>
 <name1> Art Iguatemi </name1>
 <time1> 14h20 </time1>
 <time1> 17h30 </time1>
 <time1> 20h40 </time1>

 </theater1>
 <theater1>
 <name1> North Shopping </name1>
 <time1> 13h50 </time1>
 <time1> 17h10 </time1>
 <time1> 20h30 </time1>
 </theater1>
</movie1>

Figure 5.12 - Collection of movie1 elements

 85

C(movie2):
e21 = <movie2>

 <title2> Deus é brasileiro </title2>
 <theater2>
 <name2> North Shopping I </name2>
 <time2> 13h50 </time2>
 <time2> 16h10 </time2>
 <time2> 18h30 </time2>
 <time2> 20h50 </time2>
 <phone2> 2875489 <phone2>
 </theater2>
 <theater2>
 <name2> Art Iguatemi I </name2>
 <time2> 15h40 </time2>
 <time2> 18h </time2>
 <time2> 20h20 </time2>
 </theater2>
</movie2>

Figure 5.13 - Collection of movie2 elements

As the entity moviem has a subentity (theaterm) we have to proceed with the computation

of its integrated instances. We have to compute the theaterm instances for each one of the

moviem instances created in the earlier step. As showed in Figure 5.14 each moviem element is

associated with a collection of theater1 and theater2 instances. Therefore, we have to

execute the mediation query Q(theaterm) over the collections C(theater1(emi)) and

C(theater2(emi)), for each one of the moviem elements emi.

 Figure 5.15 presents the operation graph that describes the mediation query Q(theaterm).

Observe that, in this case, it was not necessary to send subqueries to data sources S1 and S2,

because the data was directly extracted from the integrated element em1 (Figure 5.14). In some

cases, if there are mapping views that were not “populated”, then it would be necessary to send

subqueries to the data sources. Executing the mediation query Q(theaterm) over the

collections C(theater1(em1)) and C(theater2(em1)), for example, the collection

C(theaterm(em1)) is obtained, i.e., the collection of theaterm elements associated with the

element em1. The theaterm elements are obtained integrating theater1 and theater2

elements stored in data sources S1 and S2. Figure 5.16 and Figure 5.17 show the collection of

theater1 and theater2 elements, respectively. Figure 5.18 shows the collection

C(theaterm(em1)).

 In the final step, the elements in C(theaterm(em1)) replace the theater1 and theater2

elements of the element em1 (Figure 5.19(a)) originating the element moviem presented in

Figure 5.19 (b). The same process must be executed for all moviem instances in C(moviem).

 86

C(moviem):
em1 = <moviem>

 <titlem> Deus é brasileiro </titlem>
 <directorm> Cacá Diegues </directorm>
 <?—- theater elements originated from data source S1 -->
 <theater1>
 <name1> Aldeota II </name1>
 <time1> 11h </time1>
 <time1> 13h40 </time1>
 <time1> 16h30 </time1>
 <time1> 19h </time1>
 </theater1>
 <theater1>
 <name1> Art Iguatemi I </name1>
 <time1> 15h40 </time1>
 <time1> 18h </time1>
 <time1> 20h20 </time1>
 </theater1>
 <?—- theater elements originated from data source S2 -->
 <theater2>
 <name2> Art Iguatemi I </name2>
 <time2> 15h40 </time2>
 <time2> 18h </time2>
 <time2> 20h20 </time2>
 <phone2> 2614890 </phone2>
 </theater2>
 <theater2>
 <name2> North Shopping I </name2>
 <time2> 13h50 </time2>
 <time2> 16h10 </time2>
 <time2> 18h30 </time2>
 <time2> 20h50 </time2>
 <phone2> 2875489 <phone2>
 </theater2>
</movieM>

em2 = <moviem>
 <titlem> Gangs of New York </titlem>
 <directorm> Martin Scorsese </directorm>
 <?—- theater elements originated from data source S1 -->
 <theater1>
 <name1> Art Iguatemi </name1>
 <time1> 14h20 </time1>
 <time1> 17h30 </time1>
 <time1> 20h40 </time1>
 </theater1>
 <theater1>
 <name1> North Shopping </name1>
 <time1> 13h50 </time1>
 <time1> 17h10 </time1>
 <time1> 20h30 </time1>
 </theater1>

</moviem>

Figure 5.14 - Collection of moviem elements

 87

Figure 5.15 – Operation graph Gtheaterm

C(theater1(em1)):
 <theater1>
 <name1> Aldeota II </name1>
 <time1> 11h </time1>
 <time1> 13h40 </time1>
 <time1> 16h30 </time1>
 <time1> 19h </time1>
</theater1>
<theater1>
 <name1> Art Iguatemi I </name1>
 <time1> 15h40 </time1>
 <time1> 18h </time1>
 <time1> 20h20 </time1>
</theater1>

Figure 5.16 - Collection of XML elements

theater1

C(theater2(em1)):
<theater2>
 <name2> Art Iguatemi I </name2>
 <time2> 15h40 </time2>
 <time2> 18h </time2>
 <time2> 20h20 </time2>
 <phone2> 2614890 <phone2>
</theater2>
<theater2>
 <name2> North Shopping I </name2>
 <time2> 13h50 </time2>
 <time2> 16h10 </time2>
 <time2> 18h30 </time2>
 <time2> 20h50 </time2>
 <phone2> 2875489 <phone2>
</theater2>

Figure 5.17 - Collection of XML elements theater2

C(theaterm(em1)):
<theaterm>
 <namem> Aldeota II </namem>
 <timem> 11h </timem>
 <timem> 13h40 </timem>
 <timem> 16h30 </timem>
 <timem> 19h </timem>
</theaterm>
<theaterm>
 <namem> Art Iguatemi I </namem>
 <timem> 15h40 </timem>
 <timem> 18h </timem>
 <timem> 20h20 </timem>
 <phonem> 2614890 <phonem>
</theaterm>
<theaterm>
 <namem> North Shopping I </namem>
 <timem> 13h50 </timem>
 <timem> 16h10 </timem>
 <timem> 18h30 </timem>
 <timem> 20h50 </timem>
 <phonem> 2875489 <phonem>
</theaterm>

Figure 5.18 - Collection of XML elements theaterm(em1)

VTheater1({name1, time1},{}) VTheater2({name2,phone, time2},{})

∪p

theaterm({namem,phonem,timem}, {})
Q(theaterm) = VTheater1 ∪p VTheater2

 88

<moviem>
 <titlem> Deus é brasileiro </titlem>
 <directorm> Cacá Diegues </directorm>
 <?—- theater elements originated
 from data source S1 -->
 <theater1>
 <name1> Aldeota II </name1>
 <time1> 11h </time1>
 <time1> 13h40 </time1>
 <time1> 16h30 </time1>
 <time1> 19h </time1>
 </theater1>
 <theater1>
 <name1> Art Iguatemi I </name1>
 <time1> 15h40 </time1>
 <time1> 18h </time1>
 <time1> 20h20 </time1>
 </theater1>
 <?—- theater elements originated
 from data source S2 -->
 <theater2>
 <name2> Art Iguatemi I </name2>
 <time2> 15h40 </time2>
 <time2> 18h </time2>
 <time2> 20h20 </time2>
 <phone2> 2614890 <phone2>
 </theater2>
 <theater2>
 <name2> North Shopping I </name2>
 <time2> 13h50 </time2>
 <time2> 16h10 </time2>
 <time2> 18h30 </time2>
 <time2> 20h50 </time2>
 <phone2> 2875489 <phone2>
 </theater2>
</moviem>

<moviem>
 <titlem> Deus é brasileiro </titlem>
 <directorm> Cacá Diegues </directorm>
 <theaterm>
 <namem> Aldeota II </namem>
 <timem> 11h </timem>
 <timem> 13h40 </timem>
 <timem> 16h30 </timem>
 <timem> 19h </timem>
</theaterm>
<theaterm>
 <namem> Art Iguatemi I </namem>
 <timem> 15h40 </timem>
 <timem> 18h </timem>
 <timem> 20h20 </timem>
 <phonem> 2614890 <phonem>
</theaterm>
<theaterm>
 <namem> North Shopping I </namem>
 <timem> 13h50 </timem>
 <timem> 16h10 </timem>
 <timem> 18h30 </timem>
 <timem> 20h50 </timem>
 <phonem> 2875489 <phonem>
</theaterm>
</moviem>

Figure 5.19(a) - Element em1 before the
integration of the theater1 and theater2 elements

Figure 5.19 (b) - Element em1 after the
integration of the theater1 and theater2 elements

The following algorithm summarizes the process of computing a mediation entity Em over a

set of data sources S ={S1,...,Sn}. In the following consider:

Q(Em): mediation query of Em
GEm(MEm,OEm): operation graph of Em
MEm = VE1, ...,VEn: set of mapping views associated with Em
q(EpEi): subquery to compute EpEi

compute_mediation_entity(Em, S)

For each VEi ∈ MEm
 C(EpEi) := execute q(VEi)
C(Em) := execute Q(Em) over {C(EpE1),...,C(EpEn)}
If E m.R ≠ ∅ Then
For each em ∈ C(Em)
 For each Rm(Em,Em’) ∈ E m.R
 C(Em’(em)) := compute_child_entity(em, Ed’)
 update(em, C(Em’(em)))
return C(Em)

 89

Initially, the algorithm executes each one of the mapping queries (q(VEi)) associated with

mapping views of Em in order to retrieve the source instances. Next, the mediation query is

executed over the source instances. If the mediation entity has one or more containment

relationships then an auxiliar function, called compute_child_entity, is called to compute

the integrated instances for each one of the subentities. It is important to note that this process

must be executed for each integrated instance of the mediation entity. When the integrated

instances of a subentity are computed the integrated instance of the mediation entity has to be

updated in order to replace the source instances by the integrated instances (update(em,

C(Em’(em)))).

5.6 Computing user queries from mediation entities

 In this section we describe how a user query can be computed using the mediation entities

available in the mediation schema. For a given user query against the mediation schema, the

mediator tries to find combinations of mediation entities that allows the computation of the

user query. We call such combination a query plan. Based on the mediation queries, previously

defined, and on the query plan the system computes at run-time the most appropriate rewriting

for answering a user query. As discussed in Chapter 3, the mediator module responsible for

computing user queries is the query manager.

 It is important to observe that when a mediation query is executed it returns all the elements

that are instances of the corresponding mediation entity. However, a user query may specify

some conditions that constraint the expected answer. Thus, only the elements which satisfy the

constraint must be returned in the answer. In the following sections, we will illustrate this by an

example.

We use as an example the mediation schema and the source schemas introduced in section 5.3

and reviewed as follows. Figures 5.20 and 5.21 show the mediation queries and operation

graphs associated with the mediation entities. We also present three XML documents that are

XML views of data stored in the data source S1, S2 and S3 (Figures 5.22, 5.23 and 5.24). We

show the source data using XML views, instead of their original format, in order to facilitate

the understanding of the user queries execution process.

Mediation Schema Smed =
({moviem({titlem, genrem, yearm, directorm}, {moviem_actorm}),
 actorm({namem, nationalitym},{})},
 {moviem_actorm(moviem,actorm, (1,N))})

 90

Schema of data source S1 =
({movie1({title1,duration1, genre1},{movie1_actor1, movie1_director1}),
 actor1({name1, nationality1},{}),
 director1({name1, nationality1},{})},
 {movie1_actor1(movie1,actor1,(1,N)),
 movie1_director1(movie1,director1, (1,N))})

Schema of data source S2 =
({movie2({title2,genre2,actor2},{movie2_director2}),
 director2({name2, nationality2}, {})},
 {movie2_director2(movie2, director2,(1,N))})

Schema of data source S3 =
({director3({name3,nationality3},{director3_movie3}),
 movie3({title3,year3},{ })},
 {director3_movie3(director3,movie3,(1,N))})

Figure 5.20 – Mediation query Q(moviem) and operation graph Gmoviem

Figure 5.21 – Mediation query Q(actorm) and operation graph Gactorm

As finding query plans to answer user queries is out of the scope of this work, in the

following examples, we suppose that a query plan was already generated.

User query 1: Suppose a user query asking for all movies whose director is “Steven Spielberg”.

 When a mediation query is executed it returns all the elements that are instances of the

corresponding mediation entity. However, the user query may specify some conditions that

constraint the expected answer. Considering our example about movies, the user query just

requests the movies directed by “Steven Spielberg”. Thus, only the movie elements where the

subelement director has value “Steven Spielberg” must be returned in the answer. To solve this

problem, we add a condition in the mapping queries in order to retrieve only the elements that

satisfy the constraint specified in the user query.

q(VMovie1(director1.name1 = “Steven Spielberg”))

VActor1 ({name1, nationality1},{})

actorm({namem, nationalitym},{})
Q(actorm) = VActor1

moviem({titlem, genrem, yearm, directorm}, {moviem_actorm})
Q(moviem) = (VMovie1 ∪p VMovie3)∪p VMovie2

∪p

∪p

VMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
{movie1_actor1})

 VMovie2({title2,genre2,
 movie2.director2.name2},{})

VMovie3({title3,
(director3.movie3)-1.name3,
 year3},{})

 91

q(VMovie1(movie2.director2.name2 = “Steven Spielberg”))

q(VMovie3((director3.movie3)-1.name3 = “Steven Spielberg”))

After the execution of the mapping queries presented above and the integration of their results,

we obtain the following collection of moviem elements:

<moviem>
 <titlem> Minority Report </titlem>
 <genrem> adventure </genrem>
 <directorm> Steven Spielberg </directorm>
 <yearm>2002 </yearm>
</moviem>
<moviem>
 <titlem> Men in Black II </titlem>
 <directorm> Steven Spielberg </directorm>
</moviem>
<moviem>
 <titlem> Jaws </titlem>
 <directorm> Steven Spielberg </directorm>
 <yearm> 1975 </yearm>
</moviem>

<movies_list1>
 <movie1>
 <title1> Spider-man </title1>
 <genre1> adventure </genre1>
 <duration1> 121 minutes </duration1>
 <director1>
 <name1> Sam Raimi </name1>
 </director1>
 <actor1>
 <name1> Tobey Maguire </name1>
 </actor1>
 <actor1>
 <name1> Kirsten Dunst</name1>
 </actor1>
 </movie1>
 <movie1>
 <title1> Deus é Brasileiro </title1>
 <director1>
 <name1> Cacá Diegues </name1>
 <nationality1> brasileiro
 </nationality1>
 </director3>
 <actor1>
 <name1> Antonio Fagundes </name1>
 </actor1>
 </movie1>
</movies_list1>

<movies_list2>
 <movie2>
 <title2> Star Wars: Episode II –
 Attack of the Clones
 </title2>
 <genre2> science fiction</genre2>
 <director2>
 <name1> George Lucas </name2>
 <nationality2> american
 </nationality2>
 </director2>
 <actor2> Ewan McGregor </actor2>
 <actor2> Natalie Portman </actor2>
 </movie2>
 <movie2>
 <title2> Spider-man </title2>
 <genre2> adventure </genre2>
 <director2>
 <name2> Sam Raimi </name2>
 </director2>
 <actor2> Tobey Maguire </actor2>
 <actor2> Kirsten Dunst </actor2>
 </movie2>
 <movie2>
 <title2> Minority Report </title2>
 <genre2> adventure </genre2>
 <actor2> Tom Cruise </actor2>
 <actor2> Tea Leoni </actor2>
 </movie2>
 <movie2>
 <title2> Men in Black II </title2>
 </movie2>
 <movie2>
 <title2> Jaws </title2>
 </movie2>
</movies_list2>

Figure 5.22 – XML view of the data source S1 Figure 5.23 – XML view of the data source S2

 92

<directors_list3>
 <director3>
 <name3> Steven Spielberg </name3>
 <nationality3>american </nationality3>
 <movie3>
 <title3> Minority Report </title3>
 <year3>2002 </year3>
 </movie3>
 <movie3>
 <title3> Jaws </title3>
 <year3> 1975 </year3>
 </movie3>
 </director3>
 <director3>
 <name3> George Lucas </name3>
 <movie3>
 <title3> Star Wars: Episode II – Attack of the Clones </title3>
 </movie3>
 </director3>
</directors_list3>

Figure 5.24 – XML view of the data source S3

User query 2: Suppose a user query asking for all title movies together with their related

directors. The relevant mediation entity to answer this query is moviem. Therefore, to answer

this query we use the mediation query Q(moviem), which specifies that the moviem

instances are obtained through the union of movie1, movie2 and movie3 instances obtained

through the mapping queries q(EpMovie1), q(EpMovie2) and q(EpMovie3), respectively.

Executing these subqueries and integrating their results we obtain the following moviem

elements:

<moviem>
 <titlem> Star Wars: Episode II – Attack of the Clones </titlem>
 <directorm> George Lucas </directorm>
</moviem>
<moviem>
 <titlem> Spider-man </title1>
 <directorm> Sam Raimi </directorm>
</moviem>
<moviem>
 <titlem> Minority Report </titlem>
 <directorm> Steven Spielberg </directorm>
</moviem>
<moviem>
 <titlem> Men in Black II </titlem>
 <directorm> Steven Spielberg </directorm>
</moviem>
<moviem>
 <titlem> Jaws </titlem>
 <directorm> Steven Spielberg </directorm>
</moviem>
<moviem>
 <titlem> Deus é Brasileiro </titlem>
 <directorm> Cacá Diegues </directorm>
</moviem>
<moviem>
 <titlem> Star Wars: Episode I – The Phantom Menace </titlem>
 <directorm> George Lucas </directorm>
</moviem>
<moviem>
 <titlem> Star Wars: Episode II – Attack of the Clones </titlem>
 <directorm> George Lucas </directorm>
</moviem>

 93

5.7 Concluding remarks

In this chapter we presented the process for generating XML-based mediation queries. We

extended the approach proposed by Kedad & Bouzeghoub [Kedad et al. 1999], which specifies

how to generate computing expressions for relational views, by: i) redefining the process of

identifying the relevant source entities, ii) specifying new operators to be applied between the

mapping views and iii) redefining the process of generating computing expressions.

In our approach, the mediation schema is represented by an X-Entity schema, which is

composed by entities and relationships among them. Therefore, the process of mediation

queries generation consists in discovering a computing expression for each entity in the

mediation schema. The use of mediation queries improves the efficiency of query planning

because the different possible ways of obtaining data for a mediation entity are previously

defined.

The first task of the process of mediation queries discovering consists in identifying the

source entities that are relevant to the computation of a given mediation entity. Informally, a

source entity Ei is relevant to compute a mediation entity Em if Ei and Em are semantically

equivalent, i.e., they represent the same concept in the real world. As an entity is composed by

attributes and relationship types then it is necessary to identify the attributes and the

relationship types of the source entities which are relevant to compute the mediation entity.

The links between the mediation entity and its relevant source entities are represented through

mapping views. Besides attributes and relationships, a mapping view may contain attribute

derivation paths and subentities derivation paths. The next task of the process of mediation

queries discovering is the identification of the possible operators to be applied between the

mapping views.

The last task of the process of mediation queries discovering consists in determining the

computation paths associated with a mediation entity and generating the computing expressions

corresponding to each computation path. The generation of a mediation entity expression is the

identification of the set of all possible orderings of the operations contained in the computation

path. The generation of a mediation entity expression can be a very complex and time-

consuming task, because there can be many different computation paths and for each

computation path, distinct computing expressions may be obtained. Therefore, some heuristics

must be proposed in order to facilitate this task.

We also discussed the process of computing mediation entities from mediation queries.

During the computation of a mediation entity, the integration of corresponding instances is

 94

performed, i.e., instances corresponding to the same object in the real world, but stored in

different data sources. The identification of corresponding instances is done through the values

of their common identifier (defined by the mapping attributes) and the integration of the

instances is done by the mapping operators. Besides eliminating redundancies, these operators

perform the fusion of semantically equivalent instances.

As the structure of XML data is more flexible than the structure of conventional data, then

the process of computing mediation entities is more complex. In the relational model, for

example, a relation is composed by a set of tuples having the same schema and consisting of

attributes, which are atomics and monovalued. On the other hand, XML elements may be

composed by other elements and attributes, and elements with the same type may have different

structures. The process of computing mediation entities has two main tasks: the computation of

the mediation entity instances through the integration of its corresponding mapping views

instances and, next, for each subentity of the mediation entity, it is performed the computation

of its own instances through the integration of the instances of its corresponding mapping

views.

At the end of the mediation queries generation process, each mediation entity will be

associated with a mediation query, which is represented by an operation graph composed by a

set of mapping views and operations among them. As we will present in the next chapter, this

high-level representation facilitates the identification of the mediation entities that are affected

by a data source schema change and that, consequently, should be rewritten. A mediation entity

will be affected by an entity source change if one of its mapping views will be affected by the

data source change. Moreover, we will see that it is easier to propagate data source changes into

mediation queries. Now, the problem of propagating the source changes or users’ requirements

changes into the mediation queries consists, first, in propagating these changes into the

mapping views, and secondly, in modifying the mediation queries in order to take into account

the modifications in the set of mapping views. In the next chapter, we present in details the

process of managing the evolution of mediation queries.

 96

Chapter 6

Managing the Evolution of
Mediation Queries

6.1 Introduction

 One of the main challenges in data integration systems is to maintain the mediation schema

consistent with the users' requirements evolution and to maintain the mediation queries

consistent both with the mediation schema evolution and with source evolution. The evolution

of the mediation schema is in many aspects similar to the schema evolution problem in

traditional databases. The novel and complex problem of evolution in mediation systems is the

change of the mediation queries, especially in the GAV approach where mediation queries are

very sensitive to changes in source descriptions. In [Lóscio et al. 2002b] we present a solution to

the problem of mediation queries maintenance for data integration systems which adopt the

relational model as the common data model.

 The statement of this evolution problem is as follows: given a change event occurring at the

source level or at the user level, how to propagate this change into the mediation queries. In

this context, mainly two kinds of evolution have to be dealt within a mediation-based system:

i) the evolution of the user needs - it may consist in adding, removing or modifying an user

requirement. These changes impact the mediation schema by adding, modifying or deleting an

element from the mediation schema. If these changes can be reflected in the mediation queries,

the modifications on the mediation schema are committed; otherwise the user is informed that

his or her new requirements cannot be satisfied, and

ii) the evolution of the data source schemas - if a change occurs in a source schema, it has to be

propagated to the mediation queries. The later are modified if the source elements on which

they were defined are modified or when a source element is added or deleted.

 97

 In this chapter, we describe our approach to manage the evolution of mediation queries. We

start by introducing the problem of propagating users’ requirements and data source schemas

changes to the mediation schema and the mediation queries. We also present the X-entity

schema change operations and the propagation primitives used to update the mediation level.

Next, we introduce the set of rules proposed for propagating the data source schemas changes

and the users’ requirements changes into the mapping views and the associated operations. We

also present the propagation processes used to propagate schema changes to the mediation

level. Finally, we summarize the chapter with some concluding remarks.

6.2 Propagation of schema changes to the mediation queries

We propose a solution to the problem of managing the evolution of mediation queries in

dynamic environments. Changes to mediation queries may be due to changes in the users’

requirements or data source schemas. Figure 6.1 describes the impact of these changes in the

mediation level. In this context, change management policies are necessary in order to maintain

the consistency between the data sources level, the mediation level and the user level.

 Addition of new data sources and modifications in the data source schemas are changes that

must be propagated both to the user level and the mediation level. In the first case, the

propagation involves an analysis of existing users’ requirements to identify relevant source

entities to compute user entities (Eu), i.e., entities participating in the users’ requirements

schema. Operation graphs for such entities can be incrementally created according to the

evolution of the data sources. Moreover, whenever a mediation query can be generated for a

user entity then it can be inserted in the mediation schema.

 The propagation of data source schemas changes to the mediation level includes also the

propagation of data sources removal and consists mainly in changing the mediation queries

when the changes raised at the source level still allow the computation of the mediation entities

(Em), provided some changes done on the mediation queries. However, some mediation entities

may become no longer computable concerning to the changes raised at the source level.

Therefore, in these cases, the mediation entities must be removed from the mediation schema.

We consider that the mediation schema has only completely computable user entities, i.e.,

entities whose attributes and subentities can be computed from the data sources.

 98

Figure 6.1 – Propagation of data source schemas changes and users’ requirements changes

Concurrently with the evolution of the data source schemas, the users’ requirements may

continue to change. This may happen during system development as well as when the system is

initialized. The evolution of the users’ requirements schema originates directly change

operations in the mediation schema. If these changes can be reflected in the mediation queries,

the modifications on the mediation schema are committed; otherwise the user is informed that

his or her new requirements cannot be satisfied. This occurs when the requirement can not be

computable from the data available in the data sources. Each change raised in the mediation

schema may lead to the redefinition of some mediation queries or the generation of new ones.

 Since the mediation queries are generated using the algorithm presented in Chapter 5, each

mediation entity is associated with a set of mapping views and each mediation query consists of

a set of operations applied to the mapping views. Consequently, the problem of propagating

users’ requirements changes and data source schemas changes into the mediation queries

consists, first in propagating these changes into the mapping views, and secondly in modifying

the mediation queries in order to take into account the modifications in the set of mapping

views.

 In the remaining of this section, we will introduce the X-Entity schema change operations,

the propagation primitives and the mapping view evolution rules.

Data Source 1 Data Source 2 Data Source n

Users requirements schema
EU1 EU2 … EUk

Mediation queries

Mediation schema
Em1 Emn

Q (Em1) Q(Emn)

...

Source
schema
change (Cs)

Propagation
of Cs in the
mediation
schema

Propagation of Cs
in the the users
requirements
schema

Users
requirements
schema change
(CR)

Propagataion
of CR in the
mediation
schema

Eu becomes
computable Em becomes

not computable

Source level

Mediation level

User level

 99

6.2.1 X-Entity schema change operations

 X-Entity schema change operations specify modifications that are performed in the local

schemas or in the mediation schema and that must be propagated to the mediation queries.

Local schema changes are detected by the Conceptual Schema Manager (cf. Chapter 3) through

the comparison of two different versions of the same conceptual schema. On the other hand,

changes in the mediation schema represent modifications in the users’ requirements.

 We propose the types of X-Entity change operations showed below. In the following,

consider:

� add_entity(E,S): this operation adds a new entity type E in the schema S. If the

entity E has one or more containment relationships, then this operation may be followed by

other operations add_Entity(E’ ,S), where E’ is an entity type associated with E

through a containment relationship R, and add_relationship(R, S)operations. If the

entity E’ does not exist in the schema S, then it is necessary to add it. Similarly, R is a new

relationship and must be added into S. If the new entity type E is a subentity of another

entity that already exists, then the operation add_entity(E,S) is followed by an

operation add_contains_rel(E”, R’), where R’(E”, E, (min, max)).

Example: Consider the schema S1 presented in Figure 6.2(a). Suppose that we want to add

an actor entity type, which has an award subentity, in the content of the movie entity.

To do this, the following change operations must be executed over S1:

− add_entity(actor({},{actor_award}),S1)

− add_entity(award({},{}),S1)

− add_relationship(actor_award(actor,award,(0,N)),S1)

− add_contains_rel(movie, movie_actor)

The schema presented in Figure 6.2 (b) is the new version of the schema S1.

Figure 6.2(a) - Schema S1 Figure 6.2(b) – New version of schema S1

movie

director

contains

title

name

(1,N)
director actor

containscontains

contains award

movie
title

name name year category

(1,N) (1,N)
(0,N)

 100

� remove_entity(E,S): this operation removes an existing entity E from the schema S. If

the entity E has one or more containment relationships, then this operation may be followed

by other operations remove_entity(E’,S), where E’ is a subentity of E. If there is not

another entity X, such that ”X contains E’ ” then E’ may be removed from the schema

S. Besides removing the entity E this operation also removes all containment relationships

associated with it. If the removed entity type E is a subentity of another entity, E” then the

operation remove_entity(E,S) is followed by an operation remove_contains_rel

(E”, R’), where R’(E”, E, (min, max)).

Example: Consider the schema S2 presented in Figure 6.3(a). Suppose that we want to

remove the award entity from the set of subentities11 of the actor entity. To do this, the

following change operations must be executed over S2:

− remove_entity(award,S2)

− remove_contains_rel(actor, actor_award)

The schema presented in Figure 6.3(b) is a new version of the schema S2.

Figure 6.3(a) - Schema S2 Figure 6.3(b) – New version of S2

� add_attribute(E,A): this operation adds a new attribute A into the set of attributes

of the entity E.

Example: Consider the schema S3 presented in Figure 6.4(a). Suppose that we want to add

the genre and year attributes in the movie entity. To do this, the following change

operations must be executed over S3:

− add_attribute(movie,year(string,(0,1)))

− add_attribute(movie,genre(string,(0,1)))

The schema presented in Figure 6.4(b) is the new version of the schema S3.

11 A subentity of an entity type E is an entity type E’ which is associated with E through a containment
relationship R(E,E’,(min,.max)).

director actor

contains contains

contains award

movie

(1,N) (1,N) (0,N)

title

name name year category

director actor

containscontains

movie

(1,N)(1,N)

title

name name

 101

Figure 6.4(a) – Schema S3 Figure 6.4(b) – New version of schema S3

� remove_attribute(E,A): this operation specifies the removal of an attribute A from

the set of attributes of the entity E.

Example: Consider the schema S4 presented in Figure 6.5(a). To remove the genre

attribute from the movie entity type we perform the following change operation:

remove_attribute(movie,genre).The schema presented in Figure 6.5(b) is the new

version of the schema S4.

Figure 6.5(a) – Schema S4 Figure 6.5(b) – New version of schema S4

� add_contains_rel(E,R): this operation adds a new containment relationship R,

where R(E,Ek,(min, max)), into the set of containment relationships of the entity E. In

this case, the entity Ek already exists and only a new containment relationship is inserted

between E and Ek. As the relationship R is a new one, then an add_relationship(R,S)

operation is executed to insert R into the schema S.

Example: Consider the schema S5 presented in Figure 6.6(a). Suppose that we want to add a

new containment relationship between director and award. To do this, we add a new

containment relationship in the set of containment relationships of the director entity:

add_contains_rel(director,director_award). We also add the relationship

director_award in the set of relationships of the schema S: add_relationship

year

genre

director actor

containscontains

movie

(1,N)(1,N)

title

name name

year

director actor

contains contains

movie

(1,N) (1,N)

title

name name

director actor

contains contains

movie

(1,N) (1,N)

title

name name

year

genre

director actor

contains contains

movie

(1,N) (1,N)

title

name name

 102

director_award(director,award,(0,N)), S). The schema presented in Figure 6.6

(b) is a new version of the schema S5.

Figure 6.6(a) – Schema S5 Figure 6.6(b) – New version of schema S5

� remove_contains_rel(E,R): this operation removes the containment relationship R

where R(E,Ek,(min, max)), from the set of containment relationship of the entity E.

This operation is followed by an operation remove_relationship(R,S). Moreover, this

operation may be followed by an operation remove_entity(E’,S)if there is not another

entity X, such that ”X contains E’ ”.

Example: Consider the schema S6 presented in Figure 6.7(a). Suppose that we want to

remove the containment relationship between actor and award. To do this, we execute

the following change operation: remove_contains_rel(actor,actor_award).The

schema presented in Figure 6.7(b) is the new version of the schema S6.

Figure 6.7(a) – Schema S6 Figure 6.7(b) – New version of schema S6

 The removal or the addition of a data source can be represented in terms of a set of change

operations, for example, the addition of a source can be viewed as a set of add_entity

year

director actor

contains contains

movie

(1,N) (1,N)

title

name name

contains

award

contains

(0,N) (0,N)

year

director actor

containscontains

movie

(1,N)(1,N)

title

name name

contains

award

(0,N)

year

director actor

contains contains

movie

(1,N)(1,N)

title

name name

contains

award

contains

(0,N) (0,N)

year

director actor

contains contains

movie

(1,N) (1,N)

title

name name

award

contains

(0,N)

 103

operations and the removal of a data source can be viewed as a set of remove_entity

operations. Table 6.1 summarizes the local schema change operations.

 The set of X-Entity change operations may be extended with other operations, including

modifications on the reference relationships and disjunction constraints.

Table 6.1 – X-Entity schema change operations

Change Operation Definition

add_entity(E,S) Adds a new entity type E into the schema S

remove_entity(E,S) Removes an existing entity type E from the schema S

add_attribute(E,A) Adds the attribute A into E.A

remove_attribute(E,A) Removes the attribute A from E.A

add_contains_rel(E,R) Adds the containment relationship R into E.R

remove_contains_rel(E,R) Removes the containment relationship R from E.R

add_relationship(R,S) Adds a new relationship type R into the schema S

remove_relationship(R,S) Removes an existing relationship type R from the schema S

6.2.2 Propagation primitives

We consider that each mediation entity Em is associated with an operation graph

GEm(MEm,OEm) corresponding to the mediation query defining Em, where MEm is the set of nodes

of GEm, representing the set of m-entities associated with Em, and OEm is the set of edges of GEm,

labeled with one of the mapping operators. If a change occurs in the data source schemas or in

the mediation schema, some checking operations have to be performed on this graph to test if

the computation path and therefore the mediation query associated with Em are still valid. If

not, new computation paths have to be determined and a new query has to be defined. Each

entity Em in the mediation schema is associated with two attributes, MAPSET_STATUS and

OPSET_STATUS. These attributes have boolean values and represent the status of the set of

mapping views associated with Em(MEm) and the set of candidate operations to combine these

entities (OEm). They determine if the set of mapping views associated with Em (MEm) and the set of

candidates operations to combine these relations (OEm) were modified during the propagation of

the schema changes. These two attributes are set to False at the beginning of the propagation

process, and they will be set to True if a change occurs in the set of mapping views or the set of

operations respectively.

 The propagation primitives, presented in Table 6.2, specify modifications and verifications

which must be performed in the operation graphs and the corresponding mediation queries to

reflect local schema change operations or mediation schema change operations. In the

 104

following, GEm denotes an operation graph corresponding to a mediation entity Em. The last

three primitives will be used in the algorithms describing the propagation processes and

presented in section 6.5. The other primitives are used in the mapping view evolution rules.

Table 6.2 - Mediation queries propagation primitives

Mediation Level Propagation Primitive Definition

search_operation(GEm) Searches new operations for combining pairs of mapping
views in the operation graph GEm. If new operations are
generated, then the attribute OPSET_STATUS is set to TRUE

remove_operations(GEm,V,A) Removes all edges in the operation graph GEm that become
invalid because of the removal of the attribute A from the
mapping view V. If at least one operation is removed, then
the attribute OPSET_STATUS is set to TRUE

add_mapping(V, GEm) Adds a mapping view V into the operation graph GEm and
assigns the TRUE value to the attribute MAPSET_STATUS. If
GEm does not exist then this primitive creates GEm from V.

remove_mapping(V, GEm) Removes the mapping view V from the operation graph GEm
and assigns the TRUE value to the attribute
MAPSET_STATUS

search_computation_path(GEm) Determines the computation paths associated with the
operation graph GEm (as described in Chapter 5)

generate_query(GEm, Q) Generates the set Q of computing expressions to compute
the entity Em using the operation graph GEm

query_choice(Q, q) Takes as input a set of possible queries Q and produces as
output a single query q (the choice is made either by the
designer or using some heuristics)

6.2.3 Mapping views evolution rules

 Given a change represented by one of the schema change operations described in section 6.2,

we will first propagate these changes in the set of mapping views associated with each entity of

the mediation schema. To specify this propagation, we use event-condition-action (ECA) rules

defined as follows:

• Event (E): is a schema operation which represents the change (cf. Table 6.1),

• Condition (C): is a condition related either to the local schemas or mediation schema

metadata, or to the mapping views.

• Action (A): is a sequence of propagation primitives which updates the mapping views and

the corresponding operations to reflect the schema change (cf. Table 6.2).

 In the next sections, we present the rules to propagate schema changes into mapping views.

First, we introduce the rules to propagate data source schemas changes, then we describe the

 105

rules to propagate users’ requirements changes. The schema changes that have to be propagated

are summarized below:

− add_entity(E,S)

− remove_entity(E,S)

− add_attribute(E,A)

− remove_attribute(E,A)

− add_contains_rel(E,R)

− remove_contains_rel(E,R)

In the following sections, consider:

− Em: mediation entity

− V: mapping view

− Ei: source entity

− ADP: attribute derivation path

− EDP: entity derivation path

− GEm: operation graph of the mediation entity Em

− MEm: is the set of mapping views corresponding to the mediation entity Em

− X(Ei): is the set of mapping attributes between the source entity Ei and the other source

entities which originated mapping views belonging to MEm

− V = Exp(Ei): specifies that the mapping view V is derived from the source entity Ei

6.3 Using mapping views evolution rules to propagate data source schemas

changes

 We propose a set of rules to propagate data source schemas changes into mapping views. As

described in Chapter 5, a mapping view specifies how to compute attributes and subentities of a

mediation entity Em from a source entity Ei. A mapping view V({X1,...,Xn},{Y1,...,Ym}) is a

special entity type where Xi is an attribute or an attribute derivation path and Yi is a

relationship or an entity derivation path. So, the propagation of a data source schema change

into a mapping view V may result in the addition or removal of an attribute, containment

relationship or derivation path from V.

 The mapping views evolution rules are classified according to the type of schema change

operation. Each rule has a name and a parameter denoted Em which represents a mediation

entity. The instantiation of this parameter is detailed in the algorithms describing the

propagation process, which will be presented in Section 6.5.

 106

Example: we use as an example the mediation schema and the source schemas introduced in

section 5.3 and reviewed in the following. Figures 6.8 and 6.9 show the mediation queries and

operation graphs associated with the mediation entities. It is important to note that, in the most

examples discussed in the following sections we will consider the original versions of the

operation graphs (Figures 6.8 and 6.9) instead of the new versions obtained after the

propagation of a source schema change.

Mediation Schema Smed:
moviem({titlem, genrem, yearm, directorm}, {moviem_actorm})
actorm({namem, nationalitym},{})
moviem_actorm(moviem,actorm,(1,N))

Schema of data source S1:
movie1({title1, duration1, genre1},{movie1_actor1, movie1_director1})
actor1({name1, nationality1},{})
director1({name1, nationality1},{})
movie1_actor1(movie1,actor1,(1,N))
movie1_director1(movie1,director1, (1,N))

Schema of data source S2:
movie2({title2,genre2,actor2},{movie2_director2})
director2({name2, nationality2}, {})
movie2_director2(movie2, director2,(1,N))

Schema of data source S3:
director3({name3,nationality3},{director3_movie3})
movie3({title3,year3},{})
director3_movie3(director3,movie3,(1,N))

Figure 6.8 – Mediation query Q(moviem) and operation graph Gmoviem

Figure 6.9 – Mediation query Q(actorm) and operation graph Gactorm

EpActor1 ({name1, nationality1},{})

actorm({namem, nationalitym},{})
Q(actorm) = EpActor1

moviem({titlem, genrem, yearm, directorm}, {moviem_actorm})
Q(moviem) = (EpMovie1 ∪p EpMovie3) ∪p EpMovie2

∪p

∪p

EpMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
{movie1_actor1})

 EpMovie2({title2,genre2,
 movie2.director2.name2},{})

EpMovie3({title3,
(director3.movie3)-1.name3,
 year3},{})

 107

6.3.1 Adding an attribute into a source entity

 The following ECA rules (Rule 1, Rule 2, Rule 3 and Rule 4) update the mapping views

corresponding to the mediation entity Em after an insertion of a new attribute Ak into a source

entity Ei, as described in the following:

� Rule 1: checks if the new attribute Ak is semantically equivalent to one of the attributes of

the mediation entity Em and if there is a mapping view V associated with Em over Ei. If the

attribute Ak is semantically equivalent to one of the attributes of the entity Em, this means

that there is at least one mapping view V’ containing the attribute Ak and derived from a

source entity Ex which is distinct from Ei. If the condition is true, the attribute Ak must be

inserted into the mapping view V. As a consequence of this, new operations must be

searched. If the new attribute is a mapping attribute of the entity Ei, then after its addition

it may be possible the application of a new mapping operator.

Rule 1(Em)
When add_attribute(Ei, Ak)
If ∃Amk ∈ E m.A  Em.Amk ≅ Ei.Ak
Then If ∃ V ∈ MEm  V = Exp(Ei)
 Then V.A := V.A ∪ {Ak}
 search_operation(GEm)

� Rule 2: checks if the new attribute Ak is semantically equivalent to one of the attributes of

the mediation entity Em and if there is no mapping view V derived from the source entity Ei.

In this case, a new mapping view should be added into the operation graph GEm and the

operations between the new mapping view and the other mapping views in GEm must be

identified.

Rule 2(Em)
When add_attribute(Ei, Ak)
If ∃Amk ∈ E m.A  Em.Amk ≅ Ei.Ak
Then If V ∉ MEm  V = Exp(Ei)
 Then V.A := {Ak} ∪ X(Ei)
 add_mapping(V,GEm)
 search_operation(GEm)

� Rule 3: checks if there is a source entity Ej that is semantically equivalent to Em and if there

is a mapping view V associated with Em over Ej. In the positive case, the condition part of the

rule also verifies if there is an attribute derivation path (ADP) from the entity type Ej to the

attribute Ak that is semantically equivalent to one of the attributes of the mediation entity

Em. If all conditions are true, the derivation path must be inserted into the mapping view V.

 108

Rule 3(Em)
When add_attribute(Ei, Ak)
If ∃Ej ≅ Em  ∃V ∈ MEm ∧ V = Exp(Ej)
Then If ∃Amk ∈ E m.AEm.Amk ≅ ADP,where ADP=Ej.... .Ei.Ak ∨ ADP=(Ei.... .Ej)-1.Ak
 Then V.A := V.A ∪ {ADP}

� Rule 4: checks if there is a source entity Ej that is semantically equivalent to Em and if there

is no mapping view V associated with Em over Ej. In the positive case, the condition part of

the rule also verifies if there is an attribute derivation path from the entity type Ej to the

attribute Ak that is semantically equivalent to one of the attributes of the mediation entity

Em. If all conditions are true, a new mapping view should be added in the operation graph

GEm and the operations between the new mapping view and the other mapping views in GEm

must be identified.

Rule 4(Em)
When add_attribute(Ei, Ak)
If ∃Ej ≅ Em  V ∉ MEm ∧ V = Exp(Ej)
Then If ∃Amk ∈ E m.AEm.Amk ≅ ADP,where ADP=Ej.... .Ei.Ak ∨ ADP=(Ei.... .Ej)-1.Ak
 Then V.A := {ADP} ∪ X(Ej)
 add_mapping(V,GEm)
 search_operation(GEm)

Example: Suppose that the operation add_attribute(movie2, year2(string,(1,1)))

is performed on the local data source S2. This event triggers Rule 1, Rule 2, Rule 3 and Rule 4,

which must be evaluated for both mediation entities moviem and actorm. However, only the

condition of Rule 1(moviem) is true. When the rule is executed the first action consists in

adding the attribute year2 into the mapping view Vmovie2. Finally, new operations are searched

and added in the graph Gmoviem; in our example, no new operation can be derived. Figure 6.10

shows the resulting operation graph for the mediation entity moviem.

Figure 6.10 – Operation graph Gmoviem after the propagation of the

add_attribute(movie2, year2(string, (1,1))) operation

∪p

∪p

VMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
{movie1_actor1})

VMovie2({title2,genre2,
movie2.director2.name2,year2}
,{})

VMovie3({title3,
(director3.movie3)-1.name3,
 year3},{})

 109

6.3.2 Removing an attribute from a source entity

 The following ECA rules (Rule 5 and Rule 6) update the set of mapping views and the set of

candidate operations that define the mediation entity Em after the deletion of the attribute Ak

from the source entity Ei, as follows.

� Rule 5: checks if there is a mapping view V associated with Em over Ei and if the removed

attribute Ak belongs to the mapping view V. To reflect the deletion of the attribute Ak from

the local entity Ei, the attribute Ak must be removed from the mapping view V and all edges

in GEm representing operations which are no longer possible must be removed. As defined in

Chapter 5, the only restriction on the usage of the set operators between mapping views is

that a mapping operator may be applied only when the mapping views have a common

identifier which is defined through the mapping attributes. When an attribute Ak is removed

from a source entity Ei then it is necessary to verify if there are some mapping operators

between the mapping view V, derived from Ei, and other mapping views V’ which depend

on the removed attribute (Ak belongs to the set of mapping attributes between Ei and Ex,

such that V’ is derived from Ex). In this case, the set operator must be removed.

Rule 5(Em)
When remove_attribute(Ei, Ak)
If ∃V ∈ MEm  V = Exp(Ei)
Then If Ak ∈ V.A
 Then V.A := V.A - {Ak}
 remove_operations(GEm, V, Ak)

� Rule 6: checks if there is a source entity Ej that is semantically equivalent to Em and if there

is a mapping view V associated with Em over Ej. The condition part of the rule also verifies if

there is an attribute derivation path from the entity type Ej to the attribute Ak. In the

positive case, this derivation path must be removed from the mapping view V. Then it is

necessary to verify if there are some mapping operators between the mapping view V and

other mapping views V’ which depend on the removed derivation path and, therefore, must

be removed.

 110

Rule 6(Em)
When remove_attribute(Ei, Ak)
If ∃Ej ≅ Em  ∃V ∈ MEm ∧ V = Exp(Ej)
Then If ∃ADP ∈ E j.A,where ADP = Ej.... .Ei.Ak ∨ ADP = (Ei.... .Ej)-1.Ak
 Then V.A := V.A - ADP

Example: Suppose that the operation remove_attribute(movie3, year3) is performed

on the local data source S3. This event triggers Rule 5 and Rule 6, which must be evaluated for

both mediation entities moviem and actorm.However, only the condition of Rule

5(moviem) is true. When the rule is executed the first action consists in removing the attribute

year3 from the mapping view Vmovie3. Finally, the operations in the graph Gmoviem are analysed

to identify invalid ones; in our example, no operation become invalid. Figure 6.11 shows the

resulting operation graph for the mediation entity moviem. Notice that after this modification,

the yearm attribute of the mediation moviem becomes no longer computable.

Figure 6.11 – Operation graph Gmoviem after the propagation of the
remove_attribute(movie3, year3) operation

6.3.3 Adding an entity into a source schema

 The following rules (Rule 7, Rule 8 and Rule 9) update the set of mapping views defining

the mediation entity Em after the addition of a source entity Ei.

� Rule 7: the condition part of this rule checks if :

i) There are attributes A1,...,An in the source entity Ei that are semantically equivalent to

attributes Am1,...,Amn of the mediation entity Em,

ii) There are some attribute derivation paths from Ei to attributes {A1,...,Ap} which are

semantically equivalent to a set of attributes {Am1,...,Amo}of the mediation entity Em,

iii) There are containment relationships R1,...,Rn in the source entity Ei linking the source

entity Ei with a set of subentities {E1,...,Et} which are semantically equivalent to a set of

subentities {Em1,...,Emn} of the mediation entity Em,

iv) There are some entity derivation paths (EDP) from Ei to subentities {E1,...,Et} which

are semantically equivalent to a set of subentities {Em1,...,Emn}of the mediation entity Em,

∪p

∪p

VMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
{movie1_actor1})

 VMovie2({title2,genre2,
 movie2.director2.name2},{})

VMovie3({title3,
(director3.movie3)-1.name3},
{})

 111

The action part specifies that a mapping view V must be added into the operation graph GEm

and the operations between V and the other mapping views in GEm must be identified. The

new mapping view will be composed by the attributes, containment relationships and

derivation paths identified during the condition evaluation.

Rule 7(Em)
When add_entity(E i, S)
If ∃{A1,...,An} ∈ E i.A  ∀t = 1,...,n, ∃ Em.Am ≅ Ei.At or

 ∃{ADP1, ...,ADPn}, where ADPt = Ei.Ak ∨ ADPt = (E’.Ei)-1.Ak 
 ∀t = 1,...,n, ∃Em.Am ≅ ADPt or

 ∃{R1,...,Rk} ∈ E i.R  ∀t = 1,...,n, ∃ Em.Rm.Em’ ≅ Ei.Rt.E’ or

 ∃{EDP1, ...,EDPp}, where EDPt = Ei.E’ ∨ EDPt = (E’.Ei)-1
 ∀t = 1,...,n, ∃Em.Rm.Em’ ≅ EDPt

Then V.A := {A1,...,An} ∪ {ADP1, ..., ADPn} ∪ X(Ei)
 V.R := {R1,...,Rp} ∪ {EDP1, ...,EDPp}
 add_mapping(V, GEm)
 search_operation(GEm)

� Rule 8: checks if there is a source entity Ej that is semantically equivalent to Em and if there

is a mapping view V associated with Em over Ej. In this case, the condition part of the rule

also verifies if there are new derivation paths from the entity type Ej that can be computed

after the insertion of the entity type Ei as follows:

i) If there are some attribute derivation paths from Ej to attributes {A1,...,Ap} which are

semantically equivalent to a set of attributes {Am1,...,Amo}of the mediation entity Em,

ii) There are some entity derivation paths from Ej to subentities {E1,...,Et} which are

semantically equivalent to a set of subentities entities {Em1,...,Emn}of the mediation entity

Em,

Then these derivations paths (attribute derivation path or entity derivation path) must be

added into the mapping view V.

 112

Rule 8(Em)
When add_entity(E i, S)
If ∃Ej ≅ Em  ∃V ∈ MEm ∧ V = Exp(Ej)
Then If ∃{ADP1, ...,ADPn}, where ADPt = (E’.....Ei.Rk. ... Ej)-1.Ak
 ∀t = 1,...,n, ∃Em.Am ≅ ADPt or
 ∃{EDP1, ...,EDPp}, where EDPt = (E’.....Ei.Rk.Ej)-1
 ∀t = 1,...,p, ∃Em.Rm.Em’≅EDPt
Then V.A := V.A ∪ {ADP1,...,ADPn}
 V.R := V.R ∪ {EDP1,...,EDPp}

� Rule 9: is similar to Rule 8, however the condition part checks if there is no mapping view

V associated with Em over Ej. In this case a new mapping view V must be created whose

content will be composed by the entity derivation paths and attribute derivation paths

identified during the condition evaluation. V must be added into the operation graph GEm and

the operations between the new mapping view and the other mapping views in GEm must be

identified.

Rule 9(Em)
When add_entity(E i, S)
If ∃Ej ≅ Em  V ∉ MEm ∧ V = Exp(Ej)
Then If ∃{ADP1, ...,ADPn}, where ADPt = (E’.....Ei.Rk. ... Ej)-1.Ak
 ∀t = 1,...,n, ∃Em.Am ≅ ADPt or
 ∃{EDP1, ...,EDPp}, where EDPt = (E’.....Ei.Rk.Ej)-1
 ∀t = 1,...,p, ∃Em.Rm.Em’≅EDPt
Then V.A := X(Ej) ∪ {ADP1,...,ADPn}
 V.R := {EDP1,...,EDPp}
 add_mapping(V, GEm)
 search_operation(GEm)

Example: Suppose that the operation add_entity(actor3({name3,biography3},{}),

S3) is performed on the local data source S3.This event triggers Rule 7, Rule 8 and Rule 9,

which must be evaluated for both mediation entities moviem and actorm. In this case, Rule 7

is evaluted as true only for actorm. When the rule is executed a new mapping view derived

from actor3 is created (VActor3({name3},{})) and it is added in the graph Gactorm. Next, new

operations are searched and added into the graph Gmoviem, based on the correspondence

assertion actor1 ∩ actor3 ≠ ∅. Figure 6.12 shows the resulting operation graph for the

mediation entity actorm. Notice that this operation graph shows all operations that must be

performed between VActor1 and VActor3.Each edge on the graph is labeled with one of the

possible mapping operators to be applied between VActor1 and VActor3.Since there is an

intersection between the instances of VActor1 and VActor3, then all mapping operators should be

applied between them. During the generation of the mediation query Q(actorm), one of these

operators will be chosen to define the computing expression of actorm.

 113

Figure 6.12 - Operation graph Gactorm after the propagation of the operation
add_entity(actor3({name3,biography3},{actor3_movie3}))

6.3.4 Removing an entity from a source schema

 The following rules (Rule 10 and Rule 11) update the set of mapping views associated with

the entity Em in the mediation schema after the deletion of a source entity Ei.

� Rule 10: the condition part of this rule checks if there is a mapping view V associated with

Em over Ei. To reflect the deletion of the local entity Ei, the corresponding mapping view V

must be removed from the operation graph GEm, along with all the operations involving the

mapping view V.

Rule 10(Em)
When remove_entity(Ei, S)
If ∃V ∈ MEm  V = Exp(Ei)
Then remove_mapping(V, GEm)

� Rule 11: checks if there is a source entity Ej that is semantically equivalent to Em and if there

is a mapping view V associated with Em over Ej. In this case, the condition part of the rule

also verifies if there are derivation paths from the entity type Ej that can not be computed

after the deletion of Ei. In this case, these derivation paths (attribute derivation path or

entity derivation path) must be removed from the mapping view V. Then, it is necessary to

verify if there are some mapping operators between the mapping view V and other mapping

views V’ which depend on one of the removed attribute derivation paths. In this case, the

mapping operator must be removed.

Rule 11(Em)
When remove_entity(Ei, S)
If ∃Ej ≅ Em  ∃V ∈ MEm ∧ V = Exp(Ej)
Then If ∃{ADP1, ...,ADPn}, where ADPt = (E’.....Ei.Rk. ... Ej)-1.Ak
 ∀t = 1,...,n, ∃Em.Am ≅ ADPt or
 ∃{EDP1, ...,EDPp}, where EDPt = (E’.....Ei.Rk.Ej)-1
 ∀t = 1,...,p, ∃Em.Rm.Em’≅EDPt
Then V.A := V.A - {ADP1,...,ADPn}
 V.R := V.R - {EDP1,...,EDPp}
 remove_operations(GEm, V, {ADP1,...,ADPn})

VActor3 ({name3},{}) VActor1 ({name1, nationality1},{})

∩p

∪p

-p
-p

 114

Example: Suppose that the operation remove_entity(movie2,S2) is performed on the local

data source S2. This operation is followed by the operation remove_entity

(director2,S2). Each one of these events must be propagated separately. The event

remove_entity(movie2,S2) triggers Rule 10 which is evaluated as true only for moviem.

When the rule is executed the only action consists in removing the mapping view VMovie2 from

the operation graph Gmoviem and all the operations associated with VMovie2 (the union operator

between VMovie2 and VMovie3). Figure 6.13 shows the resulting operation graph for the mediation

entity moviem. The event remove_entity(director2,S2) also triggers Rule 10. However,

this rule is not evaluated as true neither for moviem nor for actorm, because there are no

mapping views in the operation graphs Gmoviem and Gactorm that are either derived from the

source entity director2 or have a derivation path that can not be computed after the removal

of director2.

Figure 6.13 - Operation graph Gmovie after the propagation of the operation remove_entity(movie2, S2)

6.3.5 Adding a containment relationship into a source entity

 The following ECA rules (Rule 12, Rule 13, Rule 14 and Rule 15) update the mapping views

corresponding to the mediation entity Em after an insertion of a new containment relationship

Rk into a source entity Ei.

� Rule 12: the condition part of this rule checks if there is a mapping view V associated

with Em over Ei. In the positive case, the following conditions are also verified:

i) if the relatiosnhip Rk links the source entity Ei with a subentity E’which is semantically

equivalent to a subentity Em’of the mediation entity Em,

ii) if there are some entity derivation paths from Ei to subentities {E1,...,Et}, where Ei is

semantically equivalent to a subentity Em’ of the mediation entity Em, such that Rk

participates in the derivation path,

iii) if there are some attribute derivation paths from Ei to attributes {A1,...,Ap}, where Ax

is semantically equivalent to an attribute Am of the mediation entity Em, such that Rk

participates in the derivation path.

∪p

VMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
{movie1_actor1})

VMovie3({title3,
(director3.movie3)-1.name3,
 year3},{})

 115

If the first condition is true then the relationship Rk must be inserted into the set of

containment relationships of the mapping view V. If the second condition is true, then the

entity derivation paths must be inserted into the set of containment relationships of the

mapping view V. When the third condition is true, the attribute derivation paths must be

inserted into the set of attributes of the mapping view V.

Rule 12 (Em)
When add_contains_rel(Ei, Rk)
If ∃ V ∈ MEm  V = Exp(Ei)

Then If ∃ Rmk ∈ R m.R  Em.Rm.Em’ ≅ Ei.Rk.E’ or

 ∃{EDP1, ...,EDPp},where EDPt = Ei.Rk.E’

 ∀t = 1,...,p, ∃Em.Rm.Em’ ≅ EDPt or

 ∃{ADP1, ...,ADPn},where ADPt= Ei.Rk.Ax ∀t = 1,...,n, ∃Em.Am ≅ ADPt

 Then V.A := V.A ∪ {ADP1, ...,ADPn}
 V.R := V.R ∪ {Rk} ∪ {EDP1, ...,EDPp}

� Rule 13: is similar to Rule 12, however the condition part checks if there is no mapping

view V associated with Em over Ei. In this case a new mapping view V must be created whose

content will be composed by the containment relationships, entity derivation paths and

attribute derivation paths identified during the condition evaluation. V must be added into

the operation graph GEm and the operations between V and the other mapping views in GEm

must be identified.

Rule 13(Em)
When add_contains_rel(Ei, Rk)
If V ∉ MEm  V = Exp(Ei)

Then If ∃Em.Rmk ∈ E m.R  Em.Rm.Em’ ≅ Ei.Rk.E’ or

 ∃{EDP1,...,EDPp},where EDPt = Ei.Rk.E’

 ∀t = 1,...,p, ∃Em.Rm.Em’ ≅ EDPt or

 ∃{ADP1,...,ADPn},where ADPt=Ei.Rk.Ak
 ∀t = 1,...,n, ∃Em.Am ≅ ADPt

 Then V.A := {X} ∪ {ADP1,...,ADPn}
 V.R := {Rk} ∪ {EDP1,...,EDPp}
 add_mapping(V, GEm)
 search_operation(GEm)

� Rule 14: checks if there is a source entity Ej that is semantically equivalent to Em and if there

is a mapping view V associated with Em over Ej. In this case, the condition part of the rule

also verifies if there are new derivation paths from the entity type Ej that become

computable after the insertion of the relationship Rk as follows:

 116

i) If there are some attribute derivation paths from Ej to attributes {A1,...,Ap} which are

semantically equivalent to a set of attributes {Am1,...,Amo}of the mediation entity Em, such

that Rk participates in the derivation path,

ii) There are some entity derivation paths from Ej to subentities {E1,...,Et} which are

semantically equivalent to a set of subentities entities {Em1,...,Emn}of the mediation entity

Em, such that Rk participates in the derivation path.

Then these derivation paths must be added into the mapping view V.

Rule 14(Em)
When add_contains_rel(Ei, Rk)
If ∃Ej ≅ Em  ∃V ∈ MEm ∧ V = Exp(Ej)
Then If ∃{ADP1, ...,ADPn}, where ADPt = (E’.....Ei.Rk. ... Ej)-1.Ax
 ∀t = 1,...,n, ∃Em.Am ≅ ADPt or
 ∃{EDP1, ...,EDPp}, where EDPt = (E’.....Ei.Rk.Ej)-1
 ∀t = 1,...,p, ∃Em.Rm.Em’≅EDPt
Then V.A := V.A ∪ {ADP1,...,ADPn}
 V.R := V.R ∪ {EDP1,...,EDPp}

� Rule 15: is similar to Rule 14, however the condition part checks if there is no mapping

view V associated with Em over Ej. In this case a new mapping view V must be created whose

content will be composed by the entity derivation paths and attribute derivation paths

identified during the condition evaluation. V must be added into the operation graph GEm and

the operations between V and the other mapping views in GEm must be identified.

Rule 15(Em)
When add_contains_rel(Ei, Rk)
If ∃Ej ≅ Em  V ∉ MEm ∧ V = Exp(Ej)
Then If ∃{ADP1, ...,ADPn}, where ADPt = (E’.....Ei.Rk. ... Ej)-1.Ax
 ∀t = 1,...,n, ∃Em.Am ≅ ADPt or
 ∃{EDP1, ...,EDPp}, where EDPt = (E’.....Ei.Rk.Ej)-1
 ∀t = 1,...,p, ∃Em.Rm.Em’≅EDPt
Then V.A := X(Ej) ∪ {ADP1,...,ADPn}
 V.R := {EDP1,...,EDPp}
 add_mapping(V, GEm)
 search_operation(GEm)

Example: Suppose that after the addition of the entity type actor3 in the source S3 we want to

add a containment relationship between actor3 and movie3. This is done through the

operation: add_contains_rel(actor3,actor3_movie3).This event triggers Rule 12,

Rule 13, Rule 14 and Rule 15, which must be evaluted for both moviem and actorm. However,

only the Rule 14 is evaluated as true for moviem. When the rule is executed the entity

 117

derivation path (movie3.movie3_actor3.actor3)-1 is inserted in the set of relationships of

the mapping view VMovie3. Figure 6.14 shows the resulting operation graph for the mediation

entity moviem.

Figure 6.14 - Operation graph Gmovie after the propagation of the operation

add_contains_relationship(actor3,actor3_movie3)

6.3.6 Removing a containment relationship from a source entity

 The following ECA rules (Rule 16 and Rule 17) update the mapping views corresponding to

the mediation entity Em after the deletion of the containment relationship Rk from the source

entity Ei.

� Rule 16: the condition part of this rule checks if there is a mapping view V associated with

Em over Ei. In the positive case, the following conditions are also verified:

i) if Rk belongs to the set of containment relationships of the mapping view V,

ii) if there are attribute derivation paths or entity derivation paths in the mapping view V

that depends on the link between Ei and Rk.

Therefore, Rk must be removed from the set of containment relationships of the entity V along

with the entity derivation paths identified during the condition evaluation. Besides, the

attribute derivation paths identified during the condition evaluation must be removed from

the set of attributes of V. Then it is necessary to verify if there are some mapping operators

between the mapping view V and other mapping views V’ which depend on the removed

attribute derivation paths. In this case, the mapping operator must be removed from GEM.

 VMovie3({title3,
 (director3.movie3)-1.name3,
year3},{(movie3.movie3_actor3
.actor3)-1})

∪p

∪p

VMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
{movie1_actor1})

 VMovie2({title2,genre2,
 movie2.director2.name2},{})

 118

Rule 16(Em)
When remove_contains_rel(Ei, Rk)
If ∃V ∈ MEm  V = Exp(Ei)

Then If Rk ∈ V.R or

 ∃{ADP1, ...,ADPn},where ADPt = Ei.Rk.Ak ∧
 ∀t = 1,...,n, ADPt ∈ V.A or

 ∃{EDP1, ...,EDPp},where EDPt = Ei.Rk.E’ ∧
 ∀t = 1,...,p, EDPt ∈ V.R

 Then V.R := V.R - {Rk} - {EDP1,...,EDPp}
 V.A := V.A - {ADP1,...,ADPn}
 remove_operations(GEm, V, Rk)

� Rule 17: checks if there is a source entity Ej that is semantically equivalent to Em and if there

is a mapping view V associated with Em over Ej. In this case, the condition part of the rule

also verifies if there are derivation paths from the entity type Ej that belong to V and that

can not be computed after the removal of the relationship Rk. In this case, these derivation

paths (attribute derivation path or entity derivation path) must be removed from the

mapping view V. Then, it is necessary to verify if there are some mapping operators between

the mapping view V and other mapping views V’ which depend on the removed derivation

paths. In this case, the mapping operator must be removed.

Rule 17(Em)
When remove_contains_rel(Ei, Rk)
If ∃Ej ≅ Em  ∃V ∈ MEm ∧ V = Exp(Ej)

Then If ∃{ADP1,...,ADPn}, where ADPt = Ej.Ei.Rk. ... E’.Ak ∨
 ADPt = (E’.Ei.Rk. ... Ej)-1.Ak ∧ ∀t = 1,...,n, ADPt ∈ V.A or

 ∃{EDP1, ...,EDPp}, where EDPt = Ej.Ei.Rk.E” ∨
 EDPt = (E’.Ei.Rk.Ej)-1 ∧ ∀t = 1,...,p, EDPt ∈ V.R

 Then V.R := V.R - {EDP1,...,EDPp}
 V.A := V.A - {ADP1,...,ADPn}
 remove_operations(GEm, V, Rk)

Example: Suppose that the operation remove_contains_rel(director3,

director_movie3) is performed on the local data source S3.This event triggers Rule 16 and

Rule 17. However, only the Rule 17 is evaluated as true for moviem. When the rule is executed

the path (director3.movie3)-1.name3 is removed from the set of attributes of the mapping

view Vmovie3. Figure 6.15 shows the resulting operation graph for the mediation entity moviem.

 119

Figure 6.15 - Operation graph Gmovie after the propagation of the operation
remove_contains_relationship(director3, director_movie3)

 Once the data source schemas changes are propagated in the set of mapping views and the

set of candidate operations describing each mediation entity, and if these sets have been

modified, the associated mediation query may become invalid and a new mediation query has to

be generated. The propagation of data source schemas changes in the mapping views and the

corresponding mediation queries generation are the two main tasks of the source schemas

evolution process which is described in section 6.5.

6.4 Using mapping views evolution rules to propagate users’ requirements

changes

 The Users’ Requirements Manager receives users’ needs modifications and identifies the

change operations to be performed in the mediation schema in order to reproduce them. If

these changes can be reflected in the mediation queries, the modifications on the mediation

schema are committed; otherwise the user is informed that his or her new requirements cannot

be satisfied. Remember that the problem of propagating users’ requirements into the mediation

queries consists, first in propagating these changes into the mapping views, and second in

modifying the mediation queries in order to take into account the modifications in the set of

mapping views.

 The propagation of users’ requirements changes into mapping views is done through a set of

mapping views evolution rules, which identifies information from the source entities relevant to

the computation of the new requirements and performs the necessary modifications into the set

of mapping views.

 In the following, the mapping views evolution rules are classified according to the type of

mediation schema change operation. Depending on the operation, the rules are evaluated over

the whole set of source entities or over the mapping views associated with the mediation entity

that is being modified. Each rule has a name and a parameter denoted V which represents a

mapping view or a parameter Ei which represents a source entity. Next sections use as example

∪p

∪p

VMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
{movie1_actor1})

 VMovie2({title2,genre2,
 movie2.director2.name2},{})

VMovie3({title3,year3},{})

 120

the mediation schema and the source schemas introduced in section 5.3 and reviewed in section

6.3.

6.4.1 Adding an attribute into a mediation entity

 The following ECA rules (Rule 18 and Rule 19) update the mapping views corresponding to

the mediation entity Em after an insertion of a new attribute Am into Em.

� Rule 18: for each mapping view V derived from a source entity Ei and associated with the

mediation entity Em, this rule investigates the set of attributes of Ei to check if there is an

attribute Ak semantically equivalent to the new attribute Am.If the condition is true, the

attribute Ak must be inserted into the set of attributes of the mapping view V and new

operations must be searched in GEM.

Rule 18(V)
When add_attribute(Em, A m)
If ∃Ak ∈ E i.A, where V = Exp(Ei) Ak ∉ V.A ∧ Em.Am ≅ Ei.Ak
Then V.A := V.A ∪ Ak
 search_operation(GEm)

� Rule 19: for each mapping view V derived from a source entity Ei and associated with

the mediation entity Em, this rule checks if there is an attribute derivation from the source

entity Ei to an attribute Ak semantically equivalent to the new attribute Am.If the condition is

true, the attribute derivation path must be inserted into the set of attributes of the mapping

view V.

Rule 19(V)
When add_attribute(Em, A m)

If ∃ADP, ADP = Ei.Ak ∨ ADP = (E’.Ei)-1.Ak,where V = Exp(Ei)

 ADP ∉ V.A ∧ Em.Am ≅ ADP
Then V.A := V.A ∪ ADP

Example: Suppose that the operation add_attribute(moviem,

durationm(string,(0,1))) is performed on the mediation schema Smed. This event

triggers Rule 18 and Rule 19, which must be evaluted for both Vmovie1, Vmovie2 and

Vmovie3.However only the movie1 entity has an attribute, called duration1, that is

semantically equivalent to the durationm attribute. So, duration1 must be inserted in the set

of attributes of Vmovie1. Figure 6.16 shows the resulting operation graph for the mediation

entity moviem.

 121

Figure 6.16 - Operation graph Gmovie after the propagation of the operation

add_attribute(moviem, durationm(string, (0,1)))

6.4.2 Removing an attribute from a mediation entity

 The following ECA rules (Rule 20 and Rule 21) update the mapping views corresponding to

the mediation entity Em after the deletion of the attribute Am from Em.

� Rule 20: for each mapping view V derived from a source entity Ei and associated with the

mediation entity Em, this rule investigates the set of attributes of Ei to check if there is an

attribute Ak semantically equivalent to Am. If the condition is true, the attribute Ak must be

removed from the set of attributes of the mapping view V. Then it is necessary to verify if

there are some mapping operators between the mapping view V and other mapping views V’

which depend on the removed attribute and must be removed from GEM.

Rule 20(V)
When remove_attribute(Em, Am)
If ∃Ak ∈ V.A Em.Am ≅ Ei.Ak,where V = Exp(Ei)
Then V.A := V.A - Ak
 remove_operations(GEm, V, Ak)

� Rule 21: for each mapping view V associated with the mediation entity Em, this rule checks if

there is an attribute derivation path, in the set of attributes of the mapping view V,

semantically equivalent to the attribute Am. If the condition is true, the attribute derivation

path must be removed from the set of attributes of the mapping view V. Then it is necessary

to verify if there are some mapping operators between the mapping view V and other

mapping views V’ which depend on the removed attribute derivation path. In this case, the

mapping operator must be removed from GEM.

Rule 21(V)
When remove_attribute(Em, Am)

If ∃ADP = Ei.Ak ∨ ADP = (E’.Ei)-1.Ak Em.Am ≅ ADP
Then V.A := V.A - ADP
 remove_operations(GEm, V, ADP)

moviem({titlem, genrem, yearm, directorm, durationm}, {moviem_actorm})

∪p

∪p

VMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
duration1,{movie1_actor1})

 VMovie2({title2,genre2,
 movie2.director2.name2},{})

VMovie3({title3,
(director3.movie3)-1.name3,
 year3},{})

 122

Example: Suppose that the operation remove_attribute(moviem, genrem) is performed

in the mediation schema Smed.This event triggers Rule 20 and Rule 21, which must be evaluted

for both Vmovie1, Vmovie2 and Vmovie3.In this case, Vmovie1 and Vmovie2 have the attributes genre1

and genre2, which are semantically equivalent to the genrem attribute. So, genre1 and

genre2 must be removed from the set of attributes of Vmovie1 and Vmovie2, respectively. Figure

6.17 shows the resulting operation graph for the mediation entity moviem.

Figure 6.17 - Operation graph Gmovie after the propagation of the operation

remove_attribute(moviem, genrem)

6.4.3 Adding an entity into the mediation schema

 The following ECA rule (Rule 22) identifies the mapping views relevant to compute a

mediation entity Em.

� Rule 22: identifies the source entities relevant to compute the new mediation entity Em. This

rule is evaluated for each source entity Ei. If Ei is semantically equivalent to Em then the

attributes, containment relationships and derivation paths of Ei, which are considered

relevant to compute Em, are identified. Such elements will compose the content of the new

mapping view V, which will be inserted into the operation graph GEm.

Rule 22(Ei)
When add_entity(E m, Sm)
If Ei ∈ S.E ≅ Em
Then if ∃{A1,...,An} ∈ E i.A  ∀t = 1,...,n, ∃ Em.Am ≅ Ei.At or

 ∃{ADP1, ...,ADPn},where ADPt = Ei.Ak ∨ ADPt = (E’.Ei)-1.Ak

 ∀t = 1,...,n, ∃Em.Am ≅ ADPt or

 ∃{R1,...,Rk} ∈ E i.R  ∀t = 1,...,n, ∃ Em.Rm.Em’ ≅ Ei.Rt.E’ or

 ∃{EDP1, ...,EDPp}, where EDPt = Ei.E’ ∨ EDPt = (E’.Ei)-1
 ∀t = 1,...,n, ∃Em.Rm.Em’ ≅ EDPt

Then V Ei.A := {A1,...,An} ∪ {ADP1, ..., ADPn} ∪ X(Ei)
 V Ei.R := {R1,...,Rp} ∪ {EDP1, ...,EDPp}
 add_mapping(V Ei, GEm)
 search_operation(GEm)

moviem({titlem, yearm, directorm}, {moviem_actorm})

∪p

∪p

VMovie1({title1,,movie1.
movie1_director1.director1.name1},
{movie1_actor1})

 VMovie2({title2,
 movie2.director2.name2},{})

VMovie3({title3,
(director3.movie3)-1.name3,
 year3},{})

 123

Example: Suppose that we want to obtain information about the movies’ awards. To get this

information a new entity type, called awardm, must be added into the mediation schema. This is

done performing the following change operation: add_entity(awardm({categorym,

yearm},{}), Smed). This operation triggers Rule 22, which is evaluated for all source

entities available in the data sources S1, S2 and S3. Since there is no source entity

semantically equivalent to awardm then this mediation entity can not be computed and,

therefore, the add_entity operation is not commited.

6.4.4 Removing an entity from the mediation schema

 When a mediation entity Em is removed from the mediation schema the mapping views

associated with the Em must be removed. This is done through the following ECA rule.

Rule 23(VEi)
When remove_entity(Em, Sm)
If Ei ≅ Em
Then remove_mapping(GEm, VEi)

Example: Suppose that we want to remove the information about movie’s actors from the

mediation schema. Therefore, the actorm entity type must be removed from Sm. This is done

performing the following change operation: remove_entity(actorm, Sm), which triggers

Rule 23. This rule is evaluated only for the mapping view VActor1. The result of applying Rule

23 over VActor1 is the deletion of VActor1.

6.4.5 Adding a containment relationship into a mediation entity

 The following ECA rules (Rule 24 and Rule 25) update the mapping views corresponding to

the mediation entity Em after an insertion of a containment relationship Rm into Em.

� Rule 24: for each mapping view V derived from Ei and associated with the mediation entity

Em, this rule investigates the set of relationships of Ei, to check if there is a containment

relationship Rk, which links the source entity Ei with a subentity E’ such that Em.Rm.Em’ ≅

Ei.Rk.E’. If the condition is true, the containment relationship Rk must be inserted into the

set of relationships of the mapping view V.

Rule 24(V)
When add_contains_rel(Em, R m)
If ∃Rk ∈ E i.R, where V = Exp(Ej) Em.Rm.Em’ ≅ Eij.Rk.E’
Then V.R := V.R ∪ Rk

 124

� Rule 25: for each mapping view V associated with the mediation entity Em, this rule checks if

there is an entity derivation path from the source entity Ej, which links the source entity Ei

with a subentity E’ such that Em.Rm.Em’ ≅ Ei.....E’. Ei is the source entity from which V

was derived. If the condition is true, the derivation path must be inserted into the set of

relationships of the mapping view V.

Rule 25(V)
When add_contains_rel(Em, R m)

If ∃EDP, EDP = Ei.E’ ∨ EDPt = (E’.Ei)-1, where V = Exp(Ej)

 Em.Rm.Em’ ≅ EDP
Then V.R := V.R ∪ EDP

6.4.6 Removing a containment relationship from a mediation entity

 The following ECA rules (Rule 26 and Rule 27) update the mapping views corresponding to

the mediation entity Em after the deletion of the containment relationship Rm from Em.

� Rule 26: for each mapping view V associated with the mediation entity Em, this rule checks if

there is a containment relationships Rk, in the set of relationships of the mapping view V,

which links the source entity Eij with a subentity E’, such that Em.Rm.Em’ ≅ Eij.Rk.E’. If

the condition is true, the relationship Rk must be removed from the set of relationships of

the mapping view V.

Rule 26(V)
When remove_contains_rel(Em, Rm)
If ∃Rk ∈ V.A Em.Rm.Em’ ≅ Eij.Rk.E’, where V = Exp(Edj)
Then V.R := V.R - Rk

� Rule 27: for each mapping view V associated with the mediation entity Em, this rule checks if

there is a derivation path from the source entity Eij, which links the source entity Eij with a

subentity E’ such that Em.Rm.Em’ ≅ Eij.....E’. If the condition is true, the derivation path

must be removed from the set of relationships of the mapping view V.

Rule 27(V)
When remove_contains_rel(Em, Rm)

If ∃EDP = Eij.Ak ∨ ADP = (E’.Eij)-1.Ak, where V = Exp(Edj)
 Em.Am ≅ ADP
Then V.A := V.A - ADP
 remove_operations(GEm, V, ADP)

Example: Suppose that we want to remove the information about movie’s actors from the

 125

moviem entity type. Therefore, the containment relationship moviem_actorm must be removed

from the mediation entity moviem. This is done performing the following change operation:

remove_contains_rel(moviem, moviem_actorm). This operation triggers Rule 26 and

Rule 27, which must be evaluated for the mapping views EpMovie1, EpMovie2 and EpMovie3. The

only combination evaluated as true is Rule 26 applied over the mapping view EpMovie1.To

reflect the modification done in the mediation schema, the containment relationship

movie1_actor1 must be removed from the set of relationships of EpMovie1. Figure 6.18 shows

the resulting operation graph for the mediation entity moviem.

Figure 6.18 - Operation graph Gmovie after the propagation of the operation
remove_contains_rel(moviem, moviem_actorm)

 In the following sections, we will describe the process of propagating data source schemas

changes and the process of users’ requirements changes propagation.

6.5 The data source schemas changes propagation process

 This section describes the process of propagating data source schemas changes (Figure 6.19)

to the mediation level. In this process, a change event is a data source schema change

represented by one of the schema change operations described in section 6.2. (addition of

entities, attributes or containment relationships and removal of entities, attributes or

containment relationships). We consider that data source schemas changes are detected by the

Conceptual Schema Manager (cf. Chapter 3) through the comparison of two different versions

of the same exported schema. The Lookup module periodically communicates with the data

sources in order to extract new versions of their exported schemas.

 This propagation process can be divided into two main tasks: mapping views evolution and

mediation queries generation, which will be described in the following.

� Mapping views evolution

 The mapping views evolution consists in propagating data source schemas changes to the

moviem({titlem, genrem, yearm, directorm}, {})

∪p

∪p

EpMovie1({title1,genre1,movie1.
movie1_director1.director1.name1},
{})

 EpMovie2({title2,genre2,
 movie2.director2.name2},{})

EpMovie3({title3,
(director3.movie3)-1.name3,
 year3},{})

 126

mapping views associated with each entity of the mediation schema using the set of ECA rules

described in section 6.3. This task is executed by a set of processes, where each process, called

mapping views evolution process and denoted P1, is associated with a distinct data source Si

and is responsible for updating the mapping views derived from source entities belonging to Si.

In this way, different processes can be executed concurrently updating distinct sets of mapping

views.

Figure 6.19 – Data source schemas changes propagation process

 This task involves the updating of the sets of mapping views {MEm1, MEm2,…,MEmn}, where

MEmi denotes the set of mapping views corresponding to the mediation entity Emi. When a

mapping views evolution process receives a sequence of events from its corresponding data

source then it executes the following tasks:

Mediation
schema

Mediation

queries

Em1 Em2 Emk

 Q1 Q2 Qk

MEm1
Mapping
entities
Mapping
entities
Mapping

views
MEm2

Mapping
entities
Mapping
entities
Mapping

views
MEmk

Mapping
entities
Mapping
entities
Mapping

views

P1

change events S1 change events Sn

Mediation Queries
Generator

P1

Mediation Queries
Maintainer

M
K

B

P2 P2 P2

Rules
repository

DSKB

Conceptual Schema Manager

Data Source 1

lookup

exported
schema

Schema
Matcher

correspondence
assertions

X-Entity
elements

Data Source n

lookup

exported
schema

change events

 127

− Triggering: this task is executed for each mediation entity and consists in looking into the

rule repository and extracting the rules that are triggered by each event.

− Evaluation: during this task, the conditions of the rules are evaluated with respect to a

given mediation entity. During the condition evaluation, it may be necessary to identify

new correspondence assertions between elements in the mediation schema and elements

in a data source schema. This task is done by the Schema Matcher.

− Execution: this task leads to rule execution, which is carried out by firing the evaluated

rules and executing the corresponding actions. These actions consist in modifying the

mapping views and the set of candidate operations between them. Each mediation entity

Em is associated with two attributes, MAPSET_STATUS and OPSET_STATUS, defined in

section 6.2.2, which are used to determine if the set of mapping views associated with Em

(MEm) and the set of candidates operations to combine these relations (ORm) were modified

during the execution of the rules. These two attributes are set to False at the beginning

of the evolution process, and they will be set to True if a change occurs in the set of

mapping views or the set of candidate operations respectively.

− Notification: this task notifies the process P2 about the ending of the mapping views

evolution phase.

 The mapping views evolution is described by the algorithm presented hereafter. In the

following algorithm, consider:

V: sequence of events {e1,e2, …,en} notified by a given data source
T: set of triggered rules for a given event e
L1: set of mapping views evolution rules used for propagating data source schemas changes
Rule

i
(E
m
).event: returns the event associated with the Rulei

Rule
i
(E
m
).evaluate: returns the result of the condition evaluation of Rule

i
 for the

mediation entity E
m

map_entities_evolution(V)
For each Em in Sm
 For each e in V
 T := ∅
 For each Rulei in L1
 If Rulei(Em).event = e
 Then T := T ∪ Rulei(Em)
 For each Rulei (Em) in T
 If Rulei(Em).evaluate = “TRUE”
 Then execute Rulei(Em)
med_queries_generation(Em)

 128

� Mediation queries generation

 The mediation queries generation consists in generating a mediation query for each

mediation entity when the corresponding set of mapping views is modified. Each mediation

entity Em is associated with a process, called mediation queries generation and denoted P2,

which is responsible for generating the mediation query used to compute Em. Note that a

mediation entity may become not computable after a data source schema change.

 We consider that for a given mediation entity Em, the process P2 is executed only when all

processes P1 have finished the evolution of MEm. This means that the query generation process

will start only when all the events notified by all the data sources have been propagated in the

corresponding mapping views. The mapping views corresponding to the entity Em are locked by

the processes P1; when these locks are released, the process P2 can lock the mapping views and

start its execution. Another possible strategy would consist in executing the process P2

whenever a process P1 signals the end of the evolution of MEm. In this case, the generation

process will take place as many often as the number of sequences of events notified by the data

sources.

 The process of mediation queries generation can be divided into two tasks:

− Queries generation: this task consists in generating the set of mediation queries which can

be used to compute a given mediation entity Em. When a process P2 receives a notification

from a process P1, then it verifies if either the set of mapping views MEm or the set of

operations between them was modified. To do this, the process verifies the values of the

attributes MAPSET_STATUS and OPSET_STATUS respectively. If one of them was

modified then a new set of mediation queries must be generated for the entity Em.

It is important to observe that after this task some entities may become no longer

computable, i.e., it is not possible to generate any query to compute the entity using the

data available in the local data sources. In this case, it is not necessary to execute the next

task (query choice).

− Query choice: as the result of the mediation queries generation can be a set of mediation

queries, it is necessary to choose one of them to be used to compute the corresponding

mediation entity. To do this, the system either interacts with the mediation schema

administrator who chooses the best mediation query to compute a given mediation entity,

or it uses some heuristics to select a query.

 129

 The algorithm described below summarizes the generation of mediation queries associated

with a mediation entity. The search_computation_path, generate_query and

query_choice primitives were defined in Table 6.2. In the following algorithm, consider:

P1: the process corresponding to the mapping view evolution
Em: an entity in the mediation schema
MEm: the set of mapping views associated with the entity Em
GEm: the operation graph associated with the entity Em
Q: set of mediation queries

med_queries_generation(Em)
While ∃ P1 updating the set MEm do wait()
/* the process P2 is executed only when all processes P1
 have finished the evolution of MEm.*/

If R.OPSET_STATUS = “TRUE” or R.MAPSET_STATUS = “TRUE”
Then search_computation_path(GEm)
 Q := generate_query(GEm, Q)
 If Q ≠ ∅
 Then query_choice(Q, q)
 R.OPSET_STATUS = “FALSE”
 R.MAPSET_STATUS = “FALSE”

6.6 The users’ requirements changes propagation process

 This section presents the process of propagating users’ requirements changes (Figure 6.20) to

the mediation level. In this process, a change event is generated by the Users’ Requirements

Manager and represents a change in the mediation schema. When the Users’ Requirements

Manager receives users’ requirements modifications it identifies the change operations to be

performed in the mediation schema in order to reproduce them.

 Similar to the data source schemas changes propagation process, this process can also be

divided into two main tasks: mapping views evolution and mediation queries generation, which

will be described in the following.

� Mapping views evolution

 The mapping views evolution consists in propagating users’ requirements changes to the

mapping views using the set of ECA rules described in section 6.4. This task is executed by a

single mapping view evolution process, which receives mediation schema changes instead of

data source schemas changes. We use only one process because, in this case, there is a single

source of events, the Users’ Requirements Manager. Moreover, all changes refer to the

mediation schema and affect only the mapping views associated with the mediation entity that

is being modified. In this context, an event corresponds to a change operation to be performed

in one specific mediation entity.

 130

Figure 6.20 – Users’ requirements changes propagation process

When the mapping views evolution process receives an event from the Users’ Requirements

Manager then it executes the following tasks:

− Triggering: this task consists in looking into the rule repository and extracting the rules

that are triggered by the event.

− Evaluation: during this task, the conditions of the rules are evaluated with respect to a

given mapping view. When the event refers to the addition of a new mediation entity

then the whole set of source entities must be considered in the rules evaluation. In this

case, some heuristics must be defined to optimize the search for relevant source entities.

− Execution: this task leads to rule execution, which is carried out by firing the evaluated

rules and executing the corresponding actions. These actions consist in modifying the

Mediation
schema

Mediation

queries

Em1 Em2 Emk

 Q1 Q2 Qk

P2

MEm1
Mapping
entities
Mapping
entities
Mapping

views
MEm2

Mapping
views

Mapping
entities
Mapping

views
MEmk

Mapping
entities
Mapping

views
Mapping
entities

Rules
repository

DSKB

change events

Mediation Queries
Generator

P1

P2 P2

Mediation Queries
Maintainer

M
K

B

Schema
Matcher

correspondence
assertions

X-Entity
elements

Users
requirements

Eu1 Eu2 Euk Eup

Users’ Requirements Manager

users requirements
change events

 131

mapping views and the set of candidate operations between them. This task is similar to

the execution task presented in the earlier section.

− Notification: this task notifies the process P2 about the ending of the mapping views

evolution phase.

 The mapping views evolution is described by the algorithm presented hereafter. In the

following, consider:

V: mapping view in MEm
T: set of triggered rules for a given event e
L2: set of mapping views evolution rules used for propagating users’ requirements changes

map_entities_evolution(e,Em)
If e ≠ add_entity(Em, Sm)
Then For each V in MEm
 T := ∅
 For each Rule in L2
 If Rulei(V).event = e
 Then T := T ∪ Rule(V)
 For each Rulei (V) in T
 If Rulei (V).evaluate = “TRUE”
 Then execute Rulei (V)
Else For each Sj

 For each Eij in Sj.E
 If Rulei (V).evaluate = “TRUE”
 Then execute Rulei(Eij)
med_queries_generation(Em)

� Mediation queries generation

The mediation queries generation consists in generating a mediation query for a mediation

entity when the corresponding set of mapping views is modified. The process of users’

requirements change propagation uses the processes P2, described in the earlier section, to

generate mediation queries for a given mediation entity Em after the propagation of a change in

the set of mapping views associated with Em. At the end of the mediation queries generation, if

it will be possible to generate a mediation query for Em then the modifications done in the

operation graph GEm and in the mediation schema are confirmed. Otherwise, the modifications

performed to reflect the users’ requirements change are annulated.

The process of propagating users’ requirements changes and the process of propagating data

source schemas changes must be executed in parallel in order to maintain the consistency of the

mediation queries with respect to the data sources and the users’ needs.

 132

6.7 Prototype

We implemented a partial prototype of the proposed data integration system (cf. Chapter 3)

in collaboration with the Database Systems Research Group from the Federal University of

Pernambuco. To implement the Java classes we used JBuilder 7 from Borland. In this phase,

some APIs were coupled to the system, including:

− JDom: Java-based solution for accessing, manipulating, and outputting XML data from

Java code.

− DBAccessor: API used for accessing and extracting schema information from remote

databases.

In addition, a database in a server SQL Server 7.0 was created for performing initial tests of

the system. Only the functionalities concerned to the mediation queries evolution were

implemented, as described below:

� Lookup. It periodically communicates with the participating data sources in order to extract

a new version of the exported schema. The frequency that determines when the Lookup

must extract a new version from a given exported schema is defined by the corresponding

data source. When a new data source joins the system, it has to provide different

configuration data, including its schema change frequency. Currently, the Lookup only

extracts exported schemas of databases defined in the SQL Server platform. To do this, it

uses the API DBAccessor, which allows the access to a remote database and provides

support for extracting its schema. XML is the format used by the DBAcessor for

communication. In the current version, the Lookup does not perform the translation of the

exported schema to the XML Schema language.

� Conceptual Schema Manager. It receives pre-processed XML Schemas and generates X-

Entity specifications. It is also capable of comparing different versions of the same

conceptual schema in order to identify the schema change operations. After identifying the

changes it sends a set of events to the Mediation Queries Maintainer and if modifications

were performed in the schema it sends the new schema to the DSKB (Data Sources

Knowledge Base).

� Mediation Queries Maintainer. The current version of this module propagates only source

schema changes. We are not considering that different processes will be executed in parallel

to propagate schema changes from different data sources. We implemented only one

mapping views evolution process, which receives events from a data source and propagates

them to the various sets of mapping views. To propagate the data source schemas changes,

 133

this process uses a set of ECA rules. These rules were implemented using an abstract class,

named Rule, and other 27 concrete classes, named Rule_X, which have specific properties

of each propagation rule. For example, one method verifyCondition was implemented

for each concrete class Rule_X defining the condition to be evaluated. Besides, propagation

primitives have been implemented in order to propagate the changes into the operation

graphs representing the mediation queries. At the end of the mapping views evolution

process, the operation graphs affected by the data source schemas changes will be modified

in order to reflect these changes.

� Mediator Knowledge Base and the Data Sources Knowledge Base. These knowledge bases

were formally specified and implemented. Mediator metadata and data sources metadata

are stored in XML documents and two different XML schemas were defined to provide

support to their formal specification.

6.8 Concluding remarks

 In this chapter, we have presented the process of managing the evolution of mediation

queries. Changes to mediation queries may be due to changes in the users’ requirements or data

source schemas. When data source schemas change or new data sources are added to the system

or existing data sources are removed, it is needed to propagate these changes to the mediation

queries. As we already discussed, mediation queries are very sensitive to changes over the local

data sources.

 We also deal with the evolution of users’ requirements, which continue to change during the

system development as well as when the system is put to use. Users’ requirements modifications

originate change operations in the mediation schema. If these changes can be reflected in the

mediation queries, the modifications on the mediation schema are committed, otherwise the

user is informed that his or her new requirements cannot be satisfied.

 Data source schemas or users’ requirements changes are propagated to the mediation queries

through a set of ECA rules, which are triggered according to the different schema changes. The

propagation process consists of two main tasks: first, the triggering, evaluation and execution of

the rules in order to update the mapping views and the operations among them, and secondly,

new mediation queries are generated using the modified operation graphs.

 The evolution process can also be seen as a solution for the problem of generating the

mediation schema and the mediation queries during the initial phase of the system

development. Whenever a new data source joins the system, then the users’ requirements are

analyzed to identify the mediation entities that are computable. Such entities are inserted into

 134

the mediation schema and their corresponding mediation queries are generated. Moreover, the

new data source may have relevant entities for computing existing mediation entities.

 The problem of mediation queries evolution is also discussed in other work [Ambite et al.

2001, McBrien et al. 2002, Nica et al. 1999]. The work presented in [Ambite et al. 2001]

adopts an approach similar to ours for defining mediation queries. The algorithm to discover

integration axioms is incremental, which means that when new sources are added, the system

can efficiently update the axioms, but no details on how this could be achieved nor examples

are given. In the case of deleting a source the algorithm must start from scratch. They use the

LAV approach to define the mappings between the global model and the local sources, while we

have adopted the GAV approach.

In [McBrien et al. 2002] an approach is presented to handle both schema integration and

schema evolution in heterogeneous database architectures. This approach is different from ours,

because instead of defining mediation queries as our approach does, they use primitive

transformations to automatically translate queries posed to the global schema to queries over

the local schemas. This set of transformations can also be used to systematically adapt the global

schema and the global query translation pathways after changes to the source schemas.

Our approach differs from the approach proposed in [Nica et al. 1999], because the

modifications are not directly executed in the mediation query definition but in the metadata

that describes the mediation query. We consider that a mediation query must be modified as a

consequence of every kind of source schema change. In [Nica et al. 1999], a view must evolve

only when a source schema change occurs that can make the view definition obsolete; i.e., only

the cases of removal of relations or attributes are dealt with. It is important to note that none of

the systems, which adopt XML as the common data model, discusses the problem of mediation

queries evolution.

One problem to be investigated is the optimization of the synchronization between the

update of the mapping views and the generation of mediation queries. One solution consists in

generating the mediation queries after the propagation of a single event, but this may degrade

the performance of the system. On the other hand, it may be very costly waiting that all events

notified by the data sources and the Users’ Requirements Manager be propagated at the same

time. Therefore, it is necessary to solve the problem of determining the sequences of events that

must be treated together. As the propagation process is always running in background, other

aspects concerning concurrency and failure recovery must also be investigated.

 135

Chapter 7

Conclusion

7.1 Research contributions

 Two main approaches are presented in the literature to define the mediation mappings

between the data sources and the mediation schema [Halevy 2000, Levy 2000, Ullman 1997]:

GAV and LAV. The main differences btween these approaches concern the adaptation of

mediation queries in function of source evolution and user queries decomposition. In the GAV

approach, mediation queries are very sensitive to changes in the data sources and their

adaptation may be a very complex task. On the contrary, in LAV approach the set of mediation

queries can be easily adapted after a source schema change. On the other hand, in GAV

approach user queries decomposition is a very simple task while in LAV approach this process is

very complicated and time-consuming. In this context, we have proposed a solution to the

problem of managing the evolution of mediation queries for data integration systems which

adopt the GAV approach.

 The basis for our solution is the adopted process of mediation queries generation, which

provides a formalism to represent mediation queries. This formalism is based on the concept of

operation graphs, which describes the relevant sources to compute a given mediation entity and

the possible ways of combining them. This high-level representation facilitates the identification

of the mediation entities that are affected by a data source schema change and that,

consequently, should be rewritten. Moreover, it becomes easier to propagate data source

changes into mediation queries. Using this approach, the problem of mediation queries

evolution becomes the problem of maintaining the operation graphs that describe the mediation

queries.

 136

 One advantage of our approach is that the mediation level (mediation schema and mediation

queries) can be developed incrementally based on the evolution of the local data sources and

the evolution of the users’ requirements, which means that if the data source schemas or the

users’ requirements change frequently the mediation level can be updated to reflect these

changes. The proposed approach allows the mediation level to evolve and modifications can be

handled easier by increasing the system flexibility and scalability. The main contributions of our

work are summarized below:

� We have proposed an architecture for a mediator-based data integration system, which

also deals with the problems concerning generation of mediation queries and maintenance of

the data integration system. Another distinguishing feature of the system is that the queries

are executed using three kind of data: i) virtual data, which are obtained on demand and

accessed directly from the data sources, ii) materialized data, which are obtained from the

data warehouse over selectively materialized data and iii) cached queries results, which are

answered queries and previously stored in a local cache. Some other key issues of our system

are: the use of XML as the common model for data exchange and integration, and the use of

XML Schema as the language for representing the mediation schema and the exported

schemas. XML has been adopted by the most recent data integration systems proposals as

the common data model for data integration due to its flexibility to represent both

structured and semi-structured information, which are very common in the data integration

context.

� To provide a high-level abstraction for information described in an XML Schema we have

defined a conceptual data model, called X-Entity model. The X- Entity model is not a new

formalism for conceptual modeling; rather it is an extension of the ER model. We also

described the process of converting an XML Schema to an X-Entity schema. Other advantage

of the X-Entity model is that it is not a model for representing a specific type of XML

schema (ex: DTD or XML Schema). The X-Entity model may be used during the conceptual

design of an XML schema and later the X-Entity schema can be mapped to a DTD or to an

XML Schema, for example.

� We extended the approach proposed by Kedad & Bouzeghoub [Kedad et al. 1999], which

specifies how to generate computing expressions for relational views, by: i) redefining the

process of identifying the relevant source entities, ii) specifying new operators to be applied

between the mapping views and iii) redefining the process of generating computing

expressions. In our approach, the mediation schema is represented by an X-Entity schema

and the process of mediation queries generation consists in discovering a computing

 137

expression for each entity in the mediation schema. Based on the mediation queries,

generated off-line, the system computes at run-time the most appropriate rewriting for

answering a user query by simply executing the necessary mediation queries and combining

their results.

� We have defined a set of local source change operations representing the possible evolutions

at the source level or at the user level and a set of propagation primitives reflecting the

changes at the mediation level. To specify the propagation of schema changes, we have

proposed a set of ECA rules. We have also discussed the propagation process and described

its two main tasks, the mapping entities evolution and the mediation queries generation.

7.2 Future work

This work has opened a large spectrum for new problems to be solved, which are listed

below:

� Mediation schema definition : in this work we do not formalize the process of mediation

schema definition. We assume that the mediation schema is defined comparing the users’

requirements and the data source schemas, in such a way that the mediation schema consists

of the users’ requirements which can be answered from the set of available data sources.

Also, we have to specify the propagation process of data source schemas changes into the

users’ requirements schema to identify the users’ needs that become computable after these

changes.

� X-Entity model extension: some characteristics of XML Schema were not considered in the

process of converting an XML Schema to its corresponding X-Entity schema, including:

hierarchy, cardinality of groups and attributes ID and IDREF. To consider such features, the

X-Entity model must be extended with new concepts and the conversion process must be

extended with new rules.

� X-Entity schemas matching: we do not adopt any specific process for matching X-Entity

schemas. A deeply investigation of the existing methodologies for schema matching must be

performed in order to identify if one of them is suitable for the matching of X-Entity

schemas.

� User queries computation: we presented how to use mediation queries to compute

mediation entities in function of the distributed data. However, we did not present a detailed

description of how to use mediation entities to compute user queries. This is a very

interesting work, which consists of identifying the relevant mediation entities to compute a

 138

given user query and identifying how to combine them in order to obtain the requested

answer.

� Definition of heuristics to select mediation queries: as proposed in [Kedad et al 1999], some

heuristics must be defined in order to optimize the process of choosing the best query to

compute a given mediation entity.

� Mediation queries quality evaluation: another perspective is to take into account some

quality criteria to evaluate the impact of the changes in the local data sources on the quality

of the mediation schema. Quality factors could be applied to analyze the evolution of

mediation queries on data integration systems. This is an important issue because it directly

impacts the quality of the data and the services offered by the system.

� Optimization of the propagation process: as the number of dynamic data source increases

the process of propagating data source schemas changes becomes more complex. In this

context, a better synchronization of the mapping entities evolution and the mediation

queries generation is necessary. The propagation process must be optimized in order to

minimize the cost of mediation queries evolution. We also intend to analyze how to keep a

history of the exported schema updates in order to minimize the impact of new updates in

the integration system.

� Minimal rule set: data source schemas or users’ requirements changes are propagated to the

mediation queries through a set of ECA rules, which are triggered according to the different

schema changes. It is then natural to ask whether there is a "minimal" or smallest set of rules

necessary to propagate the different schema changes. In this work we do not answer this

question. An interesting future work consists in defining one or more criteria for

redundancy of a rule in such a way that this minimal rule set achieves the same update

propagation.

� Stepwise consistency: the propagation process consists of two main tasks: first, the triggering,

evaluation and execution of the rules in order to update the mapping entities and the

operations among them, and secondly, new mediation queries are generated using the

modified operation graphs. In this work, we assume that the output set of mediation queries

is consistent, i.e, we do not investigate if the new mediation queries set satisfies the

constraints specified in the user requirements schema as well as any other constraints that

should hold in the mediation schema. Another important future work is to prove consistency

of a collection of mediation queries obtained after the propagation process.

 139

Bibliography

[Abiteboul et al. 1997] ABITEBOUL, S., J.MCHUGH, D., WIDOM, J., WIENER, J., The lorel
query language for semistructured data, International Journal on Digital Libraries, v. 1, n. 1, p.
68-88, 1997.

[Abiteboul et al. 1998] ABITEBOUL, S., MCHUGH, J., RYS, M., VASSALOS V., WEINER, J.
Incremental maintenance for materialized views over semistructured data, In: 24th
International Conference on Very Large Data Bases, New York City, New York,1998,
Proceedings..., p. 38-49.

[Abiteboul et al. 2000] ABITEBOUL, S., BUNEMAN, P., SUCIU, D., Data on the Web, 1st. Ed.
Morgan Kaufmann Publishers, 2000, 258p.

[Ambite et al. 1998] AMBITE, J., ASHISH, N., BARISH, G., KNOBLOCK, A. C., MINTON,
S., MODI, P., MUSLEA, I., PHILPOT, A., TEJADA, S. Ariadne: a system for constructing
mediators for internet sources, In: ACM SIGMOD Conference on Management of Data,
Seattle, Washington, 1998, Proceedings..., p. 561-563.

[Ambite et al. 2001] AMBITE, J., KNOBLOCK, C., MUSLEA, I., PHILPOT, A. Compiling
Source Description for Efficient and Flexible Information Integration, Journal of Intelligent
Information Systems, v. 16, n. 2, p. 149-187, 2001.

[Arens et al. 1993] ARENS, V., CHEE, C. Y., HSU, C-N., KNOBLOCK, C. A. Retrieving and
integrating data from multiple information sources, International Journal on Intelligent and
Cooperative Information Systems, v. 2, n. 2, p. 127-158, 1993.

[Banerjee et al. 1987] BANERJEE, J., KIM, W., KIM, H. J., KORTH, H. F. Semantics and
Implementation of schema evolution in object-oriented databases, In: SIGMOD, San Francisco,
California, 1987, Proceedings…, p. 311-322.

[Baru et al. 1999] BARU, C., GUPTA, A., LUDASCHER, B., MARCIANO, R.,
PAPAKOSTATINOU, Y., VELIKHOV, P., CHU, V. Xml-based information mediation with
mix, In: ACM SIGMOD Conference on Management of Data, Philadelphia, Pennsylvania, 1999,
Proceedings..., p. 597-599.

[Baru 1999] BARU, C. Xviews: XML Views of Relational Schemas, In: International Workshop
on Internet Data Management, Florence, Italy, 1999, Proceedings…, p. 700-705.

[Batista et al. 2003] BATISTA, M. C. M., LÓSCIO, B.F., SALGADO, A. C. Optimizing access
in a data integration system with caching and materialized data, In: 5th International
Conference on Enterprise Information Systems – ICEIS, Angers, France, 2003, Proceedings…,
p. 529-532.

[Batista 2003] BATISTA, M. C. M. Otimização de Acesso em um Sistema de
Integração de Dados através do uso de Caching e Materialização de Dados, Master Thesis,
Federal University of Pernambuco, 2003.

[Beech et al. 1999] BEECH, D., MALHOTRA, A., RYS, M. A formal data model and algebra
for XML, Communication to the W3C, 1999.

 140

[Beneventano et al. 2001] BENEVENTANO, D., BERGAMASCHI, S., MANDREOLI, F.
Extensional Knowledge for Semantic Query Optimization in a Mediator Based System, In:
International Workshop on Foundations of Models for Information Integration, 2001,
Proceedings...

[Bergamaschi et al. 1998] BERGAMASCHI, S., CASTANO, S., DE CAPITANI DI
VIMERCATI, S., MONTANARI, S., VINCINI, M. A semantic approach to information
integration: the momis project, In: Sesto Convegno della Associazione Italiana per l'Intelligenza
Artificiale, Proceedings..., 1998.

[Bird et al. 2000] BIRD, L., GOODCHILD, A., HALPIN, T. Object Role Modeling and XML-
Schema, In: International Conference on Conceptual Modeling (ER), Salt Lake City, Utah,
2000, Proceedings…, p. 309-322.

[Biron et al. 2001] BIRON, P. V., MALHOTRA, A. XML Schema Part 2: Datatypes, World
Wide Web Consortium. Available at: http://www.w3.org/TR/xmlschema-2, May 2001.

[Bohannon et al. 2002] BOHANNON, P., FREIRE, J., ROY, P., SIMEON, J., From XML
Schema to Relations: A Cost-Based Approach to XML Storage, In: 18th International
Conference on Data EngineeringICDE, San Jose, CA, 2002, Proceedings…, p. 64-.

[Bonifati et al. 2000] BONIFATI, A., CERI, S. Comparative Analysis of Five XML Query
Languages, Journal SIGMOD Record, v .29, n.1, p. 68-79, 2000.

[Booch et al. 1999] BOOCH, G., CHRISTERSON, M. , FUCHS, M., KOISTINEN, J. UML for
XML Schema Mapping Specification. Rational Website, 1999. Available at:
http://www.rational.com/media/ uml/resources/media/uml_ xmlschema33.pdf.

[Bouzeghoub et al. 2002] BOUZEGHOUB, M., LÓSCIO, B. F., KEDAD, Z., SOUKANE, A.
Heterogeneous Data Source Integration and Evolution, (Extended Abstract), In: 13th
International Conference DEXA, 2002, Proceedings…,p. 751-757.

[Bray et al. 2000] BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M. Extensible Markup
Language (XML) 1.0, World Wide Web Consortium. Available at:
http://www.w3.org/TR/REC-xml, October 2000.

[Braganholo 2002] BRAGANHOLO, V. Updating relational databases through xml views,
Thesis proposal PPGC-UFRGS, Porto Alegre, 2002.

[Buneman 1997] BUNEMAN, P. Semi-structured data, In: 16th ACM Symposium on Principles
of Database Systems, Tucson, Arizona, 1997, Proceedings..., p. 117-121.

[Cali et al. 2003] CALI, A., CALVANESE, D., DE GIACOMO, G., LENZERINI, M.,
NAGGAR, P., VERNACOTOLA, F. IBIS: Semantic Data Integration at Work, In: Advanced
Information Systems Engineering, 15th International Conference, CAiSE 2003, Klagenfurt,
Austria, 2003, Proceedings…, p. 79-94.

[Carey et al. 2000] CAREY, M., FLORESCU, D., IVES, Z., LU, Y., SHANMUGASUNDARAM,
J., SHEKITA, E., SUBRAMANIAN, S. XPERANTO: Publishing object-relational data as XML,
In: International Workshop on Web and Databases (WebDB), Dallas, Texas, 2000,
Proceedings…, p. 105-110.

[Cattell et al. 2000] CATTELL, R.G.G., BARRY, D.K.. The Object Database Standard: ODMG

3.0., Morgan Kaufmann, 2000.

[Ceri et al. 1999] CERI, S., COMAI, S., DAMIANI, E., FRATERNALI, P., PARABOSCHI S.,
TANCA, L. Xml-gl: a graphical language for querying and restructuring www data, In: 8th

 141

International World Wide Web Conference, WWW8, Toronto, Canada, 1999, Proceedings...,
p. 151-165.

[Chamberlin et al. 2001] CHAMBERLIN, D., FLORESCU, D., ROBIE, J., SIMÉON, J.,
STEFANESCU, M. XQuery: A Query Language for XML, World Wide Web Consortium.
Available at: http://www.w3.org/TR/2001/WD-xquery-20010607/, 2001.

[Chawathe et al. 1994] CHAWATHE, S., GARCIA MOLINA, H., HAMMER, J. The tsimmis
project: integration of heterogeneous information sources, In: 10th Meeting of the Information
Processing Society of Japan (IPSJ), 1994, Proceedings..., p. 7-18.

[Chen 1976] CHEN, P.P. The Entity-Relationship Model: Toward a unified view of data, ACM
Transactions on Database Systems, v. 1, n. 1, p. 1-36, 1976.

[Chinwala et al. 2001] CHINWALA, M., MILLER, J. A. Algebraic Languages for XML
Databases, Technical Report, University of Georgia, 2001.

[Clark 1999a] CLARK, J. Xml Path Language (XPATH), World Wide Web Consortium,
Available at: http://www.w3.org/TR/xpath, November 1999.

[Clark 1999b] CLARK, J. XSL Transformations (XSLT specification), World Wide Web
Consortium. Available at: http://www.w3.org/TR/WD-xslt, November 1999.

[Clark 2000] CLARK, J. TREX - Tree Regular Expressions for XML, Internet Document.
Available at: http://www.thaiopensource.com/trex/tutorial.html, January 2000.

[Claypool et al. 1998] CLAYPOOL, K. T., JIN, J., RUNDENSTEINER, E. A., SERF: Schema
Evalution through an Extensible, Re-usable and Flexible Framework, In: ACM CIKM
International Conference on Information and Knowledge Management, Bethesda, Maryland,
1998, Proceedings…, p. 314-321.

[Cluet et al. 1998] CLUET, S., DELOBEL, C., SIMÉON, J., SMAGA., K. Your mediators need
data conversion!, In: ACM SIGMOD Conference on Management of Data, Seattle,
Washington, 1998, Proceedings..., p. 177-188.

[Christophides et al. 2000] CHRISTOPHIDES V., CLUET, S., SIMÉON, J. On Wrapping
Query Languages and Efficient XML Integration, In: SIGMOD Conference, Dallas, Texas,
2000, Proceedings..., p. 141-152.

[Dar et al. 1996] DAR, S., FRANKLIN, M.J., JÓNSSON, B.T., SRIVASTAVA, D., TAN, M.
Semantic Data Caching and Replacement, In: 22nd VLDB Conference, Mumbai (Bombay),
Índia, 1996, Proceedings…, p. 330-341.

[Davidson et al. 1999] DAVIDSON, A., FUCHS, M., HEDIN, M., JAIN, M., KOISTINEN, J.,
LLOYD, C., MALONEY, M., SCHWARZHOF, K. Schema for Object-Oriented XML 2.0,
World Wide Web Consortium. Available at: http://www.w3.org/TR/NOTE-SOX, July 1999.

[Deutsch et al. 1999] DEUTSCH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A. AND
SUCIU, D. A query language for xml, In: International World Wide Web Conference, Toronto,
Canadá, 1999, Proceedings...,p. 11-16.

[Draper et al. 2001] DRAPER, D., HALEVY, A. Y., WELD, D. S., The Nimble XML Data
Integration System, In: 17th International Conference on Data Engineering, , Heidelberg,
Germany, 2001, Proceedings..., p. 155-160.

[Draper et al. 2002] DRAPER, D., FANKHAUSER, P., FERNANDEZ, M., SIMÉON, J.,
MALHOTRA, A., ROSE, K., RYS, M., WADLER, P. XQuery 1.0 and XPath 2.0 Formal
Semantics. World Wide Web Consortium. Available at: www.w3.org/TR/query-semantics,
November 2002.

 142

[Elmagarmid et al. 1999] ELMAGARMID, A., RUSINKEIWICZ, SHETH, A. Management of
Heterogeneous and Autonomous Database Systems, 1st. Ed. Morgan Kaufmann Publishers,
1999.

[Fallside 2001] FALLSIDE, D., C. XML Schema Part 0: Primer, World Wide Web Consortium.

Available at: http://www.w3.org/TR/xmlschema-0/, May 2001.

[Fankhauser et al. 2001] FANKHAUSER, P., FERNANDEZ, M., SIMÉON, J., MALHOTRA,
A., RYS, M., WADLER, P. The XML Query Algebra, World Wide Web Consortium. Available
at: http://www.w3.org/TR/2001/WD-query-algebra-20010215/, February 2001.

[Fernandez et al. 2000] FERNANDEZ, M., TAN, W.-C. , SUCIU, D. SilkRoute: Trading
between relations and XML, In: 9th International World Wide Web Conference, Amsterdam,
The Netherlands, 2000, Proceedings…, p. 723-745.

[Fernandez et al. 2001] FERNANDEZ, M., SIMEON, J., WADLER, P. A semi-monad for semi-
structured data, In: International Conference on Database Theory, , 2001, Proceedings…, p.
263-300.

[Fernandez et al. 2001] FERNANDEZ, M., MARSH, J. XQuery 1.0 and XPath 2.0 Data Model
World Wide Web Consortium. Available at: www.w3.org/TR/query-datamodel/, November
2002.

[Ferrandina et al. 1994a] FERRANDINA, F., MEYER, T., ZICARI, R. Correctness of lazy
database updates for an object database system, In: 6th Int'l Workshop on Persistent Object
Systems, 1994, Proceedings…, p. 284-301.

[Florescu et al. 1998] FLORESCU, D., LEVY A., MENDELZON, A. Database techniques for
the world wide web: a survey, ACM SIGMOD Record, v. 27, n. 3, p. 59-74, 1998.

[Florescu et al. 1999] FLORESCU, D, KOSSMANN, D. A performance evaluation of
alternative mappings schemes for storing XML in a relational database. Technical Report 3680,
INRIA, 1999.

[Galanis et al. 2001] GALANIS, L., VIGLAS, E., DEWITT, D. J., NAUGHTON, J. F., MAIER,
D. Following the paths of XML data: an algebraic framework for XML query evaluation,
Technical Report, University of Wisconsin, Madison, 2001.

[Gardarin et al. 2002]GARDARIN, G., MENSCH, A., TOMASIC, A., An Introduction to the e-
XML Data Integration Suite, In: 8th International Conference on Extending Database
Technology, Prague, Czech Republic, 2002, Proceedings..., p. 297-306.

[Genesereth et al. 1997] GENESERETH, M., KELLER, A., DUSHKA, O. Infomaster: an
information integration system, In: ACM SIGMOD, Tucson, Arizona, 1997, Proceedings..., p.
539 -542.

[Goasdoué et al. 2000] GOASDOUÉ, F., LATTES, V., ROUSSET, M-C., The Use of CARIN
Language and Algorithms for Information Integration: The PICSEL Project, International
Journal of Cooperative Information Systems (IJCIS), 2000.

[Gupta et al. 1995a] GUPTA, A., MUMICK, I. S. Maintenance of materialized views: problems,
techniques, and applications, IEEE Data Engineering Bulletin, v. 18, n. 2, p.3-18, 1995.

[Gupta et al. 1997] GUPTA, A., BLAKELEY, J.A. Using partial information to update
materialized views, Information Systems, v. 20, n. 8, p. 641-662, 1995.

[Halevy 2000] HALEVY, Y., Theory of answering queries using views, SIGMOD Record, v. 29,
n. 4, p. 40-47, 2000.

 143

[Halphin 1998] HALPHIN, T. Object-Role Modeling (ORM/NIAM), Handbook on
Architectures of Information Systems, Springer-Verlag, 1998.

[Hammer et al. 1998] HAMMER, J., GARCIA-MOLINA, H., NESTOROV, S., YERNENI, R.,
BREUNIG, M. M. VASSALOS, V. Template-based wrappers in the tsimmis system, In: ACM
SIGMOD Conference on Management of Data, Tucson, Arizona, 1998, Proceedings..., p. 532-
535.

[Harinarayan et al. 1996] HARYNARAYAN, V., RAJARAMAN, A., ULLMAN, J.D.
Implementing data cubes efficiently, In: ACM SIGMOD Conference, Montreal, Quebec,
Canada 1996, Proceedings…, p. 205-216.

[Hull 1997] HULL, R. Managing semantic heterogeneity in databases: a theoretical perspective,
In: ACM Symposium on Principles of Database Systems, Tucson, Arizona, 1997, Proceedings...,
p. 51-61.

[Huyn 1997] HUYN, N. Multiple view-self maintenance in data warehousing environments, In:
23rd Very Large Data Bases Conference, Athens, Greece, 1997, Proceedings..., p. 26-35.

[Ives et al. 1999] IVES, Z. G., FLORESCU, D., FRIEDMAN, M., LEVY A., WELD, D. S., An
adaptive query execution system for data integration, IEEE Data Engineering Bulletin, v. 23, n.
2, p. 19-26, 2000.

[Jagadish et al. 2001] JAGADISH, H. V., LAKSHMANAN, L. V. S., SRIVASTAVA, D.,
THOMPSON, K. TAX: A Tree Algebra for XML, In: Database Programming Languages, 8th
International Workshop , DBPL'01, Frascati, Italy, 2001, Proceedings…, p. 149-164.

[Jagadish et al. 2002] JAGADISH, H., AL-KHALIFA, S., LAKSHMANAN, L., NIERMAN, A.,
PAPARIZOS, S., PATEL, J., SRIVASTAVA, D., WU, Y. Timber: A native XML database,
Technical Report, University of Michigan, 2002.

[Jellife et al. 2000] JELLIFE, R. Schematron, Internet Document. Available at:
http://www.ascc.net/ xml/resource/ schematron/, 2000.

[Kedad et al. 1999] KEDAD, Z., BOUZEGHOUB, M., Discovering View Expressions from a
Multi-Source Information System, In: Fourth IFCIS International Conference on Cooperative
Information Systems (CoopIS), Edinburgh, Scotland, 1999, Proceedings..., p. 57-68.

[Kim 1995] KIM, W., Modern Database Systems, Addison-Wesley Pub. Co., 1995.

[Klarlund et al. 2000] KLARLUND, N., MOLLER, A., SCHWATZBACH, M. I. DSD: a schema
language for xml, In: 3rd ACM Workshop on Formal Methods in Software Practice, 2000,
Proceedings....

[Kirk 1995] KIRK, T., LEVY, A.Y., SAGIV ,Y., SRIVASTAVA, D., The Information Manifold,
In: Spring Symposium on Information Gathering from Heterogeneous, Distributed
Environments, 1995, Proceedings..., p. 85-91.

[Lautemann 1997] LAUTEMANN, S. E. Schema Versions in Object Oriented Database Systems,
In: International Conference on Database Systems for Advanced Applications (DASFAA),
Melbourne, Australia , 1997, Proceedings...,p. 323-332.

[Lee et al. 2000] LEE D., CHU, W.W. Comparative analysis of six xml schema languages,
SIGMOD Record, v. 29, n. 3, p. 76-87, 2000.

[Lerner 1996] LERNER, B. S. A model for compound type changes encountered in schema
evolution, Technical Report, University of Massachusetts, Amherst, Computer Science
Department, 1996.

 144

[Levy et al. 1995] LEVY, A. Y., MENDELZON, A. O., SAGIV, Y., SRIVASTAVA, D. Anwering
queries using views, In: ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), San Jose, CA, 1995, Proceedings..., p. 95-104.

[Levy et al. 1996] LEVY, A. Y., RAJARAMAN, A., ULLMAN, J. D. Answering Queries Using
Limited External Processors, In: Symposium on Principles of Database Systems – PODS,
Montreal, Canada , 1996, Proceedings…, p. 227-237.

[Levy 1999] LEVY, A. Y. Combining artificial intelligence and databases for data integration,
Artificial Intelligence Today, p. 249-268, 1999.

[Levy 2000] LEVY, A., Y., Logic-based techniques in data integration, In J. Minker, editor Logic
based Artificial Intelligence. Kluwer Publishers, 2000.

[Lóscio et al. 2001] LÓSCIO, B. F., SALGADO, A. C., VIDAL, V. M. P. Using Agents for
Generation and Maintenance of Mediators in a Data Integration System on the Web, In: XVI
Simpósio Brasileiro de Banco de Dados, Rio de Janeiro, Brazil, 2001, Proceedings..., p. 172-
186.

[Lóscio et al. 2002a] LÓSCIO, B. F., SALGADO, A. C., VIDAL, V.M.V. Quality-driven
evolution of mediation systems, In: I Workshop de Teses e Dissertações de Banco de Dados,
Rio Grande do Sul, Brazil, 2002, Proceedings…, p. 62-66.

[Lóscio et al. 2002b] LÓSCIO, B.F., BOUZEGHOUB, M., KEDAD, Z., SALGADO, A. C.
Managing the Evolution of Mediation Queries, Technical Report, Laboratoire PRiSM,
Université de Versailles, 2002.

[Lóscio et al. 2003] LÓSCIO, B. F., SALGADO, A. C., GALVÃO, L. R. Conceptual Modeling
of XML Schemas, submitted to International Conference on Conceptual Modeling (ER) 2003.

[Madhavan et al. 2001] MADHAVAN, J., BERNSTEIN, P. A., RAHM, E. Generic Schema
Matching with Cupid, In: 27th International Conference on Very Large Data Bases, Roma,
Italy, 2001, Proceedings…,p. 49-58.

[Makoto 2000]MAKOTO, M. RELAX (REgular LAnguage description for XML), Internet
Document. Available at: www.xml.gr.jp/relax/, April 2000.

[Mani et al. 2001] MANI, M., LEE, D., MUNTZ, R. Semantic Data Modeling using XML
Schemas, In: 20th International Conference on Conceptual Modeling (ER), Roma, Italy, 2001,
Proceedings…, p. 149-163.

[Marche 1993] MARCHE, S. Measuring the Stability of Data Models, European journal of
Information Systems, v. 2, n. 1, p. 37-47, 1993.

[McBrien et al. 2002] MCBRIEN, P., POULOVASSILIS, A. Schema Evolution in
Heterogeneous Database Architectures, A Schema Transformation Approach, In: CAiSE'02,
Toronto, Canadá, 2002, Proceedings…, p. 484-499.

[McHugh et al. 1999] MCHUGH, J., WIDOM, J. Query Optimization for XML. In: Twenty-
Fifth International Conference on Very Large Databases, Edinburgh, Scotland, 1999,
Proceedings…, p. 315-326 .

[Mello et al. 2001] MELLO, R. S., HEUSER, C. A., A Rule-Based Conversion of a DTD to a
Conceptual Schema, In: 20th International Conference on Conceptual Modeling (ER), Roma,
Italy, 2001, Proceedings…, p. 133-148.

[Mello et al. 2002] MELLO, R., CASTANO, S., HEUSER, C. A Method for the Unification of
XML Data, Information & Software Technology, v. 44, n. 4, p. 241-249.

 145

[Mena et al. 1996] MENA, E., KASHYAP, V., SHETH, A., ILLARRAMENDI, A., OBSERVER:
an approach for query processing in global information systems based on interoperation across
pre-existing ontologies, In: 4th Conference on Cooperative Systems, Brussels, Belgium, 1996,
Proceedings..., p.14-25.

[Miller et al. 1994] MILLER, R., IOANNIDIS, Y.E., RAMAKRISHNAN, R. Schema
equivalence in heterogeneous systems: bridging theory and practice, Information Systems, v.
19, n.1, p. 3-31.

[Milo et al. 1998] MILO, T., ZOHAR, S. Using Schema Matching to Simplify Heterogeneous
Data Translation, In: 24rd International Conference on Very Large Data Bases, New York City,
New York , 1998, Proceedings…, p. 122-133.

[Naumann et al. 1999] NAUMANN, F., LESER, U., Quality-driven integration of
heterogeneous information systems, In: 25th Very Large Databases Conference (VLDB).
Edinburh, Scotland, 1999, Proceedings..., p. 447-458.

[Nica et al. 1999] NICA, A., RUNDENSTEINER, E. A. View maintenance after view
synchronization, In: International Database Engineering and Application Symposium
(IDEAS'99), Montreal, Canada , 1999, Proceedings..., p. 215-213.

[Nica 1999] NICA, A. View evolution Support for information integration systems over
dynamic distributed information spaces, Ph.d Dissertation Electrical Engineering and Computer
Science Department, University of Michigan, Ann Arbor, 1999.

[Papakonstantinou et al. 1996] PAPAKONSTANTINOU, Y., ABITEBOUL, S., GARCIA-
MOLINA, H. Object Fusion in Mediator Systems, In: Twenty-second International Conference
on Very Large Databases (VLDB), Mumbai (Bombay), India., 1996, Proceedings…, p. 413-424.

[Psaila 2000] PSAILA, G., ERX: A Conceptual Model for XML Documents, In: ACM
Symposium on Applied Computing (SAC), Villa Olmo, Italy, 2000, Proceedings…, p. 898-903.

[Passi et al. 2002] PASSI, K., MADRIA, S., S., BIPIN, MOHANIA, BHOWMICK, M., S., A
Model for XML Schema Integration, In: 3rd International Conference on E-commerce and Web
Technology, France, 2002, Proceedings…, p. 193- 202.

[Pottinger et al. 2000] POTTINGER, R., LEVY, A. A Scalable Algorithm for Answering Queries

Using Views, In: 26th International Conference on Very Large Data Bases (VLDB), Cairo,

Egypt , 2000, Proceedings…, p. 484-495.

[Ra et al. 1997] RA, Y. G., RUNDENSTEINER, E. A., A Transparent Schema Evolution System
Based on Object-Oriented View Technology, IEEE Transactions on Knowledge and Data
Engineering, v. 9, n. 4, p. 600-624, 1997.

[Rahm et al. 2001] RAHM, E., BERNSTEIN, P. A. A survey of approaches to automatic schema
matching, Very Large Data Bases Journal, v. 10, n. 4, p. 334-350, 2001.

[Robie 1998a] ROBIE, J. The design of XQL, World Wide Web Consortium. Available at:
http://www.w3.org/ Style/XSL/Group/1998/09/XQL-design.html, 1998.

[Robie et al. 1998b] ROBIE, J., LAPP, J. SCHACH, D. Xml query language (xql), In: Query
Languages workshop, Cambridge, Mass, 1998, Proceedings....

[Rundensteiner et al. 1997] RUNDENSTEINER, E. A., LEE, A. J., NICA, A. On preserving
Views In: evolving environments, In: 4th KRDB Workshop, Athens, Greece, 1997,
Proceedings..., p. 13.1-13.11.

 146

[Rundensteiner et al. 1998] RUNDENSTEINER, E.A., LEE, A. RA, Y.G. Capacity augmenting
schema changes on object oriented databases: Towards increased interoperability, In:
ObjectOriented Information Systems, 1998.

[Rundensteiner et al. 2000] RUNDENSTEINER, E., KOELLER, A. AND ZHANG, X.
Maintanining Data Warehouses over Changing Information Sources, Communications of the
ACM, v. 43, n.1, p. 57-62, 2000.

[Schach et al. 1998] SCHACH, D., LAPP, J., ROBIE, J. Querying and transforming xml, In:
Query Languages workshop, Cambridge, Mass, 1998, Proceedings....

[Shanmugasundaram et al. 2001] SHANMUGASUNDARAM, J., SHEKITA, E., BARR R.,
CAREY, M., LINDSAY, B., PIRAHESH , H., REINWALD, B. Efficiently publishing relational
data as XML documents, Very Large Data Bases Journal, v. 10, n. 2-3, p. 133-154, 2001.

[Sheth et al. 1990] SHETH, A. P. AND LARSON, J. A federated database systems for managing
distributed, heterogeneous, and autonomous databases, Computing Surveys, vol. 22, no. 3,
p.183-236, 1990.

[Sjoberg 1993] SJOBERG, D. Quantifying Schema Evolution. Information and Software
Technology, vol. 35, no. 1, p. 35-54, Jan. 1993.

[Spaccapietra et al. 1994] SPACCAPIETRA, S. AND PARENT, C. View integration: a step
forward in solving structural conflicts, IEEE Transactions on Knowledge and Data Engineering,
vol. 6, no. 2, 1994.

[Srivastava et al. 1996] SRIVASTAVA, D., DAR, S., JAGADISH, H. V., AND LEVY, A. Y.
Answering queries with aggregation using views, In: 22nd International Conference on Very
Large Databases, Mumbai (Bombay), India, 1996, Proceedings..., p. 318-329, 1996.

[Theodoratos et al. 1997] THEODORATOS, D., SELLIS, T. Data warehouse configuration, In:
23rd VLDB Conference, Athens, Greece, 1997, Proceedings…, p. 126-135.

[Tomasic 1998] TOMASIC, A., RASCHID, L., AND VALDURIEZ, P., Scaling access to
distributed heterogeneous data sources with Disco, IEEE Transactions on Knowledge and Data
Engineering, 1998.

[Thompson et al. 2000] THOMPSON, H. S., BEECH, D., MALONEY, M. AND
MENDELSOHN, N. XML Schema Part 1: Structures, World Wide Web Consortium,
http://www.w3.org/TR/xmlschema-1, 2000.

[Tompa et al. 1988] TOMPA, F.W. AND BLAKELEY, J. A. Maintaining materialized views
without accessing base data, Informations Systems, vol. 13, no. 4, p. 393-406, 1988.

[Ullman 1997] ULLMAN, J. D., Information integration using logical views, In: ICDT’97,
Delphi, Greece, 1997, Proceedings…, p. 19-40.

[Vidal et al. 2001] VIDAL, V. M. P., LÓSCIO, B. F. AND SALGADO, A. C. Using
correspondence assertions for specifying the semantics of xml-based mediators, In: WIIW 2001
- International Workshop on Information Integration on the Web - Technologies and
Applications, Rio de Janeiro, Brasil, 2001, Proceedings..., p. 3-10.

[Vittori et al. 2001] VITTORI, C., DORNELES, C., HEUSER, C. Creating xml documents
from relational data sources, In: Second International Conference Electronic Commerce and
Web Technologies EC-Web, Munich, Germany ,2001, Proceedings…, p. 60-70.

[Zhang et al. 2002a] ZHANG, X., MULCHANDANI, M., CHRIST, S., MURPHY, B.,
RUNDENSTEINER, E. A. Rainbow: Mapping-Driven XQuery Processing System, In: Demo
Session of SIGMOD'02, Madison, Wisconsin, 2002, Proceedings…, p. 614.

 147

[Zhang et al. 2002b] ZHANG, X., PIELECH, B. AND RUNDESNTEINER, E. A. Honey, I
shrunk the XQuery!: an XML algebra optimization approach, In: Fourth International
Workshop on Web Information and Data Management, LcLean, Virginia, 2002, Proceedings…,
p.15-22.

[Zhou et al. 1996] ZHOU, G., HULL, R. AND KING, R. Generating data integration
mediators that use materialization, Journal of Intelligent Information Systems, vol. 6, no. 2/3,
p. 199-221, 1996.

[Wang et al. 1996] WANG, Y. R., AND STRONG, D. M., Beyond accuracy: what data quality
means to data consumers, Journal on Management of Information Systems, v. 12, n. 4, p. 5-34,
1996.

[Wiederhold 1992] WIEDERHOLD, G. Mediators in the architecture of future information
systems, IEEE Computer, p.38-49, 1992.

[Widom 1995] WIDOM, J. Research problems in data warehouse, In: 4th Int’l Conference on
Information and knowledge Management (CIKM), Baltimore, Maryland, 1995, Proceedings...,
p. 25-30.

